
CEML: a Coordinated Runtime System
for Efficient Machine Learning on

Heterogeneous Computing Systems

Jihoon Hyun, Jinsu Park, Kyu Yeun Kim, Seongdae Yu, and Woongki Baek(B)

School of ECE, UNIST, Ulsan, Republic of Korea
{jhyun0812,jinsupark,kyuyeunk,sd3392,wbaek}@unist.ac.kr

Abstract. Heterogeneous computing is rapidly emerging as a promising
solution for efficient machine learning. Despite the extensive prior works,
system software support for efficient machine learning still remains unex-
plored in the context of heterogeneous computing. To bridge this gap,
we propose CEML, a coordinated runtime system for efficient machine
learning on heterogeneous computing systems. CEML dynamically ana-
lyzes the performance and power characteristics of the target machine-
learning application and robustly adapts the system state to enhance its
efficiency on heterogeneous computing systems. Our quantitative evalu-
ation demonstrates that CEML significantly improves the efficiency of
machine-learning applications on a full heterogeneous computing system.

1 Introduction

Heterogeneous computing is a promising solution for efficient machine learn-
ing [7]. Heterogeneous computing systems can effectively improve the efficiency of
the target machine-learning application by concurrently executing its operations
across the heterogeneous computing devices that exhibit different performance
and power characteristics.

Prior works have extensively investigated the system software [4,7,9] and
architectural support [5,6,10,16] for efficient machine learning. While insightful,
the prior works have limitations in that they lack the runtime support for con-
trolling all the heterogeneous computing devices in a coordinated manner [4,7,9]
and/or require intrusive hardware modifications, making it difficult to apply
them to existing commodity computer systems [5,6,10,16].

To bridge this gap, this work proposes CEML, a coordinated runtime sys-
tem for efficient machine learning. CEML dynamically analyzes the performance
and power characteristics of the target machine-learning application and gen-
erates the accurate performance and power estimators without requiring any
per-application offline profiling. Guided by its performance and power estima-
tors, CEML robustly finds the efficient system state and accordingly configures
the underlying heterogeneous computing system to significantly improve the effi-
ciency of the target application.

c© Springer International Publishing AG, part of Springer Nature 2018
M. Aldinucci et al. (Eds.): Euro-Par 2018, LNCS 11014, pp. 781–795, 2018.
https://doi.org/10.1007/978-3-319-96983-1_55

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-96983-1_55&domain=pdf

782 J. Hyun et al.

Specifically, this paper makes the following contributions:

– We propose CEML, a coordinated runtime system for efficient machine learn-
ing on heterogeneous computing systems. CEML consists of the estimators
that accurately estimate the performance and power consumption of the tar-
get machine-learning application for a system state of interest. The runtime
manager of CEML explores the system state space, determines the efficient
system state, and runs the target application with the efficient system state
to significantly improve its efficiency in terms of the user-specified optimiza-
tion metric (e.g., energy optimization, performance maximization under the
power limit). To the best of our knowledge, CEML is the first runtime system
that holistically controls all the heterogeneous computing devices for efficient
machine learning.

– We implement a prototype of CEML. Since the CEML prototype is imple-
mented as a user-level runtime system, it requires no modification to the
underlying OS kernel or GPU device driver. The CEML prototype implements
two search algorithms (i.e., the local and exhaustive search algorithms), each
of which explores the system state space with different coverage and runtime
overheads.

– We quantify the effectiveness of CEML using various machine-learning appli-
cations on a full heterogeneous computing system. Through quantitative eval-
uation, we demonstrate that CEML consumes significantly less energy (e.g.,
30.8% less on average) than the baseline version that uses the maximum
device frequencies, which is a commonly-used configuration in heterogeneous
computing. We also show that the energy efficiency of CEML is comparable
with the static best version, which requires extensive offline profiling across
the applications.

2 Background and Motivation

2.1 Heterogeneous Computing

A heterogeneous computing system comprises multiple computing devices that
show functional and performance/power heterogeneity. Heterogeneous comput-
ing devices exhibit the functional heterogeneity in the sense that they implement
different instruction-set architectures and the performance/power heterogeneity
in that they have different performance and power characteristics.

In this work, we assume that the underlying heterogeneous computing system
is equipped with a single-chip heterogeneous application processor that consists
of a multi-core CPU and a multi/many-core GPU. We also assume that the
CPU and GPU communicate through the main memory. This architectural con-
figuration is widely used in various computing domains including the embedded
computing domain [1,2].

