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Abstract. Dense General Matrix-Matrix (GEMM) multiplication is a core
operation of the Basic Linear Algebra Subroutines (BLAS) library, and
therefore, often resides at the bottom of the traditional software stack for
many scientific applications. In fact, chip manufacturers give a special
attention to the GEMM kernel implementation since this is exactly where
most of the high-performance software libraries extract hardware per-
formance. With the emergence of big data applications involving large
data-sparse, hierarchically low-rank matrices, the off-diagonal tiles can
be compressed to reduce the algorithmic complexity and the memory
footprint. The resulting tile low-rank (TLR) data format is composed of
small data structures, which retain the most significant information for
each tile. However, to operate on low-rank tiles, a new GEMM operation
and its corresponding API have to be designed on GPUs so that the
data sparsity structure of the matrix can be exploited while leveraging
the underlying TLR compression format. The main idea consists of aggre-
gating all operations into a single kernel launch to compensate for their
low arithmetic intensities and to mitigate the data transfer overhead on
GPUs. The new TLR-GEMM kernel outperforms the cuBLAS dense batched
GEMM by more than an order of magnitude and creates new opportunities
for TLR advanced algorithms.
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1 Introduction

With the convergence of the third and fourth paradigms (i.e., simulation and
big data), large-scale scientific applications, such as climate/weather forecast-
ing [31], require a profound redesign to reduce the memory footprint as well as
the overall algorithmic complexity. When considering multi-dimensional prob-
lems, with a large number of unknowns, n, the resulting covariance matrix may
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render its structure fully dense. To overcome the curse of dimensionality with-
out violating the fidelity of the physical model, application developers rely on
approximation methods, which drastically reduce the constraints on the mem-
ory footprint and the algorithmic complexity. For instance, hierarchical matrices
or H -matrices have been recently resurrected for high-performance comput-
ing [29,32] as a potential algorithmic solution to tackle the aforementioned chal-
lenge. Because of their inherent recursive formulations, they are not amenable
to massively parallel hardware systems such as GPUs.

We have designed, investigated, and implemented, on x86 shared-memory
systems within the HiCMA library, an approximation method that exploits the
natural data sparsity of the off-diagonal tiles while exposing parallelism to the
fore [8]. Based on the tile low-rank (TLR) data format, the off-diagonal tiles of
a dense covariance matrix are compressed up to a specific accuracy threshold,
without compromising the model fidelity. The resulting data structure, much
smaller than the original dense tiles, represents the new building blocks to pur-
sue the matrix computations. Since main memory is a scarce resource on GPUs,
TLR should enable solving even larger GPU-resident problems and eventually
fall back to out-of-core algorithms. Although this TLR scenario may look utterly
GPU friendly and more compliant, there are still some lingering performance
bottlenecks. Indeed, decomposing an off-diagonal low-rank matrix problem into
tasks may lead to a computational mismatch between the granularity of the task
and the computational power of the underlying hardware. In particular, heavily
multi-threaded accelerators such as NVIDIA GPUs need to maintain high occu-
pancy and would require developers to move away from the current model, where
tasks occupy all hardware computing elements, and, instead, simultaneously exe-
cute multiple smaller tasks, each spanning across a subset of hardware resources.
This mode of operation, called batched execution [19], executes many smaller
operations in parallel to make efficient use of the hardware and its instruction-
level parallelism. To our knowledge, this work introduces the first TLR general
matrix-matrix multiplication (TLR-GEMM) operating on data sparse matrix struc-
tures using GPU hardware accelerators. Our research contribution lies at the
intersection of two concurrent and independent efforts happening in the scien-
tific community: H -matrix and batched operations for BLAS/LAPACK. Our
TLR-GEMM leverages the current batched execution kernels in BLAS and LAPACK
to support the matrix-matrix multiplication operation, which is perhaps one of
the most important operations for high-performance numerical libraries, in TLR
data format. In this paper, we focus on compressing data-sparse matrices and
operating on them with uniform rank sub-blocks. Non-uniform rank compres-
sion and operation is a subject under investigation and beyond the scope of this
paper. Our TLR-GEMM implementation is available in the open source KBLAS
library maintained at https://github.com/ecrc/kblas-gpu.

