
High-Quality Shared-Memory Graph
Partitioning

Yaroslav Akhremtsev1(B), Peter Sanders1, and Christian Schulz2

1 Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
{yaroslav.akhremtsev,peter.sanders}@kit.edu

2 University of Vienna, Vienna, Austria
christian.schulz@univie.ac.at

Abstract. Partitioning graphs into blocks of roughly equal size such
that few edges run between blocks is a frequently needed operation in pro-
cessing graphs. Recently, size, variety, and structural complexity of these
networks has grown dramatically. Unfortunately, previous approaches
to parallel graph partitioning have problems in this context since they
often show a negative trade-off between speed and quality. We present an
approach to multi-level shared-memory parallel graph partitioning that
guarantees balanced solutions, shows high speed-ups for a variety of large
graphs and yields very good quality independently of the number of cores
used. For example, on 31 cores, our algorithm partitions our largest test
instance into 16 blocks cutting less than half the number of edges than
our main competitor when both algorithms are given the same amount of
time. Important ingredients include parallel label propagation, parallel
initial partitioning, a simple yet effective approach to parallel localized
local search, and cache-aware hash tables.

1 Introduction

Partitioning a graph into k blocks of similar size such that few edges are cut is a
fundamental problem with many applications. For example, it often arises when
processing a single graph on k processors.

The graph partitioning problem is NP-hard. Thus, to solve the graph parti-
tioning problem in practice, one needs to use heuristics. A very common app-
roach to partition a graph is the multi-level graph partitioning (MGP) approach.
The main idea is to contract the graph in the coarsening phase until it is small
enough to be partitioned by more sophisticated but slower algorithms in the
initial partitioning phase. Afterwards, in the uncoarsening/local search phase,
the quality of the partition is improved on every level of the computed hierarchy
using a local improvement algorithm.

There is a need for shared-memory parallel graph partitioning algorithms that
efficiently utilize all cores of a machine. This is due to the well-known fact that
CPU technology increasingly provides more cores with relatively low clock rates

This is the short version of the technical report [2].

c© Springer International Publishing AG, part of Springer Nature 2018
M. Aldinucci et al. (Eds.): Euro-Par 2018, LNCS 11014, pp. 659–671, 2018.
https://doi.org/10.1007/978-3-319-96983-1_47

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-96983-1_47&domain=pdf

660 Y. Akhremtsev et al.

in the last years since these are cheaper to produce and run. Moreover, shared-
memory parallel algorithms implemented without message-passing libraries (e.g.
MPI) usually give better speed-ups and running times than its MPI-based coun-
terparts. Shared-memory parallel graph partitioning algorithms can in turn also
be used as a component of a distributed graph partitioner, which distributes
parts of a graph to nodes of a compute cluster and then employs a shared-
memory parallel graph partitioning algorithm to partition the corresponding
part of the graph on a node level.

Contribution: We present a high-quality shared-memory parallel multi-level
graph partitioning algorithm that parallelizes all of the three MGP phases –
coarsening, initial partitioning and refinement – using C++14 multi-threading.
Our approach uses a parallel label propagation algorithm that is able to shrink
large complex networks fast during coarsening. Our parallelization of localized
local search [10] is able to obtain high-quality solutions and guarantee balanced
partitions despite performing most of the work in mostly independent local
searches of individual threads. Using cache-aware hash tables we limit memory
consumption and improve locality. Our approach scales comparatively better
than other parallel partitioners and has considerably higher quality which does
not degrade with increasing number of processors.

After presenting preliminaries and related work in Sect. 2, we explain details
of the multi-level graph partitioning approach and the algorithms that we par-
allelize in Sect. 3. Section 4 presents our approach to parallelization of the multi-
level graph partitioning phases. Extensive experiments are presented in Sect. 5.