We assume that the CPU, GPU, and memory in the underlying hetero-
geneous computing system provide NfC , NfG , and NfM voltage and frequency
(V/F) levels. The V/F level of each device can be dynamically controlled in soft-
ware, similarly to commodity embedded systems [1]. A system state is defined

CEML: a Coordinated Runtime System for Efficient Machine Learning 783

as a tuple of the device frequencies (i.e., (fC , fG, fM)). The system state space
is then defined as the set of all the possible system states.

2.2 The TensorFlow Machine-Learning System

TensorFlow is a widely-used machine-learning system [4]. TensorFlow allows for
programmers to express their machine-learning algorithms as dataflow graphs.
A dataflow graph mainly consists of tensors and operations. Tensors are multi-
dimensional arrays, whose elements have one of the basic primitive data types
such as int32 or float32. An operation takes zero or more input tensors and
produces zero or more output tensors [4].

When all the input tensors for an operation are produced, the operation
becomes ready to be executed. The TensorFlow scheduler schedules the opera-
tion on one of the computing devices in the underlying heterogeneous computing
system. The scheduling decision is made based on various factors such as the
computational complexity of the operation, the utilization of each computing
device, and the scheduling hint provided by the programmer [4]. Independent
operations can be executed across the computing devices in a concurrent man-
ner. One of the main design goals of the TensorFlow scheduler is to maximize
the utilization of all the computing devices by concurrently executing as many
independent operations as possible across the computing devices.

In this work, we focus on the efficiency optimization of the training phase
of machine-learning applications. In each training epoch (or epoch), a machine-
learning application iterates all the training data to train its model. In each
training step (or step), the machine-learning application processes a batch of the
training data. For instance, if 20,000 images are used as the training data and a
batch size of 10 is used, an epoch consists of 2,000 steps.

We assume that the target machine-learning application is implemented as a
TensorFlow application. While we evaluate the effectiveness of CEML using Ten-
sorFlow, we believe that the design of CEML is sufficiently generic to be readily
applicable to other widely-used machine-learning platforms such as Caffe [9].

We have implemented a user-level, low-overhead API similar to the Appli-
cation Heartbeats API [8] and instrumented each of the evaluated benchmarks
(Sect. 3) with the API to make it generate a heartbeat every time it finishes a
predefined number of steps. CEML employs the heartbeat data to dynamically
track the current performance of the target machine-learning application.

2.3 Need for Coordinated Runtime Support

Machine-learning applications exhibit widely different performance and power
characteristics on heterogeneous computing systems. To illustrate this, Figs. 1
and 2 show the performance and power characteristics of the seven machine-
learning benchmarks (i.e., CF, IN, LR, MN, RB, VP, and WD) on the target hetero-
geneous computing system evaluated in this work (see Sect. 3 for details). We
observe the following data trends.

784 J. Hyun et al.

1.0
1.2
1.4
1.6
1.8
2.0
2.2
2.4

0.8 1.1 1.4 1.7 2.0

N
or

m
. P

er
f.

CPU Frequency (GHz)

CF
IN
LR
MN
RB
VP
WD

(a) CPU frequency

1.0
1.2
1.4
1.6
1.8
2.0
2.2
2.4
2.6

0.4 0.7 1.0 1.3

N
or

m
. P

er
f.

GPU Frequency (GHz)

CF
IN
LR
MN
RB
VP
WD

(b) GPU frequency

1.0

1.2

1.4

1.6

1.8

0.7 1.0 1.3 1.6 1.9

N
or

m
. P

er
f.

Memory Frequency (GHz)

CF
IN
LR
MN
RB
VP
WD

(c) Memory frequency

Fig. 1. Performance characteristics of the machine-learning applications

0.0

0.2

0.4

0.6

0.8

1.0

CF IN LR MN RB VP WD

N
or

m
al

iz
ed

 P
ow

er

CPU GPU Memory

Fig. 2. Power characteristics at the maximum device frequencies

First, the performance sensitivity of each benchmark is widely different to
device frequencies. For instance, the performance of CF is highly sensitive to
the GPU frequency but insensitive to the CPU frequency, whereas the perfor-
mance of WD is highly sensitive to the CPU frequency but insensitive to the GPU
frequency.

Second, the power consumption of each device in the heterogeneous comput-
ing is widely different across the evaluated benchmarks. For example, the GPU
consumes significantly more power than the other devices with CF. In contrast,
with WD, the CPU is the device that consumes the highest power among the
three devices (i.e., CPU, GPU, and memory).

