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Abstract The importance of host transmissibility in disease emergence has been
demonstrated in historical and recent pandemics that involve infectious individuals,
known as superspreaders, who are capable of transmitting the infection to a large
number of susceptible individuals. To investigate the impact of superspreaders
on epidemic dynamics, we formulate deterministic and stochastic models that
incorporate differences in superspreaders versus nonsuperspreaders. In particular,
continuous-time Markov chain models are used to investigate epidemic features
associated with the presence of superspreaders in a population. We parameterize
the models for two case studies, Middle East respiratory syndrome (MERS) and
Ebola. Through mathematical analysis and numerical simulations, we find that the
probability of outbreaks increases and time to outbreaks decreases as the prevalence
of superspreaders increases in the population. In particular, as disease outbreaks
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occur more rapidly and more frequently when initiated by superspreaders, our
results emphasize the need for expeditious public health interventions.

Keywords Superspreader · Host heterogeneity · Middle East respiratory
syndrome · Ebola · Deterministic model · Stochastic model

1 Background

The prevalence of most infectious diseases is often assumed to emerge from person-
to-person interactions among a population of individuals who are considered homo-
geneous with respect to contact, transmission, and recovery behavior. However, it is
more realistic to assume that diseases spread among a heterogeneous population.
Host heterogeneity may be due to physiological, behavioral, or immunological
differences [33]. Behavioral differences may also be related to the environmental
setting [33]. For example, some individuals are at a higher risk for spreading
the disease due to increased contact with susceptible persons or longer length of
infection. This has been observed in the spread of sexually transmitted and vector-
borne diseases, where high-risk individuals are characterized by the “20/80” rule,
in which 20% of the infected individuals are responsible for 80% of the disease
transmission [21, 41]. The 2002–2003 SARS epidemic highlighted the role of
superspreaders (SS), defined as people who infect a large number of individuals,
in comparison to nonsuperspreaders (NS) who transmit the disease to few or none
[6, 15, 30, 40]. However, the exact characteristics of SS and their impact on disease
dynamics are difficult to define. Lloyd et al. studied the effects of heterogeneity in
infectiousness and then found that the proportion of SS contributed to high levels
of heterogeneity for several infectious diseases (e.g., SARS, measles, influenza,
rubella, smallpox, Ebola, and other diseases) [26]. Currently, there are no well-
known methods for identifying SS in the population or control efforts to reduce the
disease transmission at the individual or population levels based on SS. We consider
two infectious diseases, Ebola and Middle East respiratory syndrome (MERS), that
are associated with certain cultural and health behaviors for which contact patterns
may be traceable. Focusing on these two epidemic cases, we will provide insight
into disease patterns associated with superspreading events.

Ebola virus was first discovered in 1976 in Africa, in the country now named
the Democratic Republic of the Congo, near the Ebola river. Ebola virus can
persist in the environment through animal-to-animal transmission, e.g., bats can
transmit the virus to apes, monkeys, antelopes, and other animals. The virus
can also be transmitted to humans through contact with infected animals in the
environment during hunting, meat preparation, or from an animal bite. Infection can
be transmitted to other humans through contact with bodily fluids, such as blood,
secretions, and organs of sick or diseased individuals, or with contaminated objects,
such as bedding and clothes. According to the World Health Organization (WHO),
the 2014–2016 Ebola outbreak in West Africa had the most cases and deaths of any
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Ebola outbreak to date [38]. This spread might have been increased due to infected
health-care workers’ close contact with susceptible individuals. Additionally, burial
ceremonies may increase contact with infectious deceased bodies that contain the
virus. The incubation period, defined as the time of infection to onset of symptoms,
ranges from 2 to 21 days [38]. Individuals can recover from Ebola; however,
mortality rates range from 25 to 90%. In 2016, the WHO announced that the
first vaccine trial implemented in Guinea was 100% effective [17, 37]. The recent
preventive measures announced by the Centers for Disease Control and Prevention
(CDC) include: reducing contacts with infected animals or bodily fluids of infected
individuals, isolating infected and deceased individuals, early detection of infected
individuals, and maintaining a clean environment [8].

MERS was first identified in 2012 from an outbreak that occurred in Saudi
Arabia [40]. The source of infection was identified as dromedary camels. However,
most cases are not due to camel-to-human infections. MERS outbreaks among
humans arise from human-to-human interactions, where many cases occur in
healthcare settings with poor health prevention and control practices. In 2015, an
outbreak of MERS in South Korea was driven by three SS, initiated with one SS
contracting MERS during international travel. The first SS was responsible for
29 secondary infections through various clinical visits. Two subsequently infected
individuals were responsible for 106 tertiary infections [39, 40]. Individuals infected
with MERS can be asymptomatic, while others may experience the following
symptoms: fever, coughs, shortness of breath, diarrhea, and pneumonia. Nearly,
35% of MERS cases resulted in death. While no vaccine or treatments are available,
individuals are advised to maintain good hygiene when coming into contact with
animals, particularly camels, such as washing hands and avoiding contact with sick
animals. Additional prevention strategies include consuming thoroughly cooked and
prepared animal products [39].

Mathematical models formulated for recent outbreaks of MERS and Ebola have
applied the compartmental setting with various disease stages such as susceptible,
exposed, infectious, and recovered (SEIR) or performed statistical analyses to
identify important parameters in spread of the disease ([11, 23, 24] MERS and [4, 10,
16, 22] Ebola). Additional classes for asymptomatic, hospitalized, or isolated indi-
viduals were also included in MERS models [11, 23]. Time-dependent transmission
parameters accounted for superspreading events (e.g., [22–24]). Superspreading
events have also been investigated with multitype branching processes by including
individual heterogeneity in offspring generating functions [18, 26]. All of these
models have contributed to a better understanding of the role of superspreaders in
disease outbreaks. Our models incorporate the compartmental framework and apply
stochastic simulations with theory from branching processes to further elucidate the
role of superspreaders in disease dynamics.