2 Preliminaries

2.1 Basic Concepts

Let G = (V = {0, . . . , n−1}, E) be an undirected graph, where n = |V | and m =
|E|. We consider positive, real-valued edge and vertex weight functions ω and
c extending them to sets, e.g., ω(M) :=

∑
x∈M ω(x). N(v) := {u : {v, u} ∈ E}

denotes the neighbors of v. The degree of a vertex v is d(v) := |N(v)|. Δ is the
maximum vertex degree. A vertex is a boundary vertex if it is incident to a vertex
in a different block. We are looking for disjoint blocks of vertices V1,. . . ,Vk that
partition V ; i.e., V1 ∪ · · · ∪ Vk = V . The balancing constraint demands that all
blocks have weight c(Vi) ≤ (1 + ε)� c(V)

k � =: Lmax for some imbalance parameter
ε. We call a block Vi overloaded if its weight exceeds Lmax. The objective is to
minimize the total cut ω(E ∩⋃

i<j Vi ×Vj). We define the gain of a vertex as the
maximum decrease in cut size when moving it to a different block. We denote
the number of processing elements (PEs) as p.

A clustering is also a partition of the vertices. However, k is usually not given
in advance and the balance constraint is removed. A size-constrained clustering
constrains the size of the blocks of a clustering by a given upper bound U .

An abstract view of the partitioned graph is the quotient graph, in which
vertices represent blocks and edges are induced by connectivity between blocks.

High-Quality Shared-Memory Graph Partitioning 661

The weighted version of the quotient graph has vertex weights which are set to
the weight of the corresponding block and edge weights that are equal to the
weight of the edges that run between the respective blocks.

In general, our input graphs G have unit edge weights and vertex weights.
However, even those will be translated into weighted problems in the course of
the multi-level algorithm. In order to avoid a tedious notation, G will denote the
current state of the graph before and after a (un)contraction in the multi-level
scheme throughout this paper.

We analyze algorithms using the concept of total work (the time spent by
one processor) and span; i.e., the time spent using an unlimited number of PEs.

2.2 Related Work

There has been intensive research on graph partitioning so that we refer the
reader to the full version of the paper and a recent overview [2,4]. Here, we
focus on issues closely related to our main contributions. All general-purpose
methods that are able to obtain good partitions for large real-world graphs are
based on the multi-level principle. Well-known software packages based on this
approach include Jostle, KaHIP, Metis and Scotch.

Probably the fastest available distributed memory parallel code is the parallel
version of Metis, ParMetis [5]. This parallelization has problems maintaining the
balance of the blocks since at any particular time, it is difficult to say how many
vertices are assigned to a particular block. In addition, ParMetis only uses very
simple greedy local search algorithms that do not yield high-quality solutions.
Mt-Metis by LaSalle and Karypis [6,7] is a shared-memory parallel version of the
ParMetis graph partitioning framework. LaSalle and Karypis use a hill-climbing
technique during refinement. The local search method is a simplification of k-
way multi-try local search [10] in order to make it fast. The idea is to find a set
of vertices (hill) whose move to another block is beneficial and then to move this
set accordingly. However, it is possible that several PEs move the same vertex.
To handle this, each vertex is assigned a PE, which can move it exclusively.
Other PEs use a message queue to send a request to move this vertex.

Meyerhenke et al. [9] propose ParHIP, to partition large complex networks
on distributed memory parallel machines using label propagation. The resulting
system is more scalable and achieves higher quality than state-of-the-art systems
like ParMetis or PT-Scotch. There are other parallel graph partitioners: PT-
Scotch, KaPPa, and PDiBaP. See details in the full version of the paper [2].

3 Multi-level Graph Partitioning

We now give an in-depth description of the three main phases of a multi-level
graph partitioning algorithm: coarsening, initial partitioning and uncoarsen-
ing/local search. In particular, we give a description of the sequential algorithms
that we parallelize in the following sections. Our starting point here is the KaHIP
framework [10]. For the development of the parallel algorithm, we add the k-way

662 Y. Akhremtsev et al.

multi-try local search scheme which gives higher quality, and improve it to per-
form less work than the original sequential version.

Coarsening. To create a new level of a graph hierarchy, we compute a clustering
and build a coarse graph G′. Each original cluster corresponds to a single vertex
in G′. The weight of this vertex is set to the sum of the weights of all vertices
(in the finer graph) in the cluster. There is an edge between two vertices of G′ if
the corresponding clusters are connected by at least one edge. The weight of this
edge is set to the sum of all edges (in the finer graph) that connect these clusters.
The hierarchy created in this recursive manner is then used by the partitioner.
Note that a partition of the coarse graph corresponds to a partition of the finer
graph with the same cut and balance. We now describe the clustering algorithm
that we parallelize.

