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Abstract. The truss decomposition provides a popular model for dis-
covering cohesive communities in a given network (graph). The problem
has been well studied in sequential, shared memory and MapReduce set-
tings. We study the problem on distributed memory systems. Our work
builds on two prior algorithms. The first algorithm is optimized in terms
of the computational load and communication volume, but it involves a
large number of iterations, leading to high load imbalance and synchro-
nization costs. The second algorithm significantly reduces the number
of iterations, but at the cost of increasing the load and the volume. We
design an algorithm that offers a tradeoff between the two extremes, with
the number of iterations being close to that of the second algorithm and
load/volume being close to that of the first. We develop an efficient dis-
tributed (MPI) implementation based on the new algorithm. We present
an experimental evaluation on large real-world graphs. The evaluation
shows that the new algorithm outperforms the two prior algorithms on
large system sizes with the performance gain ranging up to 2x.

1 Introduction

Discovering cohesive subgraphs or communities in a given graph is an important
problem arising in diverse domains ranging from social networks to biological
processes. Different models have been proposed for this purpose, among which
the truss decomposition [1] is a prominent model. Apart from ensuring that the
entities (vertices) in the subgraph are strongly connected among one another,
the model also focuses on the strength of the connections (edges). The model
is based on the intuition that the edge between two vertices can be considered
strong, if they share many common neighboring entities, or alternatively, the
edges are included in many triangles. For instance, in a social network, we can
say that more common friends two people have, the stronger is their connection.

Given a graph G and an integer k, the k-truss is defined as the largest sub-
graph, in which every edge is included in at least (k − 2) triangles within the
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subgraph. The model provides a hierarchical decomposition of the graph. The
whole graph G is the 2-truss, and for k ≥ 3, the k-truss is contained within the
(k−1)-truss. For an edge e, the truss number τ(e) is defined as the largest k such
that e belongs to the k-truss. The truss decomposition problem is to compute
the truss numbers of all the edges.

The truss decomposition model is useful in applications such as community
detection [2], visualization of large networks [3], and discovering cohesive struc-
tures containing a given set of entities [4]. The truss decomposition model builds
on the prior k-core formulation [5] and the recently proposed nucleus decomposi-
tion [6] generalizes both the concepts by considering higher order cliques in place
of triangles. Given the utility of the model, the truss computation is included
as part of the recently proposed Graph Challenge benchmark effort (https://
graphchallenge.mit.edu/).

Cohen [1] introduced the truss decomposition model and presented a polyno-
mial time algorithm for constructing the decomposition. Building on the above
work, Wang and Cheng [7] described an I/O efficient implementation. Rossi [8],
Smith et al. [9], Kabir and Madduri [10,11] and Voegele et al. [12] proposed
algorithms for the shared memory and GPU settings. Green et al. evaluated
truss computation under GPU setting [13]. Zhang and Parthasarathy [14] inde-
pendently described the model and used it as a preprocessing step for finding
cliques and other dense structures. Chen et al. [15], Cohen [16] and Shao et al.
[17] studied the problem on MapReduce setting.

Shared memory systems and GPUs have limitations in terms of the number
of cores and/or memory availability, leading to impediments in enhancing the
performance further. For instance, on a popular social network graph named
friendster (1.8 billion edges, 4.2 billion triangles), the execution time achieved
in shared memory setting (with 24 cores) is about 25 min [10]. Prior work has also
considered MapReduce framework [16], but the execution times are significantly
higher, due to framework overheads. Our aim is to achieve execution times of
about one minute on graphs of the above size. Towards that goal, we study the
problem on distributed memory systems using MPI.

