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Abstract. MPI usage patterns are changing as applications move
towards fully-multithreaded runtimes. However, the impact of these pat-
terns on MPI message matching is not well-studied. In particular, MPI’s
mechanic for receiver-side data placement, message matching, can be
impacted by increased message volume and nondeterminism incurred by
multithreading. While there has been significant developer interest and
work to provide an efficient MPI interface for multithreaded access, there
has not been a study showing how these patterns affect messaging pat-
terns and matching behavior. In this paper, we present a framework for
studying the effects of multithreading on MPI message matching. This
framework allows us to explore the implications of different common
communication patterns and thread-level decompositions. We present a
study of these impacts on the architecture of two of the Top 10 super-
computers (NERSC’s Cori and LANL’s Trinity). This data provides a
baseline to evaluate reasonable matching engine queue lengths, search
depths, and queue drain times under the multithreaded model. Further-
more, the study highlights surprising results on the challenge posed by
message matching for multithreaded application performance.

1 Introduction

As the number of cores per node increase, scientific codes are moving toward
hybrid model of parallelism combining an inter-process communication model,
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such as MPI, with a threading model. Due to performance concerns with MPI
implementations, most contemporary codes leverage a hybrid BSP model where
computation phases fan out to use multiple threads and communication phases
filter down to a single thread. However, there is significant developer interest in
leveraging MPI in a multithreaded manner to increase communication and com-
putation overlap, decrease thread fan in/out overheads, and reduce development
overheads.

While some studies address improvements to MPI’s multithreaded code-
paths, few assess how multithreaded communication affects the behavior of
MPI message processing. Specifically, in single-threaded contexts, determinism in
communication patterns allows users to ensure performance by ordering receive
requests to match the corresponding sends. In contrast, non-determinism intro-
duced by multithreaded communication may undermine this optimization, lead-
ing to increased message processing times. Furthermore, since the common strat-
egy of packing data into a few large messages is likely to be discarded in favor
of having each thread send smaller messages, the issue may be exacerbated by
the increased number of messages. Since the acceptable performance of many
current scientific codes is based on the assumption MPI message processing
overhead is small in comparison to time spent in computation phases, it is of
critical importance we grasp the implications of multithreaded communication
so that appropriate steps can be taken in advance of the exascale timeframe.

In this paper, we explore the impact of increased messaging and decreased
determinism in message ordering on MPI message processing. This study
explores this impact on widely-used, simple, and highly-scalable stencil com-
munication patterns that limit communication to a minimal number of peers.
We introduce a model for the number of threads engaged in inter-process com-
munication, and messages exchanged, when these stencil patterns are converted
to multithreaded messaging in straightforward ways. We then empirically assess
the effects of these patterns on average search depths and times. The results of
these tests are surprising to us as MPI experts, as the MPI queue search depths
are worse than expected. This means that MPI multi-threaded message process-
ing overhead will be unacceptable when compared to the current performance
of scientific codes.

The contributions of this paper are:

– A theoretical analysis of the characteristics of different thread-level decom-
positions for common stencil communication patterns;

– A testing structure enabling experiments of the effect of different thread-level
decompositions on MPI message matching;

– An empirical study of the effects of threading on average search depths and
queue drain times for MPI message matching.

The rest of this paper is organized as follows: Sect. 2 explores the back-
ground of this work including MPI Matching and MPI thread multiple. Section 3
presents our analysis of thread decompositions of different stencil patterns that
we explore in this paper. Section 4 presents our empirical study of multithreaded
non-determinism on search depth, list length, and queue drain time. Section 5
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presents the state-of-the-art related work to this study. Finally, Sect. 6 presents
the conclusions and implications of this work.

2 Background

In this section we present relevant background on MPI message matching and
multithreaded MPI.

2.1 Message Matching

Message matching is MPI’s receiver-side data-placement mechanic, used primar-
ily to support point-to-point communication. To send a message (e.g., MPI Send
or MPI Isend), an MPI process specifies a buffer containing data to be sent, a
destination ID (‘rank’), and a placement identifier (‘tag’). The receiving MPI
process posts a corresponding receive (e.g., MPI Recv or MPI Irecv) specifying
a buffer where data will be placed, the rank of the sender, and the tag of the
expected message. The communication is completed when the receiver matches
the sending rank and tag of an incoming message to that of a posted receive,
and the payload delivered to the specified buffer.

The MPI specification imposes several constraints on receiver-side message
matching. First, messages must be matched in the order their receives are posted.
Second, the matching mechanism must allow wildcards for both rank and tag.
To handle these requirements, traditional implementations use two linked lists:
a list of outstanding receive requests in a posted receive queue (PRQ), and a
list of unmatched messages in the unexpected message queue (UMQ). When
an MPI process posts a receive, its UMQ is traversed to determine whether a
message with the desired sending rank and tag has already arrived, and if not,
the receive is appended to the PRQ. When a message arrives at that process, the
PRQ is traversed to determine whether a receive with the required rank and tag
has already been posted, and if not, the information is appended to the UMQ.
MPI ordering and wildcard semantics are guaranteed by initiating searches from
queue heads and appending to their tails.