The remainder of the paper is organized as follows: Sect. 2 presents related
work and details our research contributions; Sect. 3 recalls the batched linear
algebra community effort and gives a general overview of the hierarchical low-
rank matrix approximation; Sect. 4 introduces the new TLR-GEMM and its vari-
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ants; the implementation details of the various TLR-GEMM kernels are given in
Sect. 5; Sect. 6 assesses the accuracy and performance of TLR-GEMM on the lat-
est NVIDIA GPU hardware generation and compares it to the state-of-the-art
high-performance batched dense GEMM, as implemented in [2]; we conclude in
Sect. 7.

2 Related Work

The general matrix-matrix multiplication (GEMM) operation is the primitive ker-
nel for a large spectrum of scientific applications and numerical libraries. GEMM
has been optimized on various hardware vendors for large matrix sizes and con-
stitutes the basic reference for Level-3 BLAS [18] operations and their usage in
dense linear algebra algorithms. With the need to solve multicomponent partial
differential equations, the resulting sparse matrix may have a dense block struc-
ture. The block size is relatively small and corresponds to the number of degrees
of freedom per mesh element. The blocks are usually stored in a compressed
block column/row data format. Matrix computations are then performed on
these independent blocks by means of batched operations. For instance, batched
dense matrix-vector multiplication is employed in sparse iterative solvers for
reservoir simulations [6], while batched dense LAPACK factorizations [15] are
required in sparse direct solvers for the Poisson equation using cyclic reduc-
tion [17]. Moreover, with the emergence of artificial intelligence, batched dense
GEMM of even smaller sizes are needed in tensor contractions [4,5,33] and in deep
learning frameworks [3,27,28]. To facilitate the adoption of all these efforts, a
new standard has been proposed to homogenize the various batched API [19].
While the literature is rich in leveraging batched executions for dense and sparse
linear algebra operations on x86 and hardware accelerators [4–6,14,15,19], this
trend has faced challenges and has not penetrated data-sparse applications yet,
involving large hierarchically low-rank matrices (i.e., H -matrices). In fact, there
are three points to consider when designing batched operations for H -matrices.
First, there should be an efficient batched compression operation for H -matrices
on x86 and on hardware accelerators. Second, the inherent recursive formulation
of H -matrix resulting from nested dissections should be replaced, since it is not
compliant with batched operations. Third, strong support is eventually required
to handle batched matrix operations on the data-sparse compressed format, such
as H 2, Hierarchically Semi-Separable representation (HSS), and the Hierarchi-
cal Off-Diagonal Low-Rank (HODLR) matrix. More recently, a block/tile low-
rank (TLR) compressed format has been introduced on x86 [8,11], which further
exposes parallelism by flattening the recursion trees. The TLR data format may
engender new opportunities and challenges for batched matrix compression and
operation kernels on advanced SIMD architectures. Moreover, an effective imple-
mentation of the randomized SVD [26] for H 2 matrix compression has been
ported to hardware accelerators [14]. The aforementioned three bottlenecks may
now be relieved to deploy TLR matrix computations on GPUs.
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3 Background

Batched Dense Linear Algebra. GPUs are massively parallel devices optimized
for high SIMD throughput. Numerical kernels with low arithmetic intensity may
still take advantage of the high memory bandwidth, provided they operate on
large data structures to saturate the bus bandwidth. When operating on rela-
tively small workloads on GPUs, the GPU overheads are twofold: (1) the over-
head of moving the data from the CPU to the GPU memory through the thin
PCIe pipe may be not worthwhile, and (2) the overhead of launching the ker-
nels is not compensated by the low computation complexity. High-performance
frameworks for batched operations [1,2,15] attempt to overcome both challenges
by stitching together multiple operations occurring on independent data struc-
tures. This batched mode of execution increases hardware occupancy to attain
higher sustained peak bandwidth while launching a single kernel to remove the
kernel launch overheads all together. Figure 1(a) sketches batched operations of
small dense GEMM operations C + = A×B. Following the same community effort
for the legacy BLAS, a community call for standardizing the batched API [19]
has been initiated, gathering hardware vendors and researchers. This standard-
ization effort enhances software development productivity, while the batched
API gains maturity in the scientific community.