We build on two prior procedures (which we adapt to the MPI setting) and
study the problem from an algorithmic perspective. The first procedure, due to
Cohen [1], lies at the heart of most prior implementations. While the algorithm
is optimized in terms of the computational load, it takes a large number of
iteration to converge. In a distributed setting the slow convergence leads to
high synchronization costs and load imbalance. Working within the MapReduce
framework, Chen et al. [15] proposed an algorithm which takes much lesser
number of iterations, at the cost of increased computational load. We denote the
two algorithms as MinTruss and PropTruss, respectively. Our main contribution
is a new algorithm that offers a tradeoff between the prior algorithms in terms
of the two fundamental metrics of number of iterations and load.

Truss computation is performed in two steps: a first phase that enumerates
triangles and a second phase that computes the truss numbers of the edges. Tri-
angle enumeration is a well-studied problem and efficient algorithms have been

https://graphchallenge.mit.edu/
https://graphchallenge.mit.edu/


Improved Distributed Algorithm for Graph Truss Decomposition 705

developed (e.g., [18]). We focus on the second phase of truss computation. The
second phase is iterative. In each iteration, we need to find the triangles incident
on some of the edges. The prior work considers two different implementation
settings. The first setting (e.g., [15,17]) explicitly stores the list of triangles enu-
merated in the first phase and reuses the list in the second phase, whereas the
second (e.g., [8,10]) does not store the list of triangles and recomputes. The first
setting has higher memory usage due to the presence of large number of triangles,
but it facilitates efficient implementation of the second phase. Our implemen-
tation is based on the setting of explicitly storing the triangles. In contrast to
shared memory systems, we can afford to store the list of triangles, as sufficient
memory is available under the distributed memory setting.

Our Contributions

– We propose a new algorithm, denoted Hybrid, that offers a tradeoff between
the prior algorithms on the two performance metrics: iterations close to
PropTruss and load close to MinTruss. We present an efficient distributed
memory (MPI) implementation based on the above algorithm.

– We present an experimental evaluation involving large real-world graphs (hav-
ing up to 4 billion triangles). The results show that PropTruss performs the
best in terms of the number of iterations. Relative to PropTruss, Hybrid is
higher by at most 16x factor, whereas MinTruss is as high as 76x. In terms of
load, MinTruss performs the best. Relative to MinTruss, Hybrid is higher by
at most 2.3x factor, whereas PropTruss is as high as 17x.

– In terms of the execution time (truss number computation), Hybrid achieves
better performance on large system sizes. On the largest system size in our
study (512 MPI ranks), it outperforms MinTruss and PropTruss by up to
2x and 3.4x factors, respectively. Over the different benchmark graphs, it
outperforms the best of the prior algorithms by a factor of up to 2x. The
implementation is able to solve graphs having more than billion edges and 4
billion triangles in about a minute.

2 Preliminaries

Let G = (V,E) be an undirected graph. A triple of vertices u, v and w is said to
form a triangle, if 〈u, v〉, 〈u,w〉 and 〈v, w〉 are edges in G. We denote the triangle
as Δ(u, v, w). The three edges are said to be incident on the triangle and vice
versa. Two edges e and e′ are called neighbors, if they are incident on a common
triangle. Let γ(G) denote the number triangles in G and for an edge e, let γ(e)
denote the number of triangles incident on e.

By a subgraph, we refer to a graph H = (V ′, E′) such that V ′ ⊆ V and
E′ ⊆ (V ′ × V ′) ∩ E; we denote this as H ⊆ G. The size of a subgraph H is
measured by the number of edges in it. For a subgraph H and an edge e found
in H, the support of e within H, denoted suppH(e), is defined as the number of
triangles in H incident on e. For an integer k ≥ 2, the k-truss of G is defined as
the largest subgraph H ⊆ G such that every edge e in H has suppH(e) ≥ k − 2
(the k-truss may not be connected). The k-truss of a graph is unique.
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Fig. 1. Analysis of prior algorithms

Let κ be the largest value such that the κ-truss is non-empty. The 2-truss
is simply the whole graph G. The k-trusses, for k ≥ 2, form a hierarchical
decomposition: G = 2-truss ⊇ 3-truss ⊇ 4-truss ⊇ · · · ⊇ κ-truss. For an edge e,
the truss number of e, denoted τ(e), is defined as the largest value k such that
e is found in the k-truss. Given a graph G, the truss decomposition problem is
to construct the hierarchical decomposition; equivalently, the goal is to compute
the truss number τ(e) for all the edges.