Clustering. We denote the set of all clusters as C and the cluster ID of a
vertex v as C[v]. In our framework, we use the label propagation algorithm
by Meyerhenke et al. [8] that creates clusters with constrained size. The size
constrained label propagation algorithm works in iterations; i.e., the algorithm
is repeated � times (� is a tuning parameter). Initially, each vertex is in its own
cluster (C[v] = v) and all vertices are put into a queue Q in increasing order of
their degrees. During each iteration, the algorithm iterates over all vertices in
Q. A neighboring cluster C of a vertex v is called eligible if C will not become
overloaded once v is moved to C. When a vertex v is visited, it is moved to the
eligible cluster C that maximizes ω({(v, u) | u ∈ N(v) ∩ C}). If a vertex changes
its cluster then all its neighbors are added to a queue Q′ for the next iteration. At
the end of an iteration, Q and Q′ are swapped, and the algorithm proceeds with
the next iteration. The sequential running time of one iteration of the algorithm
is O(m + n).

Initial Partitioning. After we have built the coarsest graph G′, we partition it
into k blocks using the algorithms from KaHIP [10]. To get a better solution, the
graph G′ is partitioned into k blocks I times and the best solution is returned.

Uncoarsening/Local Search. After initial partitioning, a local search algo-
rithm is applied on each level of the multi-level hierarchy to decrease the cut
size. There are a variety of local search algorithms: size-constraint label propa-
gation, Fiduccia-Mattheyses k-way local search (FM), max-flow min-cut based
local search, k-way multi-try local search (MLS) [10] Sequential versions of
KaHIP use combinations of those. Since k-way local search is P-complete, we
use a combination of the size-constrained label propagation algorithm and MLS.
MLS achieves higher quality than FM [10] and decomposes the optimization into
many small local searches which is a good basis for parallelization.

We now describe MLS that performs a k-way local searches around a single
boundary vertices. This gives better chances of finding a nontrivial improve-
ments [10]. The algorithm is organized in a nested loop of global and local

High-Quality Shared-Memory Graph Partitioning 663

iterations. In the beginning of a global iteration, we put all boundary vertices
into a todo list T . Initially, all vertices are unmarked. Afterwards, the algorithm
repeatedly chooses and removes a random vertex v ∈ T . If v is not marked then
it performs a k-way local search around v. It marks v and N(v) and inserts
them into the priority queue PQ using gain values as keys. Next, the algorithm
extracts a vertex w with the maximum key in the PQ. If the corresponding
move of w does not produce an overloaded block then it performs the move and
inserts all unmarked neighbors of w into the PQ. The algorithm stops when the
priority queue is empty or an adaptive stopping rule decides to stop. In the end,
the best partition that has been seen during the process is reconstructed. In
one local iteration, this is repeated until the todo list is empty. Afterwards, the
algorithm reinserts moved vertices into T in a random order. If the achieved gain
improvement is larger than a certain percentage (currently 10 %) of the total
improvement during the current global iteration, it continues to perform moves
around the vertices currently in the todo list (next local iteration). This allows
to further decrease the cut size without significant impact to the running time.
When improvements fall below this threshold, the next global iteration is started
that initializes the todo list with all boundary vertices. After a fixed number of
global iterations (currently 3), the MLS algorithm stops. Our experiments show
that 3 global iterations is a fair trade-off between the running time and quality of
the partition. This nested loop of local and global iterations is an improvement
over the original MLS search from [10] since they allow for a better control of
the running time of the algorithm.

The running time of one local iteration is O(n +
∑

v∈V d(v)2). Because each
vertex can be moved only once during a local iteration and we update the gains
of its neighbors using a bucket heap. Since we update the gain of a vertex at
most d(v) times, the d(v)2 term is the total cost to update the gain of a vertex v.
Note, that this is an upper bound for the worst case, usually local search stops
significantly earlier due the stopping rule or an empty priority queue.

4 Parallel Multi-level Graph Partitioning

Profiling the sequential algorithm shows that each of the components of the
multi-level scheme has a significant contribution to the overall algorithm. Our
general approach is to avoid bottlenecks as well as performing independent work
as much as possible.