These data trends show that static approaches require the offline perfor-
mance and power profile data for every application to achieve high efficiency,
which is nearly infeasible. To summarize, this case study clearly demonstrates
the need for a coordinated runtime system that efficiently analyzes the per-
formance and power characteristics of the target machine-learning application
at runtime, robustly generates the accurate performance and power estimation
models, and effectively manages all the devices in the underlying heterogeneous
computing system to significantly enhance the overall efficiency without exten-
sive per-application offline profiling.

3 Experimental Methodology

For all the experiments performed in this work, we use a full heterogeneous com-
puting system, the NVIDIA Jetson TX2 embedded development board [1]. In this
work, we employ the dual-core Denver processor based on the ARMv8-A archi-
tecture and the 256-core NVIDIA Pascal GPU equipped in the heterogeneous

CEML: a Coordinated Runtime System for Efficient Machine Learning 785

Heterogeneous Computing System

Machine-Learning Application

Runtime
Manager

Power
Estimator

Performance
Estimator

Candidate
Sys. States

Est. Perf.
Data

Candidate
Sys. States

Est. Power
Data

Heartbeat

Best System State

CEML

Fig. 3. Overall architecture of CEML

0.0

0.2

0.4

0.6

0.8

1.0

CF IN LR MN VP

Pe
rf

. S
en

si
tiv

ity
 (Δ

Pe
rf

/Δ
f_

G
)

Maximum Memory Freq. Minimum Memory Freq.

Fig. 4. Performance interaction
between GPU and memory

computing system. The evaluated frequency ranges of the CPU, GPU, and mem-
ory are 0.81–2 GHz, 0.42–1.3 GHz, and 0.67–1.87 GHz, respectively. The hetero-
geneous computing system includes sensors, each of which periodically samples
the power consumption of the CPU, GPU, or memory. We use the sensor data to
generate the power estimation model of CEML and measure the power consump-
tion of the target machine-learning application. The heterogeneous computing
system is installed with Ubuntu 16.04 and Linux kernel 4.4.38.

We use seven machine-learning benchmarks (i.e., CIFAR-10 (CF), ImageNet
(IN), Learning to Remember Rare Events (LR), MNIST (MN), REBAR (RB),
Video Prediction (VP), and Wide & Deep (WD)), which are available in the official
TensorFlow code repository [3]. We configure CF, IN, LR, MN, RB, VP, and WD to
run 4000, 2000, 1000, 30000, 10136, 1000, and 32550 training steps, respectively.

4 Design and Implementation

CEML comprises the three main components – (1) the performance estimator,
(2) the power estimator, and (3) the runtime manager. Figure 3 illustrates the
overall architecture of CEML.

The main design principles applied to CEML are as follows. First, CEML
controls the V/F level of each device in the underlying heterogeneous comput-
ing system in a coordinated manner to significantly improve the efficiency of
the target machine-learning application. Second, CEML is designed as a versa-
tile system in that it can support various optimization scenarios (e.g., energy
optimization, performance maximization under the power limit). Third, CEML
eliminates the need for per-application offline profiling. Fourth, the online pro-
filing and adaptation functionalities of CEML are designed and implemented in
a lightweight manner to minimize the potential runtime overheads.

4.1 Performance Estimator

The performance estimator estimates the performance of the target machine-
learning application for a system state of interest. Specifically, the performance of
the target machine-learning application is defined as the training steps performed
per second.

786 J. Hyun et al.

We first investigate the performance sensitivity of various machine-learning
applications to device frequencies to guide the design of the performance esti-
mator. As shown in Fig. 1, the performance of machine-learning applications is
(largely) linearly proportional to the frequency of each device when the frequen-
cies of other devices are fixed (at the maximum frequency), which is intuitive.

Further, the performance sensitivity to the frequency of a device varies when
the frequencies of the other devices change. For instance, as shown in Fig. 4,
the performance of the GPU-intensive benchmarks becomes less sensitive to
the GPU frequency with the decreasing memory frequency because the memory
gradually becomes the overall performance bottleneck as its frequency decreases.
This indicates that there is performance interaction between devices.

Based on the aforementioned observations, the performance estimator
employs Eq. 1 to estimate the performance of the target application for a sys-
tem state of interest (i.e., (fC , fG, fM)). Equation 1 has a linear term for each
device frequency to model the linear relationship between the performance and
the device frequency. Equation 1 also has an interaction term for each device
pair (e.g., αC,G for fC and fG) to model the performance interaction between
the pair of devices.