3 Prior Algorithms

In this section, we present an outline of the two prior algorithms MinTruss [1]
and PropTruss [15]. Both the algorithms involve a preprocessing phase, where
they compute the suppG(e) for all the edges via enumerating triangles of the
input graph G. Triangle enumeration is a well-studied problem and efficient
techniques have been developed (e.g., [18]). We describe the algorithms assuming
that the supports have already been computed. For the clarity of exposition, we
present the algorithms at a conceptual level, deferring distributed aspects and
other implementations details to Sect. 5. A brief discussion on the preprocessing
procedure can also be found in the same section.

Algorithm MinTruss: For each edge e, the algorithm maintains an upperbound
τ̂(e) on the true truss number τ(e); it is initialized as τ̂(e) = suppG(e) + 2.
The algorithm marks all edges as not settled and proceeds iteratively. In each
iteration, among the edges not settled, select the edges with the least truss
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value and declare them to be settled. We then update the truss values of their
neighbors in the following manner. Let e = 〈u, v〉 be a selected edge. For each
triangle Δ(u, v, w) incident on e, if both 〈u,w〉 and 〈v, w〉 are not settled already,
then decrement the truss values τ̂(u,w) and τ̂(v, w) by one. Proceed in the above
manner till all the edges are settled.

Intuitively, imagine that the settled edges are deleted from the graph. The
deletion of an edge e destroys the triangles incident on it. When a triangle is
destroyed, the other two edges lose the support of the triangle. So, we decrement
their truss values, provided e is the first edge to be deleted among the three
edges. We can show that for each edge e, the truss value τ̂(e) gets decremented
monotonically and becomes the true truss number τ(e) before termination.

Algorithm PropTruss: In each iteration of the MinTruss algorithm, only the
neighbors of the edges with the least truss value get updated. As a result, the
algorithm incurs a large number of iterations and converges slowly. Chen et al.
[15] proposed an algorithm that exhibits better parallelism by taking much lesser
number of iterations. We denote the algorithm as PropTruss. We rephrase and
present a sketch of the algorithm.

The core idea is to select every edge e whose truss value changed in the prior
iteration and propagate its new truss value to its neighbors. Since edges having
various truss values propagate simultaneously, the update operation becomes
more intricate, as against the simple decrement operation under the MinTruss
algorithm. For a triangle Δ(u, v, w), define the truss number of the triangle as
τ(u, v, w) = min{τ(u, v), τ(u,w), τ(v, w)}. The new update operation is based on
the following proposition. The truss numbers can be seen as stationary solutions
satisfying the condition given by the proposition.

Proposition 1. For any edge e = 〈u, v〉, we have that

τ(e) = max{j : |{Δ(u, v, x) : τ(u, v, x) ≥ j}| ≥ j − 2}

For each triangle Δ(u, v, w), the algorithm maintains an upperbound
τ̂(u, v, w) ≥ min{τ̂(u, v), τ̂(u,w), τ̂(v, w)}. These are initialized to ∞. We ensure
that for any edge e = 〈u, v〉, a condition analogous to the proposition is true
throughout the execution of the algorithm:

τ̂(e) = max{j : |{Δ(u, v, x) : τ̂(u, v, x) ≥ j}| ≥ j − 2} (1)