4.1 Coarsening: Parallel Size-Constraint Label Propagation

To parallelize the size-constraint label propagation algorithm, we adapt a clus-
tering technique by Staudt and Meyerhenke [12]. First, we sort the vertices in
increasing order of their degrees using a parallel sorting Algorithm [3]. Then
we form work packets of vertices and put them into a concurrent queue. We
constraint each packet to contain vertices with a total number of at most

√
m

neighbors. Additionally, we have an empty queue Q′ that stores packets for the

664 Y. Akhremtsev et al.

next iteration. During an iteration, each PE tries to extract a packet from the
queue Q. It chooses a new cluster for each vertex in the currently processed
packet. A vertex is then moved if the cluster size is still feasible to take on the
weight of the vertex. Cluster sizes are updated atomically using a compare and
swap instruction. This is important to guarantee that the size constraint is not
violated. Neighbors of moved vertices are inserted into a packet for the next
iteration. If the sum of vertex degrees in that packet exceeds the work bound√

m then this packet is inserted into queue Q′ and a new packet is created for
subsequent vertices. When the queue Q is empty, the main PE exchanges Q
and Q′ and we proceed with the next iteration. One iteration of the algorithm
can be done with O(n + m) work and O(n+m

p) span.

Coarsening: Parallel Contraction

The contraction algorithm takes a graph G = (V,E) as well as a clustering C
and constructs a coarse graph G′ = (V ′, E′). The contraction process consists
of three phases: the remapping of cluster IDs to a consecutive set of IDs, edge
weight accumulation, and the construction of the coarse graph. The remapping
of cluster IDs assigns new IDs in the range [0, |V ′| − 1] to the clusters by cal-
culating a prefix sum on an array that contains ones in the positions equal to
the current cluster IDs. This phase can be done in O(n) work. Sequentially, the
edge weight accumulation step calculates weights of edges in E′ using hashing.
For each cut edge (v, u) ∈ E, we insert a pair (C[v], C[u]) into a hash table and
accumulate weights for the pair if it is already contained in the table. Due to
hashing cut edges, the expected work of this phase is O(|E′| + m). To construct
the coarse graph, we iterate over all edges E′ contained in the hash table. This
takes O(|V ′|+ |E′|) work. Hence, the total expected work to compute the coarse
graph is O(m + n + |E′|).

The parallel contraction algorithm works as follows. First, we remap the
cluster IDs using parallel prefix sums. Edge weights are accumulated by iterating
over the edges of the original graph in parallel. This uses a concurrent hash table.
The third phase is performed sequentially in the current implementation since
profiling indicates that it is so fast that it is not a bottleneck.

4.2 Initial Partitioning

To improve the quality of the resulting partitioning of the coarsest graph G′ =
(V ′, E′), we partition it into k blocks max(p, I) times instead of I times. Each
PE creates a copy of the coarsest graph and runs KaHIP sequentially on it
using a random seed. Assume that one partitioning can be done in T time. Then
max(p, I) partitions can be built with O(max(p, I) · T + p · (|E′| + |V ′|)) work
and O(max(p,I)·T

p + |E′| + |V ′|) span.

4.3 Uncoarsening/Local Search

Our parallel algorithm first uses size-constraint parallel label propagation to
improve the current partition and afterwards applies our parallel MLS. The idea

High-Quality Shared-Memory Graph Partitioning 665

is that label propagation is easy to parallelize and will do all the easy improve-
ments. Subsequent MLS will then invest considerable work to find nontrivial
improvements. In this combination, only few nodes actually need be moved glob-
ally which makes it easier to parallelize MLS scalably. When using the label
propagation algorithm to improve a partition, we set the upper bound U to
Lmax.

Parallel MLS works in a nested loop of local and global iterations as in the
sequential version. Initialization of a global iteration uses a simplified parallel
shuffling algorithm where each PE shuffles the nodes it considers into a local
bucket and then the queue is made up of these buckets in random order. During
a local iteration, each PE extracts vertices from a producer queue Q. Afterwards,
it performs local moves around it; that is, global block IDs and the sizes of the
blocks remain unchanged. When the producer queue Q is empty, the algorithm
applies the best found sequences of moves to the global data structures and
proceeds with the next local iteration.

Performing Moves. Each PE performs moves in the function PerformMoves.
Starting from a single boundary vertex, each PE performs local moves of vertices
to find a sequence of moves that decreases the cut. That is, moves do not affect
the current global partition – they are stored in the local memory of the PE
performing them. To perform a move, a PE chooses a vertex with maximum
gain and marks it so that other PEs cannot move it. Then, we update the sizes
of the affected blocks and save the move. During the course of the algorithm, we
store the sequence of moves yielding the best cut. We stop if there are no moves
to perform or the adaptive stopping rule signals the algorithm to stop. When a
PE finished, the sequences of moves yielding the smallest cut is returned.