Fig. 1. Consolidating batched operations and H -matrix through TLR data format.
(Color figure online)

Hierarchical Low-Rank Matrix Computations. The hierarchically low-rank
matrix, or H -matrix [21,23–25,34] is a low-rank block approximation of a dense
(sub)matrix, whose off-diagonal blocks may be each represented by an outer
product of rectangular bases obtained from compression, e.g., via orthogonal
transformations with singular value decomposition. An H -matrix captures the
most significant singular values and their corresponding singular vectors up to an
application-dependent accuracy threshold for each block. Figure 1(b) highlights
the structure of an H -matrix resulting from a boundary element method. Each
off-diagonal green block has been approximated to a similar rank up to 9. The
red blocks are dense blocks and are mostly located around the diagonal struc-
ture of the matrix. This data sparse structure may be exposed by performing
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nested dissection after proper reordering and partitioning. This recursive for-
mulation allows traversing low-rank off-diagonal blocks and compressing them
using an adequate data storage format such as H [29], Hierarchical Off-Diagonal
Low-Rank (HODLR) [12], H [22], Hierarchically Semi-Separable representation
(HSS) [10,32], and H 2 [13]. All these data compression formats belong to the
family of H -matrices and can be differentiated by the type of their bases i.e.,
nested (HSS and H 2) or non-nested (H and HODLR), in addition to the type
of admissibility conditions, i.e., strong (H and H 2) or weak (HODLR and
HSS). Each of these compression data formats exhibits different algorithmic
complexities and memory footprint theoretical upper-bounds. The tile low-rank
(TLR) [8,11] data format is another case of the H data format with non-nested
bases and strong admissibility conditions. The matrix is logically split into tiles,
similar to the tile algorithms from the PLASMA library [7]. The off-diagonal
tiles may then be compressed using the rank-revealing QR once the whole dense
matrix has been generated [11] or on-the-fly using the randomized singular value
decomposition [26] while performing the matrix computations [8]. Figure 1(c)
shows an illustration of such a TLR matrix composed of an 8 × 8 logical tile.
Owing to its simplicity, TLR permits flattening the inherent recursive formu-
lation. Although TLR may not provide such optimal theoretical bounds as for
the nested-basis data formats, regarding algorithmic complexities and memory
footprint, it is very amenable to advanced performance implementations and
optimizations.

The main objective of this paper is to consolidate the three messages con-
veyed by the sketches of Fig. 1, i.e., batched operations (including matrix com-
pression and computations), H -matrix applications and TLR data format. This
consolidation is the crux of the TLR-GEMM implementation on GPUs.

4 Design of Tile Low-Rank GEMM Kernels

This section describes the design of the TLR-GEMM kernel and identifies its variants
using a bottom-up approach: from the single GEMM kernel operating on low-rank
data format to the corresponding batched operations, and then all the way up to
the actual TLR-GEMM driver.

Low-Rank Data Format. Low-rank approximation consists of compressing a
dense matrix X of dimensions m-rows and n-columns and representing it as
the product of two tall and skinny matrices, such that X = Xu × XT

v , with
Xu and Xv of dimensions (m-rows, k-columns) and (n-rows, k-columns), respec-
tively, and k the rank of X. The choice for the compression algorithms is typically
Rank-Revealing QR (RRQR), adaptive cross-approximation (ACA), or (randomized)
singular value decomposition (SVD), etc. The randomized Jacobi-based SVD [26]
maps well on SIMD architectures because it does not involve pivoting nor ele-
ment sweeping, as in the RRQR and ACA methods, respectively. It is perhaps the
most optimized compression algorithm on GPUs, as implemented in [14].



816 A. Charara et al.

Fig. 2. Illustrating single and batched low-rank GEMM variants.