The PropTruss algorithm can be summarized as follows. In each iteration,
consider all the edges e = 〈u, v〉 whose truss value changed in the prior iteration.
For each triangle Δ(u, v, w) incident on e, if τ̂(e) < τ̂(u, v, w), then we update
the truss value of the triangle to τ̂(e). As a result, the truss values of the edges
〈u,w〉 and 〈v, w〉 may no longer satisfy condition (1). So, for both the edges,
we recompute the right hand side and update their truss values accordingly. We
proceed in this manner, until a stable solution is reached, wherein the truss value
of none of the edges changes. In the first iteration, all the edges get selected and
perform the above propagate operation.
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Comparison of MinTruss and PropTruss: We compare the algorithms using
two fundamental metrics: (i) number of iterations; (ii) load - the total number of
updates (one update is counted whenever an edge changes the truss value of a
triangle and propagates to the other two edges of the triangle). In a distributed
setting, higher number of iterations leads to higher synchronization cost and
load imbalance. The second metric determines the computational load and the
communication volume.

The PropTruss algorithm is superior on the first metric, because edges from
multiple truss levels propagate their truss value simultaneously leading to faster
convergence. On the other hand, the MinTruss algorithm is better in terms of
load. The reason is that any edge e propagates its truss value only once during
the entire execution (when its truss value τ̂(e) settles to the true truss number
τ(e)), whereas the same edge may propagate multiple times under PropTruss.

Figure 1(a) illustrates the above tradeoff by providing the two metrics on four
sample graphs drawn from our experimental evaluation (properties are graphs
can be found in Sect. 6). We can see that PropTruss involves significantly lesser
number of iterations, but MinTruss is superior on load.

4 Algorithm Hybrid

In this section, we present a new algorithm, denoted Hybrid, that strikes a tradeoff
between the two prior algorithms. It aims at achieving load close to MinTruss
and the number of iterations close to PropTruss.

The new algorithm is motivated from an analysis of prior algorithms in terms
of their load profiles, a plot that shows the load incurred in each iteration of
the algorithm. As an illustration, Fig. 1(b) and (c) provide the load profiles
of the two algorithms on the pokec graph. We can see that PropTruss incurs
the maximum load in the first iteration and the load monotonically decreases
until the algorithm converges. On the other hand, in the case of MinTruss, the
iterations are grouped into many blocks; within each block the load is maximum
in the initial iteration and then decreases monotonically. Each block corresponds
a truss value k and all the edges with the truss number τ(e) = k settle in the
successive iterations of the block. While the MinTruss algorithm involves a large
number of iterations, most of the iterations incur very little load. The core idea
behind the Hybrid algorithm is to eliminate the low-load iterations, without
compromising much on the overall load incurred.

Algorithm Hybrid: Like the prior algorithms, we maintain an upperbound τ̂(e)
on the true truss number τ(e), for all edges e, and initialize it to suppG(e)+2. Let
kmin and kmax denote the minimum and the maximum truss value τ̂(e) among
all the edges e. We imagine that each truss value is a bucket and each edge
e resides in the bucket corresponding to its truss value τ̂(e). As the algorithm
proceeds, whenever τ̂(e) decreases, we visualize that the edge moves from its
current bucket to a lower bucket. We maintain a set of edges called the active
set, denoted Act. The edges in the set would propagate their truss values in each
iteration. The edges belonging to the active set are drawn from a window of
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Fig. 2. Algorithm Hybrid

buckets, denoted W . To start with, the window consists of only the bucket kmin,
i.e., W = [kmin, kmin]. In each iteration, we construct the active set by including
all edges e such that τ̂(e) changed in the prior iteration and e belongs to one of
the buckets in the window.

In the next and the crucial step, we use an appropriate heuristic to estimate
whether the current active set would result in the load being too low. In this
case, we expand the window by including the next bucket, and add all the edges
in the bucket to the active set. We repeat the above process until the heuristic
determines that the load would be sufficiently high.