In this investigation, we develop a mathematical modeling framework that
incorporates the heterogeneity of hosts through differences in transmission rates
to assess the role of SS in disease spread at the population level. Specifically,
we aim to study the disease dynamics in a heterogeneous population consisting
of SS and NS individuals, and develop a deterministic model based on ordinary
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differential equations (ODEs) which is expanded to a stochastic model that is
implemented as a continuous-time Markov chain (CTMC) system and approximated
by a multitype branching process [1, 2]. We incorporate estimated parameter values
from published data of prior MERS and Ebola epidemics into our models. Next, we
compute the basic reproduction number for the ODE model, and perform sensitivity
analysis using Latin hypercube sampling and partial rank correlation. By varying the
initial size of SS and model parameters of the CTMC model, we derive and verify
analytical estimates obtained using multitype branching process approximations
with model simulations to predict the probability of an epidemic outbreak. In further
numerical simulations of the CTMC model, we compute sample paths, probability
of outbreak, number of deaths, time to outbreak, time to peak infection, and peak
number of infectious individuals. Our analyses and numerical simulations reveal
how SS influence the dynamics of epidemic outbreaks, which may provide useful
insight for public health interventions.

2 Deterministic Model

We formulate a simple modeling framework for host heterogeneity due to differ-
ences in individuals that account for either SS or NS. In particular, SS or NS
may differ in transmission, transitions between disease stages, deaths, recovery, or
population size. The SS and NS mix homogeneously, such as in a hospital setting
(MERS) or at a large gathering such as a funeral (Ebola). Our basic modeling
framework is a system of ODEs with five disease stages for SS and NS as described
by the compartmental diagram in Fig. 1 and by the differential equations in (2.1),

Fig. 1 Flow diagram for the ODE model with classes Si , Ei , Ai , Ii , and Ri , where i = 1 repre-
sents NS and i = 2 represents SS. The solid lines denote transitions between classes. Meanwhile,
the dashed curves are transmission and death rates in the model, where the transmission of infection
from classes Ei and Ai to the susceptible class results in a transition from Si to Ei
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Table 1 Description of the
variables used in the ODE
model (Fig. 1) and in the
CTMC model

Variable Description

Si Number of NS/SS Susceptible individuals

Ei Number of NS/SS Exposed individuals

Ai Number of NS/SS Asymptomatic individuals

Ii Number of NS/SS Infected individuals

Ri Number of NS/SS Recovered individuals

Subscripts are i = 1 for NS and i = 2 for SS

where i = 1 is NS and i = 2 is SS. The description of the model variables are
summarized in Table 1. Such types of models have been used in metapopulation
settings and are referred to as multigroup models (e.g., [25, 34]).

dSi

dt
= − Si

N1 + N2
(β1(I1 + A1) + β2(I2 + A2))

dEi

dt
= Si

N1 + N2
(β1(I1 + A1) + β2(I2 + A2)) − αiEi

dAi

dt
= αiEi − δiAi − μAiAi (2.1)

dIi

dt
= δiAi − μIiIi − γiIi

dRi

dt
= γiIi

For the ODE model, we assume that the disease duration is short and, therefore,
we do not include birth or natural death rates. In addition, we make the simplifying
assumption that NS cannot become SS and vice versa. We make this assumption due
to the short duration of the epidemic period and the fact that no control measures are
applied (which could change the transmission patterns). In the model, the number
of susceptible NS and SS are denoted by S1 and S2, respectively. Susceptible
individuals transition into their respective exposed classes, E1 and E2, at a rate of

β1(I1 + A1) + β2(I2 + A2)

N1 + N2
,

where β1 is the transmission rate of the NS asymptomatic A1 and infective I1
classes with N1 as the total number of NS and similarly for SS variables. The total
number of individuals is N = N1 + N2, where Ni = Si + Ei + Ai + Ii + Ri ,
for i = 1, 2. From the exposed class, individuals transition to the asymptomatic
class, A1 and A2, at a rate of α1 or α2. In the asymptomatic class, there is disease-
induced mortality with rates μA1 or μA2, respectively. Asymptomatic individuals
do not display symptoms but are infectious. Individuals transition into the infective
class at a rate of δ1 or δ2, where the disease-induced mortality rates are μI1 or μI2.
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Table 2 Description of the parameters used in the ODE model (Fig. 1) and in the CTMC model

MERS Ebola

Parameter Baseline Range Baseline Range

β1 Transmission rate NS 0.06 [31] (0.04, 0.08) 0.128 [10] (0.04, 0.38)

β2 Transmission rate SS 0.6931∗∗ (0.4, 0.8) 1.0150∗∗ (0.5, 1.2)

α−1
i Latent period 6.3 [12] (2–8) 10 [10] (7, 14)

δ−1
i Duration of asymp. stage 0.4 [12] (0.1, 2) 10−4 [10] (9.9, 100) × 10−5

μji Disease-induced death rate 0.08 [7] (0.02, 0.14) 0.09 [9] (0.075, 0.125)

γi Recovery rate 0.075 [19] (0.05, 0.1) 0.05 [31, 35] (0.04, 0.1)

Subscripts are i = 1, 2 and j = I, A. Baseline values are used in all simulations. Range of
values is used for the parameter sensitivity analysis (Sect. 4). We assume α1 = α2, δ1 = δ2, and
μA1 = μA2 = μI1 = μI2. Estimated parameters are marked by ∗∗

In the infective classes, individuals display symptoms and are infectious. Lastly,
individuals can transition into the recovered class at a rate of γ1 or γ2. Due to
the short duration of the epidemic, we assume that the recovered individuals are
immune for the duration of the outbreak. The definition and values of parameters
are summarized in Table 2. For Ebola parameter values, we used the outbreak in
Sierra Leon in 2014 [7, 12, 19, 31] and for the MERS 2015 outbreak in South Korea
[9, 10, 31, 35]. Note that these parameter values are taken from a single outbreak of
MERS and Ebola, which means that they vary from other outbreaks and may present
some constraints when asserting conclusions for outbreaks of the same infectious
disease [14, 20]. However, the parameter values used from the two outbreaks provide
an excellent baseline for our model simulations.