Perf =αC · fC + αG · fG + αM · fM + αC,G · fC · fG+
αG,M · fG · fM + αM,C · fM · fC + β (1)

To compute the coefficients in Eq. 1, seven performance data samples are
required because there are seven unknown coefficients. Each performance data
sample is collected with a different system state. Section 4.3 discusses how CEML
collects the performance data samples to generate the performance estimation
model at runtime.

4.2 Power Estimator

The power estimator estimates the power consumption of the target machine-
learning application for a system state of interest. In line with prior works, the
power estimator assumes that the power consumption of each device is propor-
tional to the device utilization because it is simple and accurate [14,17].

Specifically, CEML employs Eq. 2 to estimate the power consumption of the
device D (i.e., CPU, GPU, or memory) when the device frequency is set to fD.
We experimentally determine the regression coefficients (i.e., εD,fD and ζD,fD)
for each device based on the offline profiling using the stress benchmarks that
we have developed. Each of the stress benchmarks is designed and implemented
to stress the CPU, GPU, or memory.

PD,fD = εD,fD · UD + ζD,fD (2)

To estimate the power consumption of the target machine-learning applica-
tion for a system state of interest, the power estimator estimates the utilization
of each device. We first investigate the device utilization sensitivity to the device
frequencies. Our experimental results show the following data trends.

CEML: a Coordinated Runtime System for Efficient Machine Learning 787

0
20
40
60
80

100

0.8 1.1 1.4 1.7 2.0

C
PU

 U
til

. (
%

)

CPU Frequency (GHz)

CF
IN
LR
MN
RB
VP
WD

(a) CPU frequency

0
20
40
60
80

100

0.4 0.7 1.0 1.3

G
PU

 U
til

. (
%

)

GPU Frequency (GHz)

CF
IN
LR
MN
RB
VP
WD

(b) GPU frequency

0
20
40
60
80

100

0.7 1.0 1.3 1.6 1.9

M
em

or
y

U
til

. (
%

)

Memory Frequency (GHz)

CF
IN
LR
MN
RB
VP
WD

(c) Memory frequency

Fig. 5. Device utilization sensitivity to its frequency

0
20
40
60
80

100

0.4 0.7 1.0 1.3C
PU

 U
til

iz
at

io
n

(%
)

GPU Frequency (GHz)

CF
IN
LR
MN
RB
VP
WD

(a) CPU util. vs. GPU freq.

0
20
40
60
80

100

0.8 1.1 1.4 1.7 2.0G
PU

 U
til

iz
at

io
n

(%
)

CPU Frequency (GHz)

CF
IN
LR
MN
RB
VP
WD

(b) GPU util. vs. CPU freq.

Fig. 6. Device utilization sensitivity to the other device frequency

First, as shown in Fig. 5, the utilization of each device is (largely) linearly
proportional to the device frequency when the frequencies of the other devices
are fixed (at the maximum frequency). This is mainly because the device stays
active for a shorter (or longer) time duration at higher (or lower) frequency by
processing the assigned work faster (or slower).

Second, as shown in Fig. 6, the utilization of each device is (largely) linearly
proportional to the frequency of the frequencies of the other devices. When the
other devices run faster (or slower), they produce more (or less) data to be
processed by the device per unit time, making its utilization higher (or lower).

We now discuss how the power estimator estimates the utilization of each
device. For instance, the power estimator uses Eq. 3 to estimate the CPU uti-
lization for a system state of interest (i.e., (fC , fG, fM)).1 In Eq. 3, the first-order
and interaction terms are used to model the individual effect of each device and
the interaction between devices, respectively.

UC =γC,C · fC + γC,G · fG + γC,M · fM + γC,CG · fC · fG+
γC,GM · fG · fM + γC,MC · fM · fC + δC (3)

To compute the coefficients in Eq. 3, seven utilization data samples are
required because there are seven unknown coefficients. Section 4.3 discusses how
CEML collects the utilization data samples to generate the power estimation
model at runtime. Finally, the power estimator estimates the total power con-
sumption of the underlying heterogeneous computing system by summing the
estimated power consumption of all the devices (i.e., P = PC + PG + PM).

1 While omitted, the power estimator employs the equations similar to Eq. 3 to esti-
mate the GPU and memory utilization.

788 J. Hyun et al.

Phase 1:
Profiling

Estimation
Models Phase 2:

Exploration
Phase 3:

Idle

Best System
State

|ΔPtotal_budget| > 0 or |ΔPerftarget| > 0Program Phase Change

Fig. 7. Overall execution flow of the runtime manager

4.3 Runtime Manager

The runtime manager of CEML dynamically profiles the performance and power
consumption data samples. It then builds the performance and power estimation
models and determines the efficient system state that significantly enhances the
efficiency of the target machine-learning application by exploring the system
state space based on the estimation models.