Low-Rank GEMM Variants. We identify four possible variants, based on the
input data format of the involved matrices A,B, and C. We use the following
notation: GEMM−TATBTC is the GEMM kernel for a given input type (Dense or Low-
rank) for the matrices A,B, and C. The variants are as follows: (1) either of A or
B in low-rank format, C in dense format: GEMM-DLD, or GEMM-LDD, (2) either of A
or B in low-rank format, C in low-rank format: GEMM-DLL, or GEMM-LDL, (3) A and
B in low-rank format, C in dense format: GEMM-LLD, as illustrated in Fig. 2(a),
and, (4) A, B and C in low-rank format: GEMM-LLL, as illustrated in Fig. 2(b). We
focus solely on the last two variants in this paper, i.e., GEMM-LLD and GEMM-LLL,
since they are the bases for supporting the Schur complement calculation and for
matrix factorization, in the context of sparse direct solvers [11] and data-sparse
matrix solvers [8], respectively. In fact, the other possible variants, i.e., when
both A and B are in dense format and C in dense (GEMM-DDD) or in low-rank
format (GEMM-DDL), are not considered because the first is the actual legacy GEMM
operation, and the second is more expensive than regular GEMM in terms of flops.

Batched Low-Rank GEMM. We can then derive the batched low-rank GEMM rou-
tines from their corresponding single low-rank GEMM routines. The new batched
low-rank GEMM kernels are now defined as single kernels, i.e., Batched-GEMM-LLD
and Batched-GEMM-LLL, which simultaneously execute independent GEMM-LLD
and GEMM-LLL operations, as demonstrated in Fig. 2(c) and (d), respectively.
This batched kernel is used as a building block for the main driver performing
the TLR-GEMM on large TLR matrices, as described in the following paragraph.

TLR-GEMM (driver). In the driver of the TLR-GEMM operation, the data-sparse
matrices A,B, and C are subdivided into a grid of tiles, where each tile may indi-
vidually be compressed into low-rank data form, as illustrated in Fig. 3. Indeed,
Fig. 3(a) and (b) represent the TLR-GEMM operation, when TC is tile dense or tile
low-rank, respectively. In a standard GEMM operation, each tile of the matrix
C is updated by an inner-product composed of a sequence of pair-wise GEMM
operations of its corresponding row of tiles from matrix A and column of tiles
from matrix B. However, when dealing with TLR data format, since the work-
load of each low-rank tile is too small to saturate a modern GPU with sufficient
work, concurrent processing of these independent low-rank tiles inner-products
is necessary to increase the GPU occupancy. To overcome this challenge, we
need to process these inner-product low-rank GEMM calls in a batched mode.
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However, available batched GEMM routines assume the batched operation is a
primitive CUDA kernel rather than a sequence of calls; thus, we re-formulate
the set of inner-products into a set of successive outer-products by means of
loop re-ordering. Each outer-product is a call to batched GEMM-LLD or GEMM-LLL
routine which updates all tiles of matrix C in parallel. This process is repeated
nt times, nt being the number of tiles in a row of matrix A or a column of matrix
B, as illustrated in Fig. 3 for both variants of TLR-GEMM.

Fig. 3. Processing TLR-GEMM as a series of nt outer-products using batched GEMM-LLD

or GEMM-LLL kernels.

5 Implementation Details

Update Dense C: GEMM-LLD. This operation is performed as a sequence of three
small GEMM calls. Assuming matrices C and A are of m-rows, C and B of n-
columns, A and B of k-columns and k-rows respectively, and A and B are of
ranks ra, and rb, respectively, the operation C = αA × B + βC is equivalent to
C = αAu × AT

v × Bu × BT
v + βC.