We proceed in the above manner until all the buckets have been added and
the window becomes the complete range [kmin, kmax]. At this stage, we continue
with the iterations until the active set becomes empty; namely, the truss value
does not change for any of the edges. A pseudocode for Hybrid is given in Fig. 2.
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Window Expansion Heuristic: We develop a heuristic for window expansion
by estimating the load to be incurred on the current active set Act. Let e = 〈u, v〉
be an edge in Act. For each triangle Δ(u, v, w) incident on e, we update the two
neighboring edges provided τ̂(u, v) < τ̂(u, v, w); let γ̃(e) denote the number
of such triangles. The exact load under Act is the sum of γ̃(e) for all edges
e ∈ Act. Unfortunately, γ̃(e) changes dynamically and its computation requires
an expensive scan of the triangles incident on e. We avoid the scan by using the
upperbound γ(e) (the number of triangles incident on e). In contrast to γ̃(e),
the quantity γ(e) is static and can be computed as part of the preprocessing
stage. Define γ(Act) =

∑

e∈Act γ(e). We take γ(Act) as an estimate on the load
incurred by the set Act.

We determine if the above estimate is high enough by comparing against the
maximum number of triangles encountered in the prior iterations. Meaning, let
Actj denote the active set in a prior iteration j and let γ(Actj) denote aggregate
number of triangles incident on the edges in Actj . We keep track of the quantity
γmax = maxj γ(Actj). The heuristic estimates that the load on Act would be low,
if the ratio of γ(Act) to γmax is below a threshold δ. In this case, we expand the
window by including the next bucket. The process is repeated until the estimate
on the load becomes sufficiently high. In the above procedure, δ is a tunable
parameter. Pseudocode for the procedure can be found in Fig. 2.

Update Operation: As in the case of the PropTruss algorithm, our update
operation is also based on Proposition 1. Recall that in the PropTruss algorithm,
whenever an edge e = 〈u, v〉 updates the truss value τ̂(u, v, w) for a triangle
Δ(u, v, w), the truss values are recomputed for the other two edges 〈u,w〉 and
〈v, w〉 via evaluating the right hand side of condition (1). We develop a more effi-
cient method that avoids the expensive recomputation by maintaining suitable
histograms, as described below.

Consider any edge e = 〈u, v〉. We group the triangles incident on e based
on their truss values and maintain a histogram consisting of two components,
he(·) and ge. For j < τ̂(e), he(j) stores the number of triangles with truss value
exactly j, whereas ge keeps track of the number of triangles with the truss values
at least τ̂(e). Namely:

∀j < τ̂(e) : he(j) = |{Δ(u, v, x) : τ̂(u, v, x) = j}| (2)

and ge = |{Δ(u, v, x) : τ̂(u, v, x) ≥ τ̂(e)}| (3)

For each triangle Δ(u, v, w), we initialize τ̂(u, v, w) = ∞. For each edge e, the
histogram is initialized as ge = τ̂(e) − 2 and for all j < τ̂(e), he(j) = 0.

The iterations are executed as follows. Consider each edge 〈u, v〉 found in
the active set. For each triangle Δ(u, v, w) incident on e, if τ̂(e) < τ̂(u, v, w),
we update τ̂(u, v, w) = τ̂(e). Let valold denote the value of τ̂(u, v, w) before the
update was performed and valnew be the new value (= τ̂(e)). We update the
histogram and τ̂(·) value for the other two edges 〈u,w〉 and 〈v, w〉 in such a
manner that the conditions (1), (2) and (3) continue to be satisfied.
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Let e′ be one of other two edges. Before the update, the triangle is counted as
part of g(e′), if valold ≥ τ̂(e′) and as part of he′(valold), if valold < τ̂(e′). Similarly,
after the update the triangle is counted as part of g(e′), if valnew ≥ τ̂(e′) and
as part of he′(valnew), if valnew < τ̂(e′). Thus, based on the value of valold and
valnew, we adjust (increment/decrement) g(e′), he′(valold) and he′(valnew); see
Fig. 2. We then decrement τ̂(e′), if ge′ < τ̂(e′) − 2. Furthermore, in this case,
he′(τ̂(e′)) must now be counted as part of ge′ and we add he′(τ̂(e′)) to ge′ . Our
implementation of PropTruss also uses the above histogram strategy.