The runtime manager mainly comprises the three phases – (1) profiling, (2)
exploration, and (3) idle phases. Figure 7 shows its overall execution flow.

During the profiling phase, the runtime manager executes a small portion
of the total training steps of the target machine-learning application with the
following seven system states that cover a wide range of the device frequencies (in
GHz) – (2, 1.3, 1.87), (1.42, 0.83, 0.67), (1.42, 0.42, 1.33), (0.81, 0.83, 1.33), (0.81,
0.42, 1.06), (0.81, 0.62, 0.67), and (1.11, 0.42, 0.67). Specifically, the runtime
manager starts with the initial system state. When the runtime manager collects
N heartbeats2 generated by the target application, it stores the performance
and utilization data, configures the system with the next one among the seven
system states, and repeats the data collection process. When the performance
and utilization data is collected with all the seven system states, the runtime
manager proceeds with the exploration phase.

During the exploration phase, the runtime manager constructs the perfor-
mance and power estimation models using the data collected during the profil-
ing phase. Specifically, it computes all the coefficients in Eqs. 1 and 3 using the
efficient equation solver that we have developed.

The runtime manager then explores the system state space to determine the
system state, which is estimated to significantly improve the efficiency3 of the
target machine-learning application. We propose two search algorithms, each
of which explores the system state space with different coverage and runtime
overheads.

The first algorithm is the exhaustive search algorithm shown in Algorithm1.
It explores all the feasible system states in an exhaustive manner and selects

2 In this work, N heartbeats contain the performance and utilization data collected
during the execution of 1% of the total training steps for each benchmark.

3 We use the generic term “efficiency” because CEML can be extended to perform
optimizations using the metrics (e.g., energy-delay product) other than energy (i.e.,

Power
Performance

(Joules per training step)) by customizing the estimateScore function
in Algorithms 1 and 2.

CEML: a Coordinated Runtime System for Efficient Machine Learning 789

Algorithm 1. The exhaustive search function
1: procedure exploreWithExhaustiveSearch
2: bestState ← getInitialState()
3: bestScore ← estimateScore(bestState)
4: for fC ∈ FC

5: for fG ∈ FG

6: for fM ∈ FM

7: cState ← (fC , fG, fM)
8: cScore ← estimateScore(cState)
9: if cScore > bestScore ∧ checkConstraint(cState)

10: bestState ← cState
11: bestScore ← cScore
12: end if
13: end for
14: end for
15: end for
16: setSystemState(bestState)
17: end procedure

the best system state, which is estimated to maximize the efficiency of the tar-
get machine-learning application without violating the user-specified constraint4

such as the total power budget (Line 9). The time complexity of the exhaustive
search algorithm is O(NfC · NfG · NfM).

While the time complexity of the exhaustive search algorithm is rather high,
it may be still practically used for commodity heterogeneous computing systems.
For example, the system state parameters of the heterogeneous computing sys-
tem evaluated in this work are NfC = 9, NfG = 10, and NfM = 6. In this case,
the total number of the candidate system states is 540, which can be explored
in 176.4 microseconds (on average) on the evaluated heterogeneous computing
system.

Since the exhaustive search algorithm has high time complexity, we also
propose a local search algorithm that explores the system state space using a
variant of the hill-climbing algorithm (Algorithm2). Specifically, the local search
algorithm starts with the initial system state. It estimates the efficiency of all
the neighbor system states and selects the system state, which is estimated to
achieve the maximum efficiency without violating the user-specified constraint
(Line 5).5 If the best neighbor state is estimated to be more efficient than the
current state, it selects the best neighbor state as the next system state to

4 We assume that there are one or more system states (in the system state space) that
satisfy the user-specified constraint. The getInitialState function returns one of
such system states.

5 If there is no neighbor state that satisfies the user-specified constraint, the
getBestNeighborState function returns invalidState. If the input parameter is
set to invalidState, the estimateScore function returns the minimum score.

790 J. Hyun et al.

Algorithm 2. The local search function
1: procedure exploreWithLocalSearch
2: bestState ← getInitialState()
3: bestScore ← estimateScore(bestState)
4: while true
5: cState ← getBestNeighborState(bestState)
6: cScore ← estimateScore(cState)
7: if cScore > bestScore
8: bestState ← cState
9: bestScore ← cScore

10: else
11: break
12: end if
13: end while
14: setSystemState(bestState)
15: end procedure

transition and continues the search process (Lines 7–9). Otherwise, it terminates
the search process (Line 11).