In order to improve scalability, only the array for marking moved vertices is
global. Note that within a local iteration, only bits in this array are set (using
compare and swap instruction) and they are never unset. Hence, the marking
operation can be seen as priority update operation (see Shun et al. [11]) and
thus causes only little contention. The algorithm keeps a local array of block
sizes, a local priority queue, and a local hash table storing changed block IDs
of vertices. Note that since the local hash table is small, it often fits into cache
which is crucial for parallelization due to memory bandwidth limits. When the
call of PerformMoves finishes and the thread executing it notices that the queue
Q is empty, it sets a global variable to signal the other threads to finish the
current call of the function PerformMoves. This way, isolated very long MLS
searches cannot lead to bad load balance.

Let each PE process a set of edges E and a set of vertices V. Since a vertex
can be moved only by one PE and moving it requires to compute gain for its
neighbors, the span of the function PerformMoves is O(

∑
v∈V

∑
u∈N(v) d(u) +

|V|) = O(
∑

v∈V d2(v) + |V|) since the gain of a vertex v is updated at most d(v)
times.

666 Y. Akhremtsev et al.

Applying Moves. Let Mi denote the set of sequences of moves performed
by PE i. We apply moves sequentially in the following order M1,M2, . . . ,Mp.
We can not apply the moves directly in parallel since a move done by one PE
may affect a move done by another PE and the cut size may even increase.
To prevent this, we recalculate the gain of each move in a given sequence and
apply the subsequence of moves that gives the best cut. Finally, we insert all
moved vertices into the queue Q. Let M be the set of all moved vertices during
this procedure. The overall running time is then given by O(

∑
v∈M d(v)). Note

that our initial partitioning algorithm generates balanced solutions. Since moves
are applied sequentially our parallel local search algorithm maintains balanced
solutions.

4.4 Differences to Mt-Metis

We now discuss differences between our algorithm and Mt-Metis. In the coars-
ening phase, we use a cluster contraction while Metis is using a matching-
based scheme. Our approach is especially well suited for networks that have
a pronounced and hierarchical cluster structure. The general initial partitioning
scheme is similar in both algorithms. However, the employed sequential tech-
niques differ because different sequential tools (KaHIP and Metis) are used to
partition the coarsest graphs. In terms of local search, unlike Mt-Metis, our app-
roach guarantees that the updated partition is balanced if the input partition is
balanced and that the cut can only decrease or stay the same. The hill-climbing
technique, however, may increase the cut of the input partition or may compute
an imbalanced partition even if the input partition is balanced. Our algorithm
has these guarantees since each PE performs moves of vertices locally in par-
allel. When all PEs finish, one PE globally applies the best sequences of local
moves computed by all PEs. Usually, the number of applied moves is signifi-
cantly smaller than the number of local moves performed by all PEs, especially
on large graphs. Thus, the main work is still made in parallel. Additionally, we
introduce a cache-aware hash table that we use to store local changes of block
IDs made by each PE. This hash table is more compact than an array and takes
the locality of data into account.

4.5 Further Optimization

In this section, we list further optimization techniques that we use to achieve
better speed-ups and overall speed. More precisely, we use cache-aligned arrays
to mitigate the problem of false-sharing, the TBB scalable allocator [1] for con-
current memory allocations and pin threads to cores to avoid rescheduling over-
heads. Additionally, we use a cache-aware hash table that is described in the full
version of the paper [2]. In contrast to usual hash tables, this hash table allows
us to exploit locality of data and hence to reduce the overall running time of the
algorithm.

High-Quality Shared-Memory Graph Partitioning 667

5 Experiments

We implemented our algorithm Mt-KaHIP (Multi-threaded KaHIP) within the
KaHIP [10] framework using C++ and the C++14 multi-threading library. We plan
to make our program available in the framework. All binaries are built using
g++-5.2.0 with the -O3 flag and 64-bit index data types. We run our experi-
ments on two machines. Machine A is an Intel Xeon E5-2683v2 (2 sockets, 16
cores with Hyper-Threading, 64 threads) running at 2.1 GHz with 512 GB RAM.
Machine B is an Intel Xeon E5-2650v2 (2 sockets, 8 cores with Hyper-Threading,
32 threads) running at 2.6 GHz with 128 GB RAM.