For the purposes of this paper, we use a traditional model for message match-
ing, based on the model used by MPICH [19] and its derivatives. Some other
implementations have opted for different models. For example, Open MPI [20]
utilizes an array of lists, indexed by sending rank, which can reduce average
search depth at the cost of increased memory. The benchmark and results pre-
sented in this paper can provide a better understanding on how these optimized
models will impact next-generation applications.

2.2 Multithreaded MPI

The MPI standard introduces four threading modes which can be chosen dur-
ing initialization [15]. Three of these require the user to prevent simultaneous
requests while the fourth provides thread-safety. This paper is concerned with
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MPI’s thread-safe mode, MPI THREAD MULTIPLE, which requires the under-
lying implementation be able to handle simultaneous requests from different
threads.

While the prevalence of hybrid-parallel applications has risen, few have lever-
aged MPI THREAD MULTIPLE. This has been due to the community’s per-
ception of the performance implications of this mode [7]. These performance
implications are not inherent in the MPI standard, but are often a result of the
complexity of implementing that standard. Recently, there have been efforts to
improve this performance through mechanisms such as fine grained locks [1,2],
one sided communication [10], and software offloading [23]. These efforts have
primarily looked at improving the mechanics of multithreaded MPI; there has
been little work on the impact of multithreaded MPI access patterns on MPI
processing such as message matching.

3 Analysis of Stencil Decomposition

In this section, we provide an analysis for several possible stencil communication
patterns using thread-level decompositions. The analysis assumes, first, that
the thread decomposition is uniform, and second, each thread is responsible
for its own outgoing and incoming data. This has implications for number of
messages received, but maintains memory management schemes used by current
applications at the process level (Table 1).

Table 1. Notation

Ld Length of decomposition along dimension d

Tr Number of receiving threads

Ts Number of sending threads

Me Number of messages across a 1d edge

Ms Number of messages across a 2d surface

Mt Total number of messages exchanged in BSP communication phase

Given these assumptions, the simplest pattern is a naive case, where each
thread communicates with all of its neighbors. For example, if the problem
domain allocated to an MPI process is decomposed into Lx × Ly threads, and
the stencil is 9 point, then each thread posts 8 receives, and the MPI match-
ing engine must handle 8LxLy total messages during each BSP communication
phase, distributed across LxLy threads.

A more nuanced approach assumes threads need only communicate along a
process’ domain boundaries; intra-process communication is handled outside of
the MPI message matching engine. This maps well to real-world applications,
where shared memory is typically used for intra-process communication. Even if
intra-process MPI calls are used, they often bypass internal data structures and
processing.
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In this scenario, the number of sending and receiving threads differ because
of corners and edges of the decomposed domain, as well as the type of stencil.
Here we provide analyses for the case of 2d, 9pt and 3d, 27pt stencil communi-
cation. The analyses of 5pt and 7pt stencils are omitted for space. Note these
analyses make the additional assumption that the length of each dimension is
≥2 subdomains.

3.1 9 Point Stencil

Me = 3Le (1)
Mt = 6Lx + 6Ly − 4 (2)
Tr = 2Lx + 2Ly − 4 (3)
Ts = 2Lx + 2Ly + 4 (4)

A 9-point stencil is a communication pattern for a 2 dimensional split of
the problem space based on a 2d, radius-1 Moore neighborhood. The pattern
requires communication to each neighbor process, including the corners. Equa-
tion 1 shows the number of messages sent across a single edge of the domain.
Under our assumptions, the number of messages crossing an edge is three times
the number of subdomains along that edge. Equation 2 extends the previous
equation, by summing the number messages across all four edges and removing
overlap. Equation 3 counts the communicating internal threads by calculating
the sum of all the subdomains touching an edge of the process’s domain and
subtracting the overlap. This formula is subject to the Ld ≥ 2 limitation as
the overlap at Ld = 1. Finally, Eq. 4 counts the external threads by calculating
the sum of all the subdomains that touch an edge of the process’s domain and
accounting for the four corners that weren’t previously counted.