Discussion: The two prior algorithms can be realized by modifying the win-
dow expansion heuristic: PropTruss via initializing the window to include all the
buckets; MinTruss via expanding the window with the next bucket only when
the active set becomes empty. By tuning the parameter δ, we get a spectrum of
algorithms offering tradeoff between the two extremes. On one hand, restricting
the active set to a window of buckets leads to lesser load than PropTruss. On
the other hand, ensuring that the load is high enough in each iteration leads to
faster convergence and lesser number of iterations than MinTruss. We can prove
the following tradeoff for any value of δ ∈ [0, 1]:

Number of iterations : PropTruss ≤ Hybrid ≤ MinTruss

Load : MinTruss ≤ Hybrid ≤ PropTruss

Figure 1(c) shows the load profile for the pokec graph with δ = 0.1. We can
see that the number of iterations is close to PropTruss and the load is close
to MinTruss. The profile also exhibits a blocked behavior, but the load in any
iteration is sufficiently high.

At a high level, computing the truss decomposition shares similarities with
the single source shortest path problem (SSSP). Similar to truss computation,
prior algorithms for SSSP maintain an upperbound on the shortest distances
which get iteratively refined. Here, we can draw parallels between edges and the
truss numbers on one hand, and the vertices and the shortest distances on the
other. Viewed from this perspective, the MinTruss and the PropTruss algorithms
are analogous to the well-known Dijkstra’s and the Bellman-Ford algorithms,
respectively. The Hybrid algorithm is inspired by the Δ-stepping algorithm [19].

5 Distributed Implementation

Graph Distribution: We distribute the input graph G = (V,E) among the
processors (MPI ranks) using a degree-based ordering proposed in prior work
in the context of efficient triangle counting (e.g., [18]). For a vertex u, let
deg(u) denote its degree. Arrange the vertices in the increasing order of degrees,
breaking ties via lexicographic identifiers. Namely, we say that u ≺ v, if either
deg(u) < deg(v), or deg(u) = deg(v) and id(u) < id(v). Let deg+(u) be the
number of neighbors of u with v  u.

We assign each vertex u to a processor chosen uniformly at random, called
the owner of u. We also assign ownership for each edge e = 〈u, v〉: assign e to
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the owner of u, if u ≺ v, and to the owner of v, if v ≺ u. Let V (p) and E(p)
denote the set of vertices and edges owned by a processor p.

For a processor p, let γ(p) denote the aggregate number of triangles incident
on the edges owned by p, i.e., γ(p) =

∑

e∈E(p) γ(e). The quantity γ(p) is an
indicator of the number of updates performed by the processor during the truss
computation. We can derive a bound on γ(p) follows. For each vertex u ∈ V (p),
the processor owns deg+(u) edges incident on u; each of these edges can be inci-
dent on at most deg(u) triangles. Hence, γ(p) is at most

∑

u∈V (p) deg(u)deg+(u).
Intuitively, if u is a low-degree vertex, then deg+(u) is also low, whereas if u is a
high-degree vertex, then it cannot have too many neighbors succeeding it in the
ordering and so, deg+(u) is again low. As a result, the above distribution helps
in achieving good load balance.

Preprocessing - Triangle Enumeration: All the three algorithms involve a
preprocessing stage of computing the support of the edges, via triangle enumer-
ation. For this purpose, we adopt an efficient strategy proposed in prior work
(e.g., [18]). We say that a pair of edges 〈u, v〉 and 〈u,w〉 is a monotone wedge,
v  u and w  u. The strategy is to enumerate all the monotone wedges 〈u, v〉
and 〈u,w〉 and test whether 〈v, w〉 is also an edge. The advantage with this
approach is that the number of wedges considered is only

∑

u∈V deg2+(u).
In our distributed implementation, each processor p builds a hash table over

edges E(p) owned by it. For each vertex u ∈ V (p), the processor p enumerates all
monotone wedges 〈u, v〉 and 〈u,w〉, and sends the triple (u, v, w) to the processor
owning v, say q. Using its hash table, the processor q checks if the pair 〈v, w〉 is
an edge in G and if so, the triangle Δ(u, v, w) has been discovered. In this case,
q increments suppG(v, w) and sends the triple (u, v, w) back to p, upon receiving
which p increments both suppG(u, v) and suppG(u,w). In the above process, for
each edge e, its owner stores the list of triangles incident on e.