Once the best system state is selected by the search algorithm, the runtime
manager accordingly configures the system to significantly enhance the efficiency
of the target machine-learning application (Line 16 in Algorithm1 and Line 14
in Algorithm 2). The runtime manager then transitions into the idle phase.

During the idle phase, CEML keeps monitoring the target machine-learning
application to detect its phase changes without performing any adaptation activ-
ities. Specifically, CEML periodically collects the heartbeats from the target
application and computes the differences between consecutive data samples to
detect a program phase change. When detecting a program phase change, CEML
terminates the idle phase and re-triggers the adaptation process to determine a
new efficient system state.

Further, CEML keeps monitoring the underlying system to detect any change
in the total power budget or performance target. When detecting a change,
CEML immediately triggers the re-adaptation process to discover an efficient
system state for the new constraint.

5 Evaluation

We quantify the effectiveness of CEML. Specifically, we aim to investigate the
following – (1) the estimation accuracy, (2) the energy efficiency, (3) the effec-
tiveness of re-adaptation, and (4) the performance overheads.

We first investigate the accuracy of the performance and power estimators of
CEML. To quantify the accuracy of the estimators, we generate 25 test datasets
for each benchmark by executing each benchmark with 25 different system states
and compute the average estimation error across all the test datasets.

CEML: a Coordinated Runtime System for Efficient Machine Learning 791

0
2
4
6
8

10
12
14

CF IN LR MN RB VP WD AVG

Es
tim

at
io

n
Er

ro
r (

%
)

Performance Power

Fig. 8. Accuracy of the estimators

0.0

0.2

0.4

0.6

0.8

1.0

CF IN LR MN RB VP WD AVG

N
or

m
al

iz
ed

 E
ne

rg
y

Baseline Static Best CEML-L CEML-E

Fig. 9. Energy consumption

Figure 8 shows the average performance and power estimation errors. We
observe that the performance and power estimators achieve high estimation accu-
racy. Specifically, the average estimation errors of the performance and power
estimators are 5.4% and 8.8% across all the benchmarks. The use of the first-
order and interaction terms in the performance and power estimators effectively
models the linear and interactive effects of each device in the underlying hetero-
geneous computing system, achieving high estimation accuracy.

We now investigate the effectiveness of CEML in terms of energy consumption
(i.e., Joules per training step). We evaluate four versions for each benchmark.
The baseline version executes each benchmark at the maximum device frequen-
cies. The static best version selects the best frequency of each device based on
the extensive offline experiments (i.e., 32 system states for each benchmark).
The CEML-L and CEML-E versions are managed by CEML using the local and
exhaustive search algorithms, respectively.

Figure 9 shows the energy consumption of each version of the benchmarks,
normalized to the baseline version. The rightmost bar shows the geometric mean
of each version.

First, the CEML versions significantly reduce the energy consumption across
all the evaluated machine-learning benchmarks. For instance, CEML-E consumes
30.8% less energy (on average) than the baseline version. The baseline version
achieves low energy efficiency because it executes the target machine-learning
application at the maximum device frequencies without considering the perfor-
mance and power characteristics of the target machine-learning application. In
contrast, CEML robustly finds the efficient system state based on its perfor-
mance and power estimators and accordingly configures the system, consuming
significantly less energy than the baseline version.

Second, the CEML versions achieve the energy efficiency similar to the static
best version. For instance, the energy consumption of CEML-E is 2.9% higher
(on average) than the static best version. The CEML versions consume slightly
more energy than the static best version because it executes the target machine-
learning application with suboptimal system states during the profiling phase
(e.g., RB) and finds a slightly less efficient system state due to the estimation
errors with some of the evaluated benchmarks (e.g., IN and LR). Nevertheless, our
experimental results demonstrate the effectiveness of CEML in that the CEML

792 J. Hyun et al.

0.0

0.2

0.4

0.6

0.8

400 600 800 1000Tr
ai

ni
ng

 S
te

ps
/s

ec
Time (s)

(a) Performance

0
2
4
6
8

10

400 600 800 1000

Po
w

er
 (W

)

Time (s)

(b) Power consumption

Fig. 10. Effectiveness of re-adaptation

versions achieve the energy efficiency comparable with the static best version
without requiring any extensive per-application offline profiling.