Update Low-Rank C: GEMM-LLL. We describe the second variant of the low-rank
GEMM operation when updating C in low-rank format, as outlined in the cor-
responding Algorithm1. In fact, this algorithm corresponds to the randomized
SVD, as described in [26]. We assume the non-transpose case for both matrices
A and B. The matrix-matrix multiplication C = αA × B + βC involves two
sub-stages, where matrices A,B, and C are represented by their low-rank for-
mat (Au, Av), (Bu, Bv), and (Cu, Cv), respectively. The first stage consists of
the multiplication of low-rank matrices A and B, as shown in steps 2 − 3 of
Algorithm 1. The second stage highlights the final addition of the intermedi-
ate matrix with the low-rank matrix C, as demonstrated in steps 4 − 6. This
second stage produces low-rank Ċ = Ċu × Ċv with bloated rank ṙc. As such,
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Algorithm 1. GEMM-LLL(m,n, k, α,Au, Av, ra, Bu, Bv, rb, β, Cu, Cv, rc,Wa,Wb).
Input: Au, Av , Bu, Bv , Cu, and Cv are m × ra, k × ra, k × rb, n × rb, m × rc, and

n × rc matrices, respectively. Wa and Wb are workspaces of size ra × rb and

ra × n respectively.

1 Setup work-space buffer.;

2 //Multiply A and B;

3 GEMM(Trans, noTrans, ra, rb, k, α, Av , Bu, 0, Wa): Wa ← αAT
v × Bu;

4 GEMM(noTrans, Trans, ra, n, rb, 1, Wa, Bv , 0, Wb): Wb ← Wa × BT
v ;

5 //Add to C ṙc ← rc + ra;

6 Ċu ← Cu|Au ; // Concat Cu and Au into one buffer

7 Ċv ← β(Cv|Wb) ; // Concat Cv and Wb into one buffer, and scale by β

8 //Recompression of Ċu and Ċv ;

9 GEQRF(m, ṙc, Ċu, τu): C̈u ← QR(Ċu) ; // factorize Ċu

10 GEQRF( n, ṙc, Ċv , τv): C̈v ← QR(Ċv) ; // factorize Ċv

11 Ru = upper triangular of C̈u;

12 Rv = upper triangular of C̈v ;

13 GEMM(noTrans, Trans, ṙc, ṙc, ṙc, 1, Ru, Rv , 0, R): R = Ru × RT
v ;

14 GESVD(ṙc, ṙc, R, S, Ṙu, Ṙv);

15 Pick r̈c based on threshold of accuracy or maximum rank.;

16 Scale Ṙv by S;

17 ORGQR(m, ṙc, C̈u, τu) ; // extract Q factors

18 ORGQR( n, ṙc, C̈v , τv) ; // extract Q factors

19 GEMM(noTrans, noTrans, m, r̈c, ṙc, 1, C̈u, Ṙu, 0, Cu): Cu = Ċu × R̈u ; // final Cu

20 GEMM(noTrans, noTrans, n, r̈c, ṙc, 1, C̈v , Ṙv , 0, Cv): Cv = Ċv × R̈v ; // final Cv

21 return;

low-rank matrix addition, as described by Grasedyck [20], requires a process of
recompression based on QR factorization to restore a minimal rank for the prod-
uct matrix as well as the orthogonality of its components. This recompression
is achieved by reforming the product Ċu × Ċv in terms of its SVD represen-
tation, i.e., its singular values and their corresponding right and left singular
vectors. By factorizing Ċu = Qu×Ru, and Ċv = Qv×Rv, we can then represent
Ċ = Qu×Ru×(Qv×Rv)T = Qu×(Ru×RT

v )×QT
v , as the SVD of Ċ. Recompress-

ing the result of the tiny product Ru×RT
v using SVD or ACA, enables restoration

of the rank of Ċ to a minimum value based on a predetermined fixed accuracy
threshold or fixed rank truncation. This process of re-compression is described
in steps 7–18 of Algorithm 1. The implementation of this variant leverages the
randomized SVD on GPUs from [14], in the context of matrix compression for
H2 data format, to the TLR data format.