2.1 Basic Reproduction Number

We compute the reproduction number for the ODE system (2.1) using the next-
generation matrix [34]. The basic reproduction number, R0, is defined as the number
of secondary cases produced by the introduction of a single infected individual into
a fully susceptible population. If R0 > 1, an outbreak occurs in the ODE model. We
start by defining two matrices, F and V , where the F matrix represents the newly
infected rates in the system, and V represents the remaining rates in the infected
compartments, Eqs. (1) and (2) respectively. The matrix F−V is the Jacobian matrix
of the infected compartments evaluated at the disease-free equilibrium (DFE), where
S̄i = Ni(0) and Ei = Ai = Ii = Ri = 0, i = 1, 2. We find the spectral radius of
the matrix FV −1 (Appendix 1), which equals the basic reproduction number,

R0 = β1
N1
N

(γ1 + δ1 + μI1)

(δ1 + μA1)(γ1 + μI1)
︸ ︷︷ ︸

NS

+ β2
N2
N

(γ2 + δ2 + μI2)

(δ2 + μA2)(γ2 + μI2)
︸ ︷︷ ︸

SS

. (2.2)
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The basic reproduction number has the form typical of a multigroup/stage progres-
sion model [34]. It is the sum of two basic reproduction numbers, one for each
group, NS when i = 1 and SS when i = 2. In particular, R0 = ∑2

i=1 Ri
0, where

Ri
0 = βiNi/N

δi + μAi

+ βi(Ni/N)δi

(δi + μAi
)(γi + μIi

)
, i = 1, 2.

The two terms in the preceding expression represent new infections resulting from
either the asymptotic stage Ai or from the infectious stage Ii , i = 1, 2. In addition
for group i, the term βi(Ni/N) is the number of successful transmissions from an
individual in stage Ai (first term) or from an individual in stage Ii (second term)
that result in exposed individuals. The term 1/(δi + μAi

) is the average length of
the asymptotic stage while 1/(γi +μIi

) is the average length of the infectious stage,
and δi/(δi + μAi

) is the probability of transitioning from Ai to Ii . For parameter
values in Table 2 and for equal proportion of SS and NS, N1/N = 0.5 = N2/N , the
basic reproduction number for MERS is R0 = 2.36 and for Ebola it is R0 = 3.75.

3 Markov Chain Model

If the number of hosts/pathogens is sufficiently small, an ODE model is not
appropriate. To that end, we utilize a continuous-time Markov chain (CTMC) model,
which is continuous in time and discrete in the state space, to study the variability at
the initiation of an outbreak, in time to outbreak, and in the peak level of infection.
For simplicity, we use the same notation for the state variables as in the ODE model.
In particular, time t ∈ [0,∞) and the states are discrete random variables, e.g.,
Si, Ei, Ai, Ii , Ri ∈ {0, 1, 2, . . .}. The Markov property implies that the future states
of the stochastic process only depend on the current states. In particular, there is an
exponential waiting time between events.

To formulate a CTMC, it is necessary to define the infinitesimal transition
probabilities corresponding to each change (event) in the state variables. The CTMC
model consists of 12 distinct events, six events for each of the groups, NS and SS.
The changes and the corresponding infinitesimal transition rates are summarized in
Table 3.

3.1 Branching Process Approximation

The theory of multitype (Galton–Watson) branching processes has a long history
(e.g., [2, 13, 36] and references therein). It has been used to approximate the
dynamics of the CTMC model near the DFE and the stochastic threshold for a
disease outbreak [1–3, 36]. In fact, the stochastic threshold (i.e., probability of a
disease outbreak) is directly related to the basic reproduction number as defined in
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Table 3 State transitions and rates for the CTMC model with Poisson rates ri�t + o(�t)

Event Description (i = 1, 2) Transition Rate, ri

1, 2 Infection of Si
Si → Si − 1 Si

N

∑2
k=1 βk(Ak + Ik)

Ei → Ei + 1

3, 4 Transition to Ai
Ei → Ei − 1

αiEi
Ai → Ai + 1

5, 6 Transition to Ii
Ai → Ai − 1

δiAi
Ii → Ii + 1

7, 8 Death of Ai Ai → Ai − 1 μAi
Ai

9, 10 Death of Ii Ii → Ii − 1 μIi
Ii

11, 12 Recovery of Ii
Ii → Ii − 1

γiIi
Ri → Ri + 1

the corresponding deterministic model (2.1) (see [3, 36]). More specifically, if the
basic reproduction is less than unity, then disease extinction occurs with probability
one. In this case, the branching process is called subcritical. However, if the basic
reproduction number is greater than unity, the probability of disease extinction is
less than one (probability of outbreak is greater than zero) and the process is referred
to as supercritical.

In what follows, we will apply a multitype branching process approximation
of the CTMC model at the DFE to estimate disease extinction probability. First,
let us define the offspring probability generating function (pgf) for the exposed,
asymptomatic, and infectious individuals in NS and SS. Let X = (X1, . . . , X6) :=
(E1, A1, I1, E2, A2, I2) be a vector of integer-valued random variables and δij

denote the Kronecker delta (i.e., δij = 1 if i = j and zero otherwise). In general,
the offspring pgf for type i given Xj(0) = δij is a function from [0, 1]6 to [0, 1],
and it takes the form:

fi(x1, . . . , x6) =
∞
∑

k1=0

. . .