Third, CEML-E achieves slightly higher energy efficiency than the CEML-L (i.e.,
2.6% on average). This is mainly because the local search algorithm of CEML-L
may converge to a less efficient state (e.g., MN). However, CEML-L achieves the
energy efficiency comparable with CEML-E across all the evaluated benchmarks,
demonstrating the potential for CEML-L in that its local search algorithm has
significantly lower average-case time complexity than the exhaustive search algo-
rithm of CEML-E.

To investigate the effectiveness of the re-adaptation functionality of CEML,
we design a case study in which the total power budget allocated to the under-
lying heterogeneous computing system changes during the execution of the LR
benchmark with CEML. In this case study, CEML is configured to maximize
the performance of LR while satisfying the power constraint.

Figure 10 shows the runtime behavior of CEML. Initially, the benchmark
runs with a high power budget. Since the power budget is sufficient, CEML runs
the benchmark at the maximum device frequencies while satisfying the power
constraint. At t = 600.1, the total power budget changes to a low power budget.
CEML robustly detects the total power budget change and adapts to the new
system state that is efficient (i.e., similar performance to the static best version)
for the low power budget, guided by its performance and power estimators. At
t = 760.1, the total power budget changes back to the high power budget. Again,
CEML robustly detects the total power budget change and accordingly performs
adaptations to find the efficient system state for the new total power budget.

Finally, we quantify the performance overheads of CEML. Our experimen-
tal results demonstrate that CEML incurs insignificant performance overheads.
Specifically, the CPU utilization of CEML is 1.0% on average, which is low.
In addition, the system state exploration times with the CEML-L and CEML-E
versions are 7.2 and 176.4 microseconds on average, which are insignificant.

In summary, our quantitative evaluation shows that CEML is effective in
the sense that it consumes significantly less energy than the baseline version,
achieves the energy efficiency similar to the static best version, robustly adapts
to the external events such as total power budget changes, and incurs small
performance overheads.

CEML: a Coordinated Runtime System for Efficient Machine Learning 793

6 Related Work

Prior works have extensively investigated the architectural and system software
techniques to improve the efficiency of heterogeneous computing systems [11–
15,17]. While insightful, the prior works manage a subset of heterogeneous com-
puting devices (i.e., CPU [11,13,17], CPU and GPU [12,14], GPU and mem-
ory [15]) with multithreaded and gaming workloads.

Our work significantly differs in that it investigates the performance and
power characteristics of machine-learning applications with various device fre-
quencies, presents the accurate performance and power estimators, proposes a
coordinated runtime system that robustly controls all the devices (i.e., CPU,
GPU, memory) in the underlying heterogeneous computing system, and demon-
strates the effectiveness of CEML using a full heterogeneous computing system.

Prior works have proposed the system software support for efficient machine
learning [4,7,9]. The prior works mainly focus on the design and implemen-
tation of parallel and distributed programming platforms for machine learning
with support for task scheduling [4,7,9]. In contrast, our work investigates the
coordinated runtime support that robustly manages the hardware resources in
heterogeneous computing systems for efficient machine learning.

Prior works have investigated the design and implementation of hardware
accelerators for machine learning [5,6,10,16]. While effective, the prior works
cannot be directly applied to existing commodity systems because they require
intrusive hardware modifications. Our work differs in that CEML is designed
and implemented as a coordinated runtime system to enable efficient machine
learning on commodity heterogeneous computing systems. When the hardware
accelerators for machine learning become widely available in upcoming commod-
ity systems, coordinated runtime systems such as CEML can be effectively used
to robustly manage a variety of heterogeneous computing devices including the
hardware accelerators.

7 Conclusions

In this paper, we propose CEML, a coordinated runtime system for efficient
machine-learning on heterogeneous computing systems. CEML dynamically ana-
lyzes the performance and power characteristics of the target machine-learning
application and adapts the system state to enhance its efficiency on heteroge-
neous computing systems. Our experimental results demonstrate that CEML
consumes significantly less energy than the baseline version that employs the
maximum device frequencies and achieves the energy efficiency comparable with
the static best version that requires extensive per-application offline profiling. As
future work, we plan to apply and extend our proposed techniques for efficient
machine learning in heterogeneous distributed computing environments.

Acknowledgements. This research was partly supported by the National Research
Foundation of Korea (NRF-2016M3C4A7952587, PF Class Heterogeneous High Perfor-
mance Computer Development), Basic Science Research Program through the National

794 J. Hyun et al.

Research Foundation of Korea (NRF-2018R1C1B6005961), and Institute for Informa-
tion & Communications Technology Promotion (IITP) grant funded by the Korea gov-
ernment (MSIP) (No. R0190-16-2012, High Performance Big Data Analytics Platform
Performance Acceleration Technologies Development).