Truss Computation: The algorithms are implemented under the bulk syn-
chronous parallel model. For each edge e = 〈u, v〉, the owner of e maintains τ̂(e),
histogram he(·) and ge. In addition, for each triangle Δ(u, v, w) incident on e,
the processor also stores a local copy of τ̂(u, v, w). In each iteration, for each edge
e = 〈u, v〉 ∈ Act, the owner of e propagates the new truss value τ̂(e), as follows.
For each triangle Δ(u, v, w) with τ̂(e) < τ̂(u, v, w), p sends update messages to
the owners of the edges 〈u,w〉 and 〈v, w〉, wherein the message consists of the
identification of the triangle Δ(u, v, w), as well as the new value of τ̂(u, v, w).
The messages are exchanged using the MPI Alltoallv primitive. Each processor
executes the update procedure on the received messages, updating the edge truss
values, histograms, as well as the local copies of the triangle truss values. The
buckets and the active sets are stored in a distributed manner: each processor p
maintains the buckets and active sets restricted to the edges owned by it.

6 Experimental Evaluation

Experimental Setup: The experiments were conducted on a cluster of Power-8
nodes (20 physical cores, 512 GB memory, 4 GHz) connected via InfiniBand in
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Fig. 3. Graph properties: number of vertices (n), edges (m) and triangles (Δ), all in
millions. The maximum truss number κ is also shown.

Fig. 4. Basic metrics

a fat-tree topology. We launch 16 MPI ranks per node, each mapped to a core.
We use 2 to 32 nodes, leading to a total of 32 to 512 MPI ranks.

The dataset consists of eight representative real-world graphs obtained from
the SNAP repository1, the Koblenz network collection2 and the University of
SuiteSparse Matrix Collection3; the uk-2002 and hollywood-2009 graphs are
based on the prior work [20]. Four of the graphs are medium-sized with more
than 100 million triangles, and the other four are large graphs with more than
billion triangles. Figure 3 shows the properties of the graphs, including the small
pokec graph used as a case study in earlier discussion (the graphs are sorted by
the number of triangles).

Prior work has presented efficient shared memory implementations for truss
computation [10,13]. These are based on the MinTruss algorithm and provide
optimizations for the above setting. Our objective is to study the two extremes
of MinTruss and PropTruss, and the effect of the tradeoff offered by Hybrid under
distributed memory setting. Towards the objective, our experimental evaluation
focuses on the three algorithms.

Recall that Hybrid offers a tradeoff between MinTruss and PropTruss, con-
trolled by δ. We experimented with different values of the parameter on different
graphs and system sizes, and found that setting δ = 0.1 offers the best tradeoff.
All the experiments discussed below use the above setting of the parameter.

Basic Metrics: We first evaluate the algorithms on the two basic metrics:
number of iterations and load (number of updates). We normalize the load by
γ(G), the number of triangles in the graph. An ideal value for normalized load

1 http://snap.stanford.edu/data.
2 http://konect.uni-koblenz.de/.
3 https://sparse.tamu.edu/.

http://snap.stanford.edu/data
http://konect.uni-koblenz.de/
https://sparse.tamu.edu/
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is one unit, which is attained when an algorithm performs only a single update
per triangle.