∞
∑

k6=0

Pi(k1, k2, . . . , k6)x
k1
1 · · · xk6

6 . (3.1)

Here, Pi(k1, k2, . . . , k6) is the probability that the individual of type i gives “birth”
to kj individuals of type j for j = 1, 2, . . . , 6. In particular, the pgfs fi : [0, 1]6 →
[0, 1] (i = 1, . . . , 6) are given by:

f1(x1, x2, . . . , x6) = x2,

f2(x1, x2, . . . , x6) =
N1
N

β1x1x2 + N2
N

β1x2x4 + δ1x3 + μA1

β1 + δ1 + μA1
,

f3(x1, x2, . . . , x6) =
N1
N

β1x1x3 + N2
N

β1x3x4 + μI1 + γ1

β1 + μI1 + γ1
,

f4(x1, x2, . . . , x6) = x5



Searching for Superspreaders: Identifying Epidemic Patterns Associated with. . . 9

f5(x1, x2, . . . , x6) =
N1
N

β2x1x5 + N2
N

β2x5x4 + δ2x6 + μA2

β2 + δ2 + μA2
,

f6(x1, x2, . . . , x6) =
N1
N

β2x1x6 + N2
N

β2x6x4 + μI2 + γ2

β2 + μI2 + γ2
.

According to the theory of multitype branching processes [5, 13], the fixed points
of the offspring pgfs give an estimate of the disease extinction probability. Let
(q1, q2, q3, q4, q5, q6) be the minimal fixed points of pgfs; that is, fi(q1, . . . , q6) =
qi for i = 1, . . . , 6. Then, an estimate of the extinction probability given X(0) =
(a1, e1, i1, a2, e2, i2) is

P ext = lim
t→∞P (X(t) = 0) = q

a1
1 q

e1
2 q

i1
3 q

a2
4 q

e2
5 q

i2
6 ,

and hence the probability of an outbreak is

P out = 1 − P ext = 1 − q
a1
1 q

e1
2 q

i1
3 q

a2
4 q

e2
5 q

i2
6 .

However, due to the simplicity of f1 and f4 (no deaths during stage Ei), the pgfs
can be simplified. That is, x1 = x2 and x4 = x5. Therefore, we only solve for
q2, q3, q5, and q6.

The expectation matrix M = (mij ) can be shown to be directly related to the

basic reproduction number [3] with mij = ∂fj

∂xi
|X=1. We include this calculation in

Appendix 2. It is known that the spectral radius of M , denoted as ρ(M), determines
whether the disease extinction probability is equal to or less than the unity [2, 3, 13].
Specifically, if ρ(M) < 1, q1 = · · · = q6 = 1, then the extinction probability is
one; if ρ(M) > 1, then there exists a unique fixed point (q1, · · · , q6) ∈ (0, 1)6, and
hence the extinction probability is strictly less than one. By the Threshold Theorem
of reference [3], it follows that the spectral radius of the matrix M is strictly less than
one if and only if the basic reproduction number is strictly less than one. Analogous
statements hold whenever the spectral radius of M is equal to one or is strictly
greater than one.

4 Parameter Sensitivity Analysis

We perform a sensitivity analysis on the parameters ranges given in Table 2
for the ODE models for MERS and Ebola using a uniform distribution for the
values. Latin hypercube sampling (LHS), first developed by McKay et al. [29],
with the statistical sensitivity measure partial rank correlation coefficient (PRCC),
performs a sensitivity analysis that explores a defined parameter space of the
model. The parameter space considered is defined by the parameter intervals
depicted in Table 2. Rather than simply exploring one parameter at a time with
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other parameters held fixed at baseline values, the LHS/PRCC sensitivity analysis
method globally explores multidimensional parameter space. LHS is a stratified
Monte Carlo sampling without replacement technique that allows an unbiased
estimate of the average model output with limited samples. The PRCC sensitivity
analysis technique works well for parameters that have a nonlinear and monotonic
relationship with the output measure. PRCC shows how the output measure is
influenced by changes in a specific parameter value when the linear effects of other
parameter values are removed. The PRCC values were calculated as Spearman
(rank) partial correlations using the partialcorr function in MATLAB 2016. Their
significances, uncorrelated p-values, were also determined. The PRCC values vary
between −1 and 1, where negative values indicate that the parameter is inversely
proportional to the output measure. Following Marino et al. [27], we performed a
z-test on transformed PRCC values to rank significant model parameters in terms of
relative sensitivity. According to the z-test, parameters with larger magnitude PRCC
values had a stronger effect on the output measures.

We start by verifying the monotonicity of the output measures. Monotonicity
was observed for all parameters except μI2 with total SS deaths, which exhibited
two monotonic ranges [0.02, 0.0278] and [0.0278, 0.14]. For non-monotonic trends,
alternative methods based on decomposition of model output variances such as
eFAST (extended Fourier Amplitude Sensitivity Test) can be used instead of PRCC
[27]; however, since all other parameters were monotonic, we use PRCC and just
consider the two monotonic ranges of μI2 separately. PRCC analysis of these
two ranges produces similar results. For an analysis of the monotonicity, refer to
Appendix 3. Once meeting the monotonicity requirements, we proceed to utilize
LHS with PRCC for both MERS and Ebola parameters. For each disease, we
calculate the PRCC for the following output measures: total NS cases, total SS
cases, total NS deaths, and total SS deaths. The number of total cases refers to the
total number of transmission events where susceptible individuals become exposed
(latently infected) individuals. For the outputs of NS/SS cases, the PRCC results
were similar in both Ebola and MERS. According to the PRCC values, the β2 and
μI2 are significant in the model for MERS. Meanwhile, in the Ebola model, both
transmission parameters are significant in the model (see Fig. 2). Note that β2 is
calculated from R0, which we will vary later in simulations.

5 CTMC Analysis

For the CTMC model, we numerically simulate sample paths to compute the proba-
bility of an outbreak, number of deaths, time to outbreak, time to peak infection, and
peak number of infectious individuals. For sample paths and probability of outbreak,
we compare our results with the deterministic model. In the remainder of this
analysis, we assume that the initial total population size is N(0) = 2000. Reference
to infected individuals will imply the variables I1 and I2, unless stated otherwise.
For example, peak number of infectious individuals refers to the maximum value of
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(a) MERS NS cases
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(b) Ebola NS cases
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(c) MERS SS cases
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(d) Ebola SS cases
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(e) MERS NS deaths
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(f) Ebola NS deaths
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(g) MERS SS deaths
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1

n.s. n.s. n.s.