We compare ourselves to Mt-Metis 0.6.0 using the default configuration with
hill-climbing being enabled (Mt-Metis) as well as sequential KaHIP 2.0 using the
fast social configuration (KaHIP) and ParHIP 2.0 [9] using the fast social
configuration (ParHIP). According to LaSalle and Karypis [6] Mt-Metis has bet-
ter speed-ups and running times compared to ParMetis and Pt-Scotch. At the
same time, it yields similar solution quality. Hence, we do not perform experi-
ments with ParMetis and Pt-Scotch. Our algorithm consumes 44.3% less mem-
ory than Mt-Metis on the largest graph from our benchmark set for p = 31 on
machine A. For more details, we refer the reader to [2].

Our default value of allowed imbalance is 3%. We call a solution imbalanced
if at least one block exceeds this amount. We perform ten repetitions for every
algorithm using different random seeds for initialization and report the arith-
metic average of computed cut size and running time on a per instance (graph
and number of blocks k) basis. If at least one repetition returns an imbalanced
partition of an instance then we mark this instance imbalanced. Our experiments
focus on the cases k ∈ {16, 64} and p ∈ {1, 16, 31} to save running time.

We use performance plots to present quality comparisons and scatter plots
to present the speed-up and the running time comparisons. A curve in a per-
formance plot for algorithm X is obtained as follows: For each instance (graph
and k), we calculate the normalized value 1 − best

cut
, where best is the best cut

obtained by any of the considered algorithms and cut is the cut of algorithm X.
These values are then sorted. Thus, the result of the best algorithm is in the
bottom of the plot. We set the value for the instance above 1 if an algorithm
builds an imbalanced partition. Hence, it is in the top of the plot.

Any multi-level algorithm has a considerable number of tuning parameters.
We adopt parameters from the coarsening and initial partitioning phases of
KaHIP. Mt-KaHIP uses 10 and 25 label propagation iterations during coarsen-
ing and refinement, respectively, partitions a coarse graph max(p, 4) times in
initial partitioning and uses 3 global iterations of parallel MLS in the refinement
phase.

Instances. We evaluate all algorithms on a benchmark of 24 large graphs and
for k ∈ {16, 64}. This collection consist of different kinds of graphs: numeric
simulations, complex networks (focused on social networks and web graphs),
and random graphs (random geometric graphs, delaunay graphs, and random

668 Y. Akhremtsev et al.

hyperbolic graphs). Details of the benchmark can be found in the full version of
the paper [2].

5.1 Quality Comparison

In this section, we compare our algorithm against competing state-of-the-art
algorithms in terms of quality. The performance plot in Fig. 1 shows the results
of our experiments performed on machine A for all of our benchmark graphs.

Our algorithm gives the best overall quality, usually producing the over-
all best cut. Even in the small fraction of instances where other algorithms
are best, our algorithm is at most 7% off. The overall solution quality does
not heavily depend on the number of PEs used. Indeed, more PEs give
slightly higher partitioning quality. The original fast social configuration of
KaHIP as well as ParHIP produce worse quality than Mt-KaHIP, since par-
allel MLS significantly improves solution quality. Mt-Metis with p = 1 has
worse quality than our algorithm on almost all instances. For Mt-Metis
this is expected since it is considerably faster than our algorithm. However,
Mt-Metis also suffers from deteriorating quality and many imbalanced parti-
tions as the number of PEs goes up. This can also be seen from the geometric
means of the cut sizes over all instances, including the imbalanced solutions.

Fig. 1. Performance plot for the cut size. The num-
ber behind the algorithm name denotes the number
of threads.

For our algorithm they are
727.2K, 713.4K and 710.8K
for p = 1, 16, 31, respec-
tively. For Mt-Metis they are
819.8K, 873.1K and 874.8K
for p = 1, 16, 31, respectively.
For ParHIP they are 809.9K,
809.4K and 809.71K for p =
1, 16, 31, respectively, and for
KaHIP it is 766.2K. For p = 31,
the geometric mean cut size
of Mt-KaHIP is 18.7% smaller
than that of Mt-Metis, 12.2%
smaller than that of ParHIP
and 7.2% smaller than that of
KaHIP.