Batched Low-Rank GEMM. For batching the two GEMM-LLD and GEMM-LLL vari-
ants, the challenges are quite different. Batched GEMM-LLD is straightforward to
implement on GPUs (and even on x86), due to existing fast batched GEMM imple-
mentations on small sizes [2,27]. The task is far more complex for GEMM-LLL,
since the recompression involves numerical kernels (GEQRF, ORGQR and GESVD),
which are not as regular as standard GEMMs, e.g., in terms of memory accesses.
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The support from vendor numerical libraries for batched versions of these rou-
tines is limited with poorly performing or simply inexistent implementations. We
have further leveraged the batched GEQRF and ORGQR from [14] and integrated
this into the batched GEMM-LLL. For the batched GESVD on the tiny k×k matrix,
there are two options. The first is again based on the randomized SVD itself,
while the second uses a novel ACA implementation on GPUs. Although ACA may
require an expensive element sweeping procedure, this overhead is mitigated by
the small matrix size. The resulting algorithm for batched low-rank is very sim-
ilar to Algorithm 1, except that each call is now performed in a batched mode
of execution.

TLR-GEMM (driver). Putting all previous standard and batched kernels
together, we present TLR-GEMM on GPUs. We leverage the batched low-rank
GEMM and operate on TLR matrices. This modular approach allows assessing the
performance of each component, while enhancing software development produc-
tivity. The algorithm for TLR-GEMM driver consists of a single loop of nt successive
outer-products, each corresponding to a batched GEMM-LLD or GEMM-LLL call, as
depicted in Fig. 3. Compared to a GEMM operation on matrices with non-TLR data
formats (involving recursion and tree traversals), TLR proves to be a simple yet
effective approach, especially when considering hardware accelerators. For the
algorithmic complexity of each variant, it is obvious that TLR-GEMM based on
GEMM-LLL is more expensive than the one based on GEMM-LLD, because of the
recompression stage.

6 Experimental Results

The benchmarking system is a two-socket 20-core Intel Broadwell running at
2.20 GHz with 512 GB of main memory, equipped with an NVIDIA GPU Volta
V100 with 16 GB of main memory and PCIe 16x. We use a data-sparse matrix
kernel (i.e., Hilbert) with singular values following an exponential decay. In fact,
such decay in singular values is frequently observed in many matrix kernels in
covariance-based scientific applications, such as climate/weather forecasting sim-
ulations [9]. All calculations are performed in double precision arithmetics. The
reported performance numbers are compared to cuBLAS batched dense GEMM.
Figure 4 illustrates the singular value distribution and the numerical accuracy
assessment. The singular values of the Hilbert matrix kernel exponentially decay,
as seen in Fig. 4(a). Approximately the first 30 are the most significant, while the
remainder are close to machine precision and can be safely ignored. Figure 4(b)
demonstrates the numerical robustness of the single GEMM-LLD and GEMM-LLL
kernel variants using the same Hilbert matrix operator. GEMM-LLD approaches
expected accuracy for rank smaller than GEMM-LLL, due to the rounding errors
introduced by the additional floating-point operations from the recompression
stage. Otherwise, both variants show correctness when truncating at ranks close
to the accuracy threshold shown in Fig. 4(a).

Figure 5 highlights the speedups of batched GEMM-LLD and GEMM-LLL, against
cuBLAS batch dense GEMM considering various ranks and a fixed batch size of
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Fig. 4. Singular value distribution and accuracy assessment of the Hilbert matrix
kernel.

1000. Figure 5(a) and (b) illustrate the speedups of batched GEMM-LLD with and
without compression overhead, respectively. Similarly, Fig. 5(c) and (d) illus-
trate the speedups of batched GEMM-LLL with and without compression overhead,
respectively. Obviously, compression may turn out to be an expensive operation,
which may slow down the the performance of batched GEMM-LLD (Fig. 5(a)) and
batched GEMM-LLL (Fig. 5(c)); however, this overhead is usually occurring once,
since the compressed form of the corresponding matrices may be used repeatedly
(see TLR-GEMM in Fig. 5(b) and (d)). The speedups recorded for batched GEMM-LLD
are higher than those for GEMM-LLL, when comparing to the cuBLAS batch dense
GEMM, because of the recompression step. While speedups are obtained for all
ranks for batched GEMM-LLD (Fig. 5(b)), batched GEMM-LLL (Fig. 5(d)) records
speedups only for relatively small rank sizes. Although the Hilbert matrix kernel
has an exponential singular value decay, we also assess performance for larger
ranks. These extra flops, although unnecessary, allow stretching of the batched
kernels and observing when the crossover point occurs. For instance, in Fig. 5(b),
the batched GEMM-LLD with rank 128 runs out of memory, due to the dense stor-
age of the matrix C, while still outperforming the cuBLAS batch dense GEMM. In
Fig. 5(d), the batched GEMM-LLL with rank 128 runs out of memory, due to the
temporary memory space required by the recompression stage, while not being
able to outperform the cuBLAS batch dense GEMM.