(h) Ebola SS deaths

Fig. 2 PRCC values for output measures (a)–(b) number of NS cases, (c)–(d) number of SS cases,
(e)–(f) number of NS deaths, and (g)–(h) number of SS deaths with μI2 range [0.02, 0.0278].
The number of total cases refers to the total number of transmission events where susceptible
individuals become exposed (latently infected) individuals. P -values that are greater than 0.05 are
labeled as not significant (n.s.)
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I1 + I2 and the time to peak infection refers to the time t at which this maximum
occurs. However, an outbreak means that the total number in classes Ei , Ai , and Ii

for both NS and SS has reached at least 50, i.e.,
∑

(Ei +Ai + Ii) ≥ 50. In addition,
we note that for the CTMC model, an outcome measure (e.g., peak values, time to
peak, and number of deaths) is defined by a corresponding probability distribution
and a sample path yields one outcome from the distribution.

5.1 Sample Paths

An example of the sample paths resulting from our CTMC model is shown in Fig. 3,
for both MERS and Ebola cases. These sample paths are generally well aligned
with the population average response that is captured by our ODE model (shown
with a black line). However, the sample paths of the CTMC model illustrate the
potential variability in timing of the peak level of infection and the peak number of
infectious individuals. Note that some sample paths are not shown because in those
simulations the disease becomes extinct. Also, note that the A class is not shown for
Ebola (Fig. 3b) given that the asymptomatic stage is extremely short for this disease.

5.2 Probability of Outbreak

Next, in order to do a comprehensive comparison of the stochastic simulation and
ODE model results, we probe the relationship between two model parameters—the
value of R0 (Fig. 4) as well as the fraction of the susceptible population that are in
the SS class (Fig. 4) and a key model output: the probability of outbreak. Probability
of outbreak is defined by monitoring the number of people in the E, A, and I classes
and an outbreak is declared when the cumulative size of these compartments reaches
the threshold value of 50. Although the value of 50 appears relatively large, it is
reasonable given that we are counting the cumulative number in all three classes for
a relatively large population size of 2000. For these simulations, we vary β2 given
the significant effect of this parameter on the model outputs as confirmed by the
LHS analysis.

We note a negative correlation between the proportion of SS in the S class and
the probability of outbreak (Fig. 4) and attribute this to the fact that the value of
β2 is varied in order to maintain a constant value of R0 (MERS, R0 = 2.5 and
Ebola, R0 = 2.39). In other words, as the fraction of SS susceptible individuals is
increased, the value of β2 decreases and results in a reduction in the probability of
outbreak (1−q6). Results in Fig. 4 are shown only for q3 and q6 since these outputs
are similar to q1 and q4, respectively. We also note that q1 = q2 and q4 = q5 and
therefore exclude those plots as well.

As expected, the probability of an outbreak is dependent on the initial fraction
of the population that is infected, with an increasing chance of an outbreak
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Fig. 3 Sample paths of the (a) MERS and (b) Ebola epidemics. Four sample paths (in color) of
the CTMC system are shown and overlaid on the deterministic ODE model (in black). In (a) only
three sample paths and in (b) only two sample paths are visible on the graphs, as one sample path
in (a) and two sample paths in (b) did not result in an outbreak. The visible sample paths illustrate
the potential variability in timing and epidemic size for a total population size of N1 = 1000
and N2 = 1000, with one initial infected SS individual (I2(0) = 1) and all NS individuals are
susceptible, I1(0) = 0

as the number of initially infected individuals increases (Fig. 4). Furthermore,
the probability of outbreak is significantly enhanced when the initially infected
population is composed of SS rather than NS individuals. We also find a strong
agreement between the probability of outbreak predicted by stochastic simulations
of the CTMC model and the associated branching process approximations for all of
these analyses (Fig. 4a–f).
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Fig. 4 Probability of an outbreak as a function of R0 for MERS in (a) and Ebola in (b),
the Proportion SS Susceptible Individuals for MERS in (c) and Ebola in (d), and the Number
Initially Infected for MERS in (e) and Ebola in (f). The stochastic simulations (red) and analytical
calculations (blue dots) are overlaid for MERS in (a), (c), and (e), and Ebola in (b), (d), and (f).
The total population size is N1 = N2 = 1000 and the probability of an outbreak (1 − q3), after
introducing one infected NS, I1(0) = 1, is shown for MERS and Ebola on the left in (a)–(f).
Similarly, the probability of an outbreak (1 − q6), after introducing one infected SS, I2(0) = 1, is
shown for MERS and Ebola on the right in (a)–(f)

5.3 Number of Deaths

Utilizing our stochastic model of MERS and Ebola dynamics within a population
of individuals, we next sought to investigate whether the presence of SS individuals
within the population could be reflected in key metrics that capture the severity of
disease outbreak: the number of deaths, time to disease outbreak, probability of
outbreak, time to peak number of infections, and the peak number of infectious
individuals.

We first assess the impact of SS individuals on the number of deaths that
accumulate over a 150-day time frame following disease initiation. We observe a
modest increase in the frequency of deaths as the size of the susceptible SS class of
individuals is increased from 5 to 50% of the total population for both MERS and
Ebola disease simulations (not shown). We note a higher frequency of epidemics
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Fig. 5 Total number of deaths when initial infected is varied. Histograms of the number of deaths
by day 150 calculated from 10,000 sample paths, with a total initial population size of N1 = N2 =
1000. The initial number of infected is varied in each panel. In MERS simulations, one NS is
introduced I1(0) = 1 and I2(0) = 0 in (a) and one SS is initiated in I1(0) = 0 and I2(0) = 1 in
(b). Similarly, in (c) one NS is introduced and in (d) one SS is introduced. The distributions are
bimodal

with lower numbers of deaths when the fraction of SS individuals in the susceptible
fraction is lower (not shown).