Additionally, we compare
the effectiveness of our algo-
rithm Mt-KaHIP against com-
petitors. We give the faster
algorithm the same amount of
time as the slower algorithm for additional repetitions that can lead to improved
solutions. The detailed description of these experiments is in the full version
of the paper [2]. Still in 80.4% of the tests Mt-KaHIP has better quality than
Mt-Metis. In the worst-case, Mt-KaHIP has a 5.5% larger cut than Mt-Metis. In
96.5% of the tests, Mt-KaHIP has better quality than ParHIP. In the worst-case,

High-Quality Shared-Memory Graph Partitioning 669

Fig. 2. From left to right for p = 31: (a) full speed-up, (b) full running time per edge
in nanoseconds. Horizontal lines are harmonic and geometric means.

Mt-KaHIP has a 5.4% larger cut than ParHIP. In 98.9% of the tests, Mt-KaHIP
has better quality than KaHIP. In the worst-case, Mt-KaHIP has a 3.5% larger
cut than KaHIP.

5.2 Speed-Up and Running Time Comparison

In this section, we compare the speed-ups and the running times of our algorithm
against competitors. We calculate a relative speed-up of an algorithm as a ratio
between its running time and its running time with p = 1. Figure 2 show scatter
plots with speed-ups and time per edge for a full algorithm execution on machine
A. We calculate the geometric and harmonic means only for instances that were
partitioned in ten repetitions without imbalance. Note that among the top 20
speed-ups of Mt-Metis 60% correspond to imbalanced instances (Mt-Metis 31
imbalanced) thus we believe it is fair to exclude them.

The harmonic mean full speed-up of our algorithm, Mt-Metis and ParHIP for
p = 31 are 9.1, 11.1 and 9.5, respectively. The harmonic mean local search speed-
up of our algorithm, Mt-Metis and ParHIP are 13.5, 6.7 and 7.5, respectively. Our
full speed-ups are comparable to that of Mt-Metis but our local search speed-ups
are significantly better than that of Mt-Metis. The geometric mean full time per
edge of our algorithm, Mt-Metis and ParHIP are 52.3 nanoseconds (ns), 12.4 [ns]
and 121.9 [ns], respectively. The geometric mean local search time per edge of our
algorithm, Mt-Metis and ParHIP are 3.5 [ns], 2.1 [ns] and 16.8 [ns], respectively.
Note that with increasing number of edges, our algorithm has comparable time
per edge to Mt-Metis. Superior speed-ups of parallel MLS are due to minimized
interactions between PEs and using cache-aware hash tables locally. Although
on average, our algorithm is slower than Mt-Metis, we consider this as a fair
trade off between the quality and the running time. We also dominate ParHIP
in terms of quality and running times.

670 Y. Akhremtsev et al.

5.3 Influence of Algorithmic Components

We now analyze how the parallelization of the different components affects the
cut size and present the speed-ups of each phase. We perform experiments on
machine B with configurations of our algorithm in which only one of the compo-
nents (coarsening, initial partitioning, uncoarsening) is parallelized using p = 16.
Running the algorithm with parallel coarsening decreases the geometric mean
of the cut by 0.7%, with parallel initial partitioning decreases the cut by 2.3%
and with parallel local search decreases the cut by 0.02%. Compared to the full
sequential algorithm, we conclude that running the algorithm with any parallel
component either does not affect solution quality or improves the cut slightly
on average. The parallelization of initial partitioning gives better cuts since it
computes more initial partitions than the sequential version.

To show that the parallelization of each phase is important, we consider
instances where one of the phases runs significantly longer than other phases in
the experiments on machine A using p = 31. The coarsening phase may take
up to 91% of the running time and its parallelization gives a speed-up of 13.6
for 31 threads and a full speed-up of 12.4. The initial partitioning phase may
take up to 40% of the running time and its parallelization gives a speed-up
of 6.1 and the overall speed-up is 7.4. The uncoarsening phase may take up to
57% of the running time and its parallelization gives a speed-up of 13.0 and the
overall speed-up is 9.1. The harmonic mean speed-ups of the coarsening phase,
the initial partitioning phase and the uncoarsening phase for p = 31 are 10.6, 2.0
and 8.6, respectively.