Figure 6 shows the speedups for batched GEMM-LLD and GEMM-LLL, with vary-
ing batch count, against cuBLAS batch dense GEMM, when using the ranks at
which numerical accuracy is reached from Fig. 4(b), i.e., 16 and 32, respectively.
The performance speedup increase as the batch count rises reveals how the device
becomes overwhelmed due to high occupancy.

Figure 7 presents the elapsed time of TLR-GEMM based on batched GEMM-LLD,
named TLR-GEMM-LLD (Fig. 7(a) and (b)), and based on batched GEMM-LLL,
named TLR-GEMM-LLL (Fig. 7(c) and (d)), considering various ranks, against
cuBLAS dense GEMM. TLR-GEMM-LLD (solid line plots) outperforms cuBLAS dense
GEMM (double line plot) by more than an order of magnitude when A and B are
already compressed, as shown in Fig. 7(a). When the matrices A and B are
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Fig. 5. Speedups of batched GEMM-LLD and GEMM-LLL against batched dense cuBLAS
GEMM, with batch size 1000.

Fig. 6. Speedups of batched GEMM-LLD and GEMM-LLL against batched dense cuBLAS
GEMM, with varying batch count, while fixing ranks to 16 and 32, respectively.

not compressed, the performance speedup slightly drops to eightfold, as seen
in Fig. 7(b). Indeed, the expensive compression of matrices A and B is only
performed once, followed by successive outer-products, in the form of batched
GEMM-LLD calls. This allows to mitigate the compression overhead, discussed ear-
lier in the section. TLR-GEMM-LLL (solid line plots) outperforms cuBLAS dense
GEMM (double line plot) by more than an order of magnitude when A and B
are already compressed, as shown in Fig. 7(c). When the matrices A and B
are not compressed, the performance speedup remains almost the same, since
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Fig. 7. Elapsed time of TLR-GEMM-LLD and TLR-GEMM-LLL with various ranks.

Fig. 8. Elapsed time of TLR-GEMM-LLD and TLR-GEMM-LLL with rank 16 and 32, respec-
tively, with tile size 1024, compared to elapsed time of cuBLAS dense GEMM.

the (re)compression is the most time consuming part of the batched GEMM-LLL
operations (Fig. 7(d)).

Figure 8 highlights the performance enhancements when using the Hilbert
matrix kernel to perform TLR-GEMM with appropriate ranks for GEMM-LLD and
GEMM-LLL, 16 and 32, respectively. Although the number of floating-point oper-
ations varies, the objective is to achieve the expected numerical accuracy.
TLR-GEMM-LLD and TLR-GEMM-LLL kernels (solid line plots) score a speedup of
more than an order of magnitude and fourfold, respectively, against cuBLAS
dense GEMM (double line plot).
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7 Conclusions and Future Work

This paper presents a novel batched tile low-rank (TLR) GEMM kernel on GPUs,
which is a core operation of large-scale data sparse applications. Results demon-
strate the numerical robustness and manyfold performance speedups against
cuBLAS batched dense GEMM on the latest NVIDIA V100 GPU generation. This
work represents a pathfinder toward enabling advanced hierarchical matrix com-
putations on GPUs. Moreover, owing to its simplicity and modularity, the TLR
data format may facilitate the port to multiple GPUs of batched low-rank matrix
operations. Future work includes supporting non-uniform ranks for compression
and operations to further reduce the memory footprint and flop count cost, in
addition to supporting the other BLAS routines. We would like also to integrate
the TLR compression and the TLR-GEMM operation in the Multi-Object Adaptive
Optics application [30] in the context of computational astronomy and assess its
real-time performance impact.
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