References

1. http://www.nvidia.com/object/embedded-systems-dev-kits-modules.html
2. http://www.samsung.com/semiconductor/products/exynos-solution/application-

processor/EXYNOS-5-OCTA-5422
3. https://github.com/tensorflow/models
4. Abadi, M., et al.: TensorFlow: a system for large-scale machine learning. In: 12th

USENIX Symposium on Operating Systems Design and Implementation (OSDI
2016) (2016)

5. Chen, Y.-H., Emer, J., Sze, V.: Eyeriss: a spatial architecture for energy-efficient
dataflow for convolutional neural networks. In: Proceedings of the 43rd Interna-
tional Symposium on Computer Architecture (2016)

6. Han, S., et al.: EIE: efficient inference engine on compressed deep neural network.
In: Proceedings of the 43rd International Symposium on Computer Architecture
(2016)

7. Hauswald, J., et al.: DjiNN and Tonic: DNN as a service and its implications for
future warehouse scale computers. In: Proceedings of the 42nd Annual Interna-
tional Symposium on Computer Architecture (2015)

8. Hoffmann, H., Eastep, J., Santambrogio, M.D., Miller, J.E., Agarwal, A.: Applica-
tion heartbeats: a generic interface for specifying program performance and goals
in autonomous computing environments. In: Proceedings of the 7th International
Conference on Autonomic Computing (2010)

9. Jia, Y., et al.: Caffe: convolutional architecture for fast feature embedding. In:
Proceedings of the 22nd ACM International Conference on Multimedia (2014)

10. Jouppi, N.P., et al.: In-datacenter performance analysis of a tensor processing
unit. In: Proceedings of the 44th Annual International Symposium on Computer
Architecture (2017)

11. Muthukaruppan, T.S., Pricopi, M., Venkataramani, V., Mitra, T., Vishin, S.: Hier-
archical power management for asymmetric multi-core in dark silicon era. In: Pro-
ceedings of the 50th Annual Design Automation Conference (2013)

12. Park, J., Baek, W.: RCHC: a holistic runtime system for concurrent heterogeneous
computing. In: 2016 45th International Conference on Parallel Processing (ICPP)
(2016)

13. Park, J., Baek, W.: HAP: a heterogeneity-conscious runtime system for adaptive
pipeline parallelism. In: Dutot, P.-F., Trystram, D. (eds.) Euro-Par 2016. LNCS,
vol. 9833, pp. 518–530. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-
43659-3 38

14. Pathania, A., Irimiea, A.E., Prakash, A., Mitra, T.: Power-performance modelling
of mobile gaming workloads on heterogeneous MPSoCs. In: Proceedings of the
52nd Annual Design Automation Conference (2015)

15. Sethia, A., Mahlke, S.: Equalizer: dynamic tuning of GPU resources for efficient
execution. In: Proceedings of the 47th Annual IEEE/ACM International Sympo-
sium on Microarchitecture (2014)

http://www.nvidia.com/object/embedded-systems-dev-kits-modules.html
http://www.samsung.com/semiconductor/products/exynos-solution/application-processor/EXYNOS-5-OCTA-5422
http://www.samsung.com/semiconductor/products/exynos-solution/application-processor/EXYNOS-5-OCTA-5422
https://github.com/tensorflow/models
https://doi.org/10.1007/978-3-319-43659-3_38
https://doi.org/10.1007/978-3-319-43659-3_38

CEML: a Coordinated Runtime System for Efficient Machine Learning 795

16. Song, L., Wang, Y., Han, Y., Zhao, X., Liu, B., Li, X.: C-brain: a deep learning
accelerator that tames the diversity of CNNs through adaptive data-level par-
allelization. In: Proceedings of the 53rd Annual Design Automation Conference
(2016)

17. Yun, J., Park, J., Baek, W.: HARS: a heterogeneity-aware runtime system for self-
adaptive multithreaded applications. In: Proceedings of the 52nd Annual Design
Automation Conference (2015)

	CEML: a Coordinated Runtime System for Efficient Machine Learning on Heterogeneous Computing Systems
	1 Introduction
	2 Background and Motivation
	2.1 Heterogeneous Computing
	2.2 The TensorFlow Machine-Learning System
	2.3 Need for Coordinated Runtime Support

	3 Experimental Methodology
	4 Design and Implementation
	4.1 Performance Estimator
	4.2 Power Estimator
	4.3 Runtime Manager

	5 Evaluation
	6 Related Work
	7 Conclusions
	References