For all subsequent simulations, we initialize the population consisting of 1000
SS and 1000 NS susceptible individuals. Most notably, there is a ten-fold increase
in the frequency of deaths expected when the initial infected individual (for both
MERS and Ebola) is an SS rather than an NS (Fig. 5). The statistical significance
of the difference between NS- and SS-initiated epidemics is confirmed with a
Kolmogorov–Smirnov test (p < 0.001) [28]. It is clear that the distributions are
bimodal. This is due to the fact that there may be only a minor outbreak (with
probability q3 or q6) with none or a few deaths or a major outbreak (with probability
1 − q3 or 1 − q6) with a significant number of deaths.

We next explore the relationship between the number of deaths and the number
of initially infected individuals. For each fraction of the population initially infected,
there are 1000 points, one point from each of the 1000 sample paths, representing the
total number of deaths over a 150-day time period. As expected, we find that as the
number of initially infected NS individuals increases, the expected number of deaths
increases as well (Fig. 6). Interestingly, we find a threshold response as the fraction
of initially infected SS individuals increases. As the fraction of initially infected
SS individuals increases beyond 0.005 for MERS (Fig. 6b) and 0.0075 for Ebola
(Fig. 6d), we find that the simulation always gives rise to an outbreak, resulting in a
maximal number of around 1000 deaths over a 150-day simulated period. We also
note that there is a decrease in the variability in the number of deaths when the
outbreak is initiated by an SS rather than an NS, which contributes to this threshold
response. The seemingly binary response in the number of deaths resulting from a
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Fig. 6 Number of deaths as a function of fraction of initially infected. Scatterplot of the number
of deaths over a 150-day period calculated from 1000 sample paths with a total initial population
N1 = N2 = 1000. The fraction of the population is initially increasing for NS (a) and SS (b) for
MERS and NS (c) and SS (d) for Ebola. Outbreaks (red) and non-outbreak cases (blue) are shown

MERS or Ebola epidemic initiated by infected SS individuals who only contribute
to 0.5–0.75% of the starting population is a good indication that by tracking the
number of deaths in an epidemic, the presence of an SS may be predicted. Thus,
while the observation that an outbreak has occurred does not necessarily suggest the
existence of SS individuals in the population, the severity of the outbreak in terms
of lives lost may be more suggestive of the presence of an SS, especially when the
number of known initial infections is low.

5.4 Time to Outbreak

Similarly, we find that the time to outbreak—where an outbreak is defined as 50
or more people in all of the E, A, and I classes—is reduced when the initial
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Fig. 7 Time to outbreak for MERS (a) and (c), and Ebola (d) and (b). Calculations for 10,000
sample paths with an increasing fraction of SS in the susceptible populations are shown. The
epidemic is initiated with a single infected (a)–(b) NS individual and (c)–(d) SS individual
(Ii (0) = 1), and Ei(0) = 0 and Ri(0) = 0. The initial population is N = 2000 individuals
where R0 = 2.5 for MERS is held constant. Simulations (a) and (c) are run for three cases:
N2(0) = 0.05N and β2 = 6.391 (top), N2(0) = 0.25N and β2 = 1.326 (middle), and
N2(0) = 0.50N and β2 = 0.693 (bottom). R0 = 2.5 for Ebola is held constant. Simulations
(b) and (d) are run for three cases: N2(0) = 0.05N and β2 = 4.562 (top), N2(0) = 0.25N and
β2 = 1.014 (middle), and N2(0) = 0.50N and β2 = 0.571

infected individual in a simulated MERS or Ebola disease situation is an SS rather
than an NS (Fig. 7a, c). We confirmed that this reduction is, indeed, statistically
significant (Fig. 8a–b). These results also illustrate that as the fraction of susceptible
SS increases the time to outbreak increases as well, which we attribute to the fact
that β2 values decrease (detailed in Figs. 7 and 8). In Fig. 7, each distribution is
based on 10,000 sample paths, whereas in Fig. 8, for each fraction initially infected,
the time points are based on 1000 sample paths.

We also find a clear separation between the time to outbreak of an epidemic
initiated by a fraction of SS versus NS infected individuals. Mean differences were
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Fig. 8 Time to outbreak as a function of percent of SS and fraction of initially infected. In (a)–
(b), time to outbreak (mean ± SD) for 500 sample paths initiated with a single infected NS (black)
versus SS (white) individual. In (c)–(f), time to outbreak for 1000 sample paths with an increasing
fraction of initially infected

significantly distinct for each percentage in (Fig. 8a–b), p < 0.001. In fact, if a
MERS or Ebola outbreak is initiated by 1.5% or more of the initial population size
and these individuals are SS, then the time to outbreak is predicted to be no more
than 20 days where an outbreak is defined as 2.5% of the population becoming
infected (Fig. 8c–f).
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Fig. 9 Time to peak infection and peak number of infections over percent of SS. (a)–(b) compare
time to outbreak (mean ± SD), where (c) and (b) compare the number of peak infections initiated
with a single infected NS (black) versus SS (white) individual for MERS in (a) and (c), and Ebola
in (b) and (d). The initial population is N = 2000. The fraction of susceptible SS is increased
for comparison. All results were statistically significant when p < 0.05 from t-test (two-tailed).
Comparisons that are not statistically significant were denoted n.s.

5.5 Time to Peak Infection and Peak Number of Infectious
Individuals

Given that the time to outbreak shows a significant difference between epidemics
initiated by SS versus NS individuals, we next asked whether SS-initiated epidemics
will also reach peak infection in a shorter time. To investigate this, we calculated
mean (± SD) of time to peak infection (in days) for MERS and Ebola, where the
percent of SS varied in the susceptible population (see Fig. 9a–b). Mean differences
between the introduction of 1 infected NS (black) compared to 1 infected SS
(white) were assessed separately as the percent of SS varied (e.g., 5%, 25%, and
50%) using t-tests where statistical significance was accepted when p < 0.05. For
MERS, time to peak infection was slightly significantly lower for SS when 5%
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and 25% of the susceptible population was SS, but not significant when 50% of
the population was SS (Fig. 9a). For Ebola, time to peak infection was significantly
lower for SS regardless of changes in the percent of SS in the susceptible population
(Fig. 9b). Hence, while the differences in mean time to peak infection between SS
and NS-initiated epidemics are only modestly different, we find their difference to
be statistically significant (Fig. 9a–b). Thus, this confirmed that epidemics initiated
by infected SS individuals reaches its peak value more quickly.