The results, shown in Fig. 4, confirm our earlier analysis (Sect. 3). We can
see that MinTruss incurs a large number of iterations, whereas PropTruss takes
much lesser number of iterations, with the reduction being as high as 76x (on
hollywood). The above trend is reversed on the metric of load. The MinTruss
algorithm performs the best with near-ideal load, whereas the quantity is as
high as 22 units for PropTruss. The Hybrid algorithm strikes a balance between
the two algorithms. In terms of the number of iterations, relative to PropTruss,
Hybrid is higher by at most 16x factor (whereas MinTruss is as high as 76x).
In terms of load, relative to MinTruss, Hybrid is higher by at most 2.3x factor
(whereas PropTruss is as high as 17x).

Another metric of importance is the max-load, which quantifies the load
balance characteristics. We compute the max-load by finding the maximum load
among the processors in each iteration and summing up across all the iterations.
An ideal value of the metric is γ(G)/P , where P is the number of processors; We
normalize the max-load by this quantity. Figure 4 presents the normalized max-
load at P = 512 (the largest system size in our study). In spite of achieving near-
ideal load, the MinTruss algorithm incurs the highest max-load in most cases. The
reason is that the load gets spread over the large number of iterations, leading to
load imbalance. The PropTruss and the Hybrid algorithms involve lesser number
of iterations and perform comparatively better.

Fig. 5. Execution time (seconds) on the benchmark graphs on ranks from 32 to 512.
The best running times are highlighted.

Truss Computation: Execution Time: We next evaluate the truss compu-
tation time of the algorithms on different systems sizes (32 to 512 ranks). The
results are shown in Fig. 5 (the running times are for a single run of the algo-
rithms). The best execution time is highlighted for each configuration. The figure
also includes the preprocessing time (triangle enumeration), which is common
for all the algorithms.

We can observe that the MinTruss algorithm performs the best on small
system sizes. However, as the system size increases, the algorithm suffers from
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Fig. 6. Speedup of Hybrid over MinTruss and PropTruss. The average speedup on the
eight graphs at different ranks are also shown.

Fig. 7. Truss computation time(s) at 512 ranks

synchronization costs and load imbalance arising out of the large number of
iterations, resulting in degradation of the performance. Except friendster, the
Hybrid algorithm outperforms both the prior algorithms on larger systems sizes.

The friendster graph is one of the largest in terms of the number of trian-
gles. However, the maximum truss number κ is comparatively smaller leading to
lesser number of iterations for MinTruss. Consequently, the synchronization cost
and load imbalance are lesser, and so, MinTruss outperforms Hybrid on all the
system sizes in the study. We expect Hybrid to outperform MinTruss at system
sizes larger than 512 ranks.

Figure 6 provides the speedup of Hybrid over MinTruss and PropTruss on the
different graphs, as the number of ranks is varied from 32 to 512. The speedup is
measured as a ratio of the running time of the competing algorithm (MinTruss or
PropTruss) to that of Hybrid. The figure also provides the average speedup over
the eight benchmark graphs across 32 to 512 ranks. With respect to MinTruss,
the speedup is less than one on small systems sizes (since MinTruss is superior).
On the largest system size of 512, Hybrid outperforms MinTruss, with the speedup
ranging up to 2x with the average being 1.6x. With respect to PropTruss, Hybrid
achieves better speedup at smaller ranks. As the number of ranks increases, the
speedup decreases because of increase in synchronization cost and load imbalance
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under Hybrid. Nevertheless, we see that on the largest system size of 512, the
speedup is up to 4.2x with the average being 2.4x.

Figure 7 compares the execution times on the largest system size of 512 ranks.
We can see that Hybrid outperforms MinTruss and PropTruss by factors of up to
2x (on stackoverflow) and 4x (on orkut), respectively. Taking the best of the
prior algorithms in each case, the performance gain is up to a factor of 2x (on
stackoverflow).

7 Conclusions

We presented a new distributed algorithm for truss decomposition that offers
a tradeoff between two prior procedures in terms of the metrics of number of
iterations and the number updates. Our experimental study shows that the algo-
rithm outperforms the prior procedures on large system sizes by a factor of up to
2x. Improving the scalability of the algorithm and exploring Hybrid algorithm
on shared memory systems are useful avenues for future work.
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