6 Conclusion and Future Work

We presented a shared-memory parallel graph partitioner that is able to par-
tition graphs with very good quality as well as guaranteed balance which also
shows good speed-up on a variety of large graphs. Previous approaches show a
negative trade-off between quality and speed. The important parts of our algo-
rithm are parallel label propagation, a simple yet effective approach to parallel
MLS, parallel initial partitioning, and cache-aware hash tables. Considering the
good results of our algorithm, we want to further improve it and release its
implementation. An interesting problem is how to apply moves in Sect. 4.3 in
parallel whose solution will increase the performance of parallel MLS.

References

1. Intel threading building blocks. https://www.threadingbuildingblocks.org/
2. Akhremtsev, Y., Sanders, P., Schulz, C.: High-quality shared-memory graph par-

titioning. CoRR abs/1710.08231 (2017)
3. Axtmann, M., Witt, S., Ferizovic, D., Sanders, P.: In-place parallel super scalar

samplesort (IPSSSSo). In: Proceedings of the 25th ESA, pp. 9:1–9:14 (2017)

https://www.threadingbuildingblocks.org/

High-Quality Shared-Memory Graph Partitioning 671

4. Buluç, A., Meyerhenke, H., Safro, I., Sanders, P., Schulz, C.: Recent advances in
graph partitioning. In: Kliemann, L., Sanders, P. (eds.) Algorithm Engineering.
LNCS, vol. 9220, pp. 117–158. Springer, Cham (2016). https://doi.org/10.1007/
978-3-319-49487-6 4

5. Karypis, G., Kumar, V.: Parallel multilevel k-way partitioning scheme for irregular
graphs. In: Proceedings of the ACM/IEEE Conference on Supercomputing (1996)

6. LaSalle, D., Karypis, G.: Multi-threaded graph partitioning. In: Proceedings of the
27th IPDPS, pp. 225–236 (2013)

7. LaSalle, D., Karypis, G.: A parallel hill-climbing refinement algorithm for graph
partitioning. In: Proceedings of the 45th ICPP, pp. 236–241 (2016)

8. Meyerhenke, H., Sanders, P., Schulz, C.: Partitioning complex networks via size-
constrained clustering. In: Gudmundsson, J., Katajainen, J. (eds.) SEA 2014.
LNCS, vol. 8504, pp. 351–363. Springer, Cham (2014). https://doi.org/10.1007/
978-3-319-07959-2 30

9. Meyerhenke, H., Sanders, P., Schulz, C.: Parallel graph partitioning for complex
networks. In: IEEE Transactions on Parallel and Distributed Systems, pp. 2625–
2638 (2017)

10. Sanders, P., Schulz, C.: Engineering multilevel graph partitioning algorithms. In:
Demetrescu, C., Halldórsson, M.M. (eds.) ESA 2011. LNCS, vol. 6942, pp. 469–480.
Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-23719-5 40

11. Shun, J., Blelloch, G.E., Fineman, J.T., Gibbons, P.B.: Reducing contention
through priority updates. In: Proceedings of the 25th SPAA, pp. 152–163 (2013)

12. Staudt, C.L., Meyerhenke, H.: Engineering parallel algorithms for community
detection in massive networks. IEEE Trans. Parallel Distrib. Syst. 27(1), 171–184
(2016)

https://doi.org/10.1007/978-3-319-49487-6_4
https://doi.org/10.1007/978-3-319-49487-6_4
https://doi.org/10.1007/978-3-319-07959-2_30
https://doi.org/10.1007/978-3-319-07959-2_30
https://doi.org/10.1007/978-3-642-23719-5_40

	High-Quality Shared-Memory Graph Partitioning
	1 Introduction
	2 Preliminaries
	2.1 Basic Concepts
	2.2 Related Work

	3 Multi-level Graph Partitioning
	4 Parallel Multi-level Graph Partitioning
	4.1 Coarsening: Parallel Size-Constraint Label Propagation
	4.2 Initial Partitioning
	4.3 Uncoarsening/Local Search
	4.4 Differences to Mt-Metis
	4.5 Further Optimization

	5 Experiments
	5.1 Quality Comparison
	5.2 Speed-Up and Running Time Comparison
	5.3 Influence of Algorithmic Components

	6 Conclusion and Future Work
	References