We repeated the same analysis to assess mean differences in the peak number of
infections. Surprisingly, we did not find a significant difference between the peak
number of infections for epidemics initiated from a single infected NS versus SS
individual for Ebola (Fig. 9d). However, significant differences were observed when
5% or 50% of the susceptible population was SS for MERS.

6 Discussion

In this investigation, we capture the dynamics of MERS and Ebola epidemics by
applying both deterministic and stochastic modeling strategies. To investigate the
role of SS on the epidemic dynamics and to compare our results, we keep the
R0 constant for both MERS and Ebola while varying β2, the transmission rate
of SS. Parameter sensitivity analysis, using Latin hypercube sampling and partial
rank correlation coefficient, shows that β2 has a significant effect on all the output
measures (Fig. 2).

From Fig. 4, we can conclude that the stochastic model simulations agree with
the branching process analytical results. As the value of R0 increases, we observe
that the probability of an outbreak increases for both diseases. This result is expected
since more individuals in the population are infected. The probability of an outbreak
is greater for Ebola than MERS, which is due to the transmission parameters for
Ebola being larger than MERS. Furthermore, these results show that if the outbreak
is initiated by an SS, then the probability of an outbreak is significantly higher.
Additionally, fewer SS individuals than NS individuals are sufficient to cause an
outbreak irrespective of the disease (MERS or Ebola).

As an outbreak initiated by SS has a greater probability of occurrence and
peaks earlier than with NS, the accumulated number of deaths is more severe in an
epidemic initiated with the same proportion of SS than NS (Figs. 5 and 6). Disease
severity (number of deaths) for both MERS and Ebola occurs earlier with SS than
NS. Our findings agree with prior epidemiological studies on superspreading events
[15, 32, 40]. For example, the 2003 outbreak of the respiratory infection SARS in
Beijing found that SS had higher mortality rates, higher attack rates, and greater
number of contacts in comparison to NS [40]. From a public health perspective,
as SS events will be observed more frequently, intervention/prevention methods
must have rapid response to reduce disease severity. For example, Wong et al. [40]
suggested that several community-based efforts could have been made to reduce
the number of MERS and Ebola cases in Guinea and Sierra Leone, such as tracking
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contacts, earlier diagnosis, treatment strategies, and community education. Effective
responses to control superspreading events and reduce disease transmission in
MERS and Ebola outbreaks included: “early discovery, diagnosis, intervention, and
quarantine of confirmed cases.” [40]. Other epidemics that are more likely to occur
in hospital settings, e.g., SARS, could be controlled through hospital administrative
strategies, such as reducing contact between the infected patient and healthcare
workers, visitors, or other patients whose immune system may be comprised due
to other infections [32]. Thus, a rapid response is needed to reduce disease severity
of SS events.

Evident in Figs. 7 and 8, when an outbreak is initiated by an SS rather than an
NS, the time to outbreak is shorter and has less variability. Therefore, if the number
of disease cases rises rapidly, there may be SS in the community. In this scenario,
healthcare managers should search for potential SS. Similar results apply for time
to peak infection, Fig. 9. If peak infection occurs quickly, it is more likely that there
is an SS in the population.

Interestingly, varying the percentage of SS in the population has little influence
on the peak number of infections (Fig. 9c, d). This is likely due to the fact that the
R0 values are held constant.

7 Future Work

We have formulated, analyzed, and numerically simulated deterministic and
stochastic epidemic models that include heterogeneity in transmission for NS and
SS. We applied our models to emerging and re-emerging infectious diseases, MERS
and Ebola, where the models were parameterized with data from the literature but
with a fixed initial population size of 2000. There are a number of extensions and
generalizations that we will consider in the future work. We assumed homogeneous
mixing and only two types of classifications of individuals (NS/SS) for the entire
population. Generalizing this model to include heterogeneous mixing and spatial
components are key features that can provide insight on how a superspreaders can be
classified. In our model, we considered inter-host variability, which naturally leads
to constructing a model with intra-host variability utilizing stochastic differential
equations or other types of models. In addition, variability of the pathogen on
epidemic dynamics can be explored. Additionally, we will validate our models’
findings against time series data, test our models’ abilities to detect the presence of
SS, and interpret the results for public health implementation. Finding answers to
these problems will lead to our ultimate goal of constructing novel ways to quantify,
characterize, and identify an SS during the initiation of an outbreak.
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Appendix 1: Basic Reproduction Number Calculation

In the calculations below, we denote Ni(0) as Ni and N(0) = N1(0)+N2(0) as N :
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where

ξi = βi
1
N

(
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)

(

μAi
+ δi

) (

γi + μIi

) , i = 1, 2.

Appendix 2: Expectation Matrix

For each pgf, we take partial derivatives with respect to x1, . . . , x6 (Jacobian matrix
of the functions f1, . . . , f6), then evaluate at x1, . . . , x6 = 1 and take the transpose
of the matrix. The result is the expectation matrix, M , where Eq. (3) reduces to (4).
In addition, we create the matrix W , Eq. (5), a diagonal matrix.
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Finally, we check that (M−I )W = F −V , where (M−I )W is displayed in Eq. (6),
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Appendix 3: Latin Hypercube and Partial Rank Correlation
Coefficient

For the MERS parameters, the graph of the output measure with μI2 parameter had
a concave curvature implying that another sensitivity analysis maybe implemented.
However, the range of the output measure is small enough that we can ignore the
monotonicity. The remaining graphs for MERS (Fig. 10) and all the graphs for Ebola
(Fig. 11) are all monotonic which means that we can trust the sensitivity analysis
and proceed to the PRCC analysis (Fig. 12, Tables 4, 5 and 6).

Fig. 10 Monotonicity plots for MERS. Total nonSS and SS cases are shown in (a) and (b),
respectively. Total nonSS and SS deaths are shown in (c) and (d), respectively
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Fig. 11 Monotonicity plots for Ebola. Total nonSS and SS cases are shown in (a) and (b),
respectively. Total nonSS and SS deaths are in (c) and (d), respectively

1 2 1 2 1 2 A1 A2 I1 I2 1 2

-1

-0.5

0

0.5

1

n.s.

n.s. n.s.

Fig. 12 PRCC values of MERS for output measures number of SS deaths with μI2 range
[0.0278, 0.14]. P -values that are greater than 0.05 are labeled as not significant (n.s.)
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Table 4 LHS MERS A

NS Cases NS Deaths SS Cases SS Deaths

Param PRCC P -value PRCC P -value PRCC P -value PRCC P -value

β1 0.687 5.300E−139 0.505 4.030E−65 0.687 5.140E−139 0.604 2.790E−99

β2 0.979 0.000E+00 0.953 0.000E+00 0.979 0.000E+00 0.969 0.000E+00

α1 0.299 7.950E−22 0.311 1.430E−23 0.299 7.920E−22 0.250 1.620E−15

α2 0.797 5.410E−218 0.656 1.460E−122 0.797 5.350E−218 0.794 8.200E−216

δ1 −0.075 1.855E−02 −0.109 5.711E−04 −0.075 1.859E−02 −0.051 1.099E−01

δ2 0.110 1.826E−03 −0.069 3.036E−02 −0.099 1.830E−03 −0.334 2.860E−27

μA1 −0.015 6.419E−01 0.059 6.433E−02 −0.015 6.425E−01 0.005 8.874E−01

μA2 −0.199 2.850E−10 −0.145 4.540E−06 −0.199 2.860E−10 0.019 5.562E−01

μI1 −0.427 3.990E−45 0.593 6.370E−95 −0.427 3.940E−45 −0.417 8.000E−43

μI2 −0.325 8.370E−26 −0.195 6.410E−10 −0.325 8.340E−26 0.077 1.573E−02

γ1 −0.359 1.890E−31 −0.477 2.030E−57 −0.359 1.870E−31 −0.251 1.100E−15

γ2 −0.903 0.000E+00 −0.784 7.600E−207 −0.903 0.000E+00 −0.901 0.000E+00

Table 5 LHS MERS B

NS Cases NS Deaths SS Cases SS Deaths

Param PRCC P -value PRCC P -value PRCC P -value PRCC P -value

β1 0.668 1.240E−128 0.638 3.980E−114 0.668 1.240E−128 0.663 1.960E−126

β2 0.965 0.000E+00 0.963 0.000E+00 0.965 0.000E+00 0.966 0.000E+00

α1 0.260 1.090E−16 0.319 8.430E−25 0.260 1.090E−16 0.256 2.850E−16

α2 0.592 1.040E−94 0.586 2.110E−92 0.592 1.060E−94 0.657 2.230E−123

δ1 −0.060 5.720E−02 −0.118 2.010E−04 −0.060 5.740E−02 −0.049 1.226E−01

δ2 −0.278 4.870E−19 −0.272 2.970E−18 −0.278 4.820E−19 −0.324 1.210E−25

μA1 −0.032 3.222E−01 0.025 4.306E−01 −0.032 3.223E−01 −0.042 1.899E−01

μA2 −0.172 4.840E−08 −0.164 2.210E−07 −0.172 4.820E−08 −0.121 1.315E−04

μI1 −0.613 2.970E−103 0.210 2.570E−11 −0.613 2.960E−103 −0.617 9.760E−105

μI2 −0.613 2.970E−103 0.210 2.570E−11 −0.613 2.960E−103 −0.617 9.760E−105

γ1 −0.353 1.800E−30 −0.519 2.600E−69 −0.353 1.790E−30 −0.343 9.950E−29

γ2 −0.788 7.340E−210 −0.770 1.130E−194 −0.788 7.170E−210 −0.839 1.040E−263



Searching for Superspreaders: Identifying Epidemic Patterns Associated with. . . 27

Table 6 LHS Ebola

NS Cases NS Deaths SS Cases SS Deaths

Param PRCC P -value PRCC P -value PRCC P -value PRCC P -value

β1 0.965 0.000E+00 0.950 0.000E+00 0.965 0.000E+00 0.952 0.000E+00

β2 0.948 0.000E+00 0.931 0.000E+00 0.948 0.000E+00 0.934 0.000E+00

α1 0.510 0.000E+00 0.586 0.000E+00 0.510 0.000E+00 0.452 3.580E−250

α2 0.595 0.000E+00 0.551 0.000E+00 0.595 0.000E+00 0.667 0.000E+00

δ1 0.012 3.796E−01 0.015 2.938E−01 0.012 3.797E−01 0.017 2.212E−01

δ2 −0.033 2.102E−02 −0.036 1.034E−02 −0.033 2.102E−02 −0.032 2.360E−02

μA1 0.005 7.200E−01 0.005 7.035E−01 0.005 7.197E−01 0.002 9.095E−01

μA2 0.019 1.850E−01 0.016 2.620E−01 0.019 1.850E−01 0.024 9.168E−02

μI1 −0.367 1.080E−158 0.032 2.520E−02 −0.367 1.080E−158 −0.324 5.050E−122

μI2 −0.584 0.000E+00 −0.516 0.000E+00 −0.584 0.000E+00 −0.233 1.070E−62

γ1 −0.512 0.000E+00 −0.634 0.000E+00 −0.512 0.000E+00 −0.405 1.930E−196

γ2 −0.660 0.000E+00 −0.579 0.000E+00 −0.660 0.000E+00 −0.752 0.000E+00
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