3.2 27 Point Stencil

Ms = 9LmLn (5)

Mt = 2(
∑

m<n|m,n∈{x,y,z}
9LmLn) − 4(

∑

m∈x,y,z

3Lm) + 8 (6)

Tr = 2(
∑

m<n|m,n∈{x,y,z}
LmLn) − 4(

∑

m∈x,y,z

Lm) + 8 (7)

Ts = 2(
∑

m<n|m,n∈{x,y,z}
LmLn) + 4(

∑

m∈x,y,z

Lm) + 8 (8)

A 27-point stencil is a communication pattern for a 3 dimensional split of
the the problem space, based on a 3d, radius-1 Moore neighborhood. The pat-
tern requires communication to each neighbor process across edges and corners.
Equation 5 shows the number of messages sent across a single surface of the
domain. Under our assumptions, the number of messages crossing a surface is
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the number of subdomains on that surface times 9. Equation 6 extends the pre-
vious equation, by summing the number messages across all six surfaces and
removing overlap. Note in these equations, the notation m < n|m,n ∈ {x, y, z}
can be thought of as nested loops generating the products xy, xz, and yz; an
alternative notation is N ∈ {x, y, z}(2), where N is a metavariable ranging over
the set formed by the ‘n choose k’ operator. Messages going diagonally from an
edge are counted twice and are thus removed. Corner communication is counted
three times but removed three times by accounting for the diagonal edge, and so
are re-included. Equation 7 counts the internal threads by calculating the sum
of all the subdomains touching an edge of the process’ domain, subtracting the
overlapped edges, and re-including corners. This formula is subject to the Ld ≥ 2
limitation. Finally, Eq. 8 counts the external threads by calculating the sum of
all the subdomains that touch an surface of the process’s domain and accounting
for the twelve edges and eight corners that weren’t previously counted.

4 Experimental Results

4.1 Methods

To investigate the effects of multithreading on MPI matching, we (i) instru-
mented MPI to report average PRQ search depths and time spent searching,
and (ii) designed a benchmark to utilize MPI point-to-point communication
in thread-multiple mode, while varying the thread count and total messages
exchanged. For the former, an Open MPI development branch1 was modified to
use a matching engine mimicking that of MPICH. Open source MPICH does not
provide support for our high-speed network, but is the basis for the vendor opti-
mized MPI library on our system, therefore we used an open-source instrumented
Open MPI with a MPICH style match list to best represent a fully-optimized
vendor MPI. Since all messages originate from the same sending process, the list
length under Open MPI’s native matching engine is the same, although lengths
for Open MPI matching can be roughly estimated from the results given below,
by dividing by the anticipated number of sending MPI processes.

The benchmark emulates the behavior of an MPI process participating in
bulk synchronous parallel (BSP) application with multi-threaded communica-
tion. Two nodes are allocated, each hosting a single MPI process. One is des-
ignated the receiving process, while the other serves as a proxy for the send-
ing processes in the communication pattern. In an openMP region utilizing Tr

threads, the receiving process pre-posts Mt receives; each message is given a
unique tag. The order in which receives are posted is thus determined by thread
scheduling and lock contention. Both processes barrier to ensure that all receives
are pre-posted. The sending process then issues Mt sends, distributed across Ts

threads, also in a free-for-all ordering incurred by a multithreaded region. To
ensure fairness, tags are strided across sending and receiving threads. This pro-
vides a tag-ordering to the messages as mi will have higher priority than mj

given i < j.
1 Open MPI git hash f56847542eace89512aa482b186012d43fed7d4d.
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As recent work has shown that some applications have queue lengths in excess
of 1000 messages [11], the naive results include the case where each thread posts
512 receives, in addition to 9 and 27 point stencils. For the two- and three-
dimensional decompositions, two stencils are considered for each: 5 and 9 point
for 2d, and 7 and 27 point for 3d.

Experiments were run on a Cray XC40 using KNL nodes with 68 cores and
four hardware threads per core, for a total of 272 possible threads. This system
uses the Aries Interconnect. In all experiments, the receiving process is never
oversubscribed. Since we only model threads at the boundaries of the decompo-
sition, in some cases we are able to present data that goes beyond the expected
number of total receiving threads for the system. We allow for oversubscription
of sending threads. For the data points where this occurs the oversubscription
is noted in the figure captions. To avoid overhead incurred by thread start up
costs, no data is collected during initial trials. Runs are distributed across dif-
ferent nodes as determined by the resource manager (SLURM), and all values
given are averaged across ten runs.

(a) Average Search Depth (b) Average Queue Drain Time

Fig. 1. Naive decomposition. Oversubscription does not occur. Grey region highlights
drain times ≥1 ms.

4.2 Results

Figure 1(a) shows the average search depths observed for the naive decomposition
using 9 and 27 point stencils (8 and 26 messages per thread, respectively), and
512 messages per thread. Average search depths increase rapidly as the number
of threads grow. For instance, at 64 threads the average search depth for 512
messages-per-thread is over 3000 list elements, and the 27 point stencil exceeds
1000 at 256 threads.

Unsurprisingly, these inflated search depths translate into onerous search
times (Fig. 1(b)). In this and subsequent graphs, the grey region highlights the
range where drain times extend beyond 1 ms, which is problematic for many
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(a) Average Search Depth (b) Average Queue Drain Time

Fig. 2. 2D square domain decomposition. Oversubscription does not occur. Queue
drain times for both stencils in the 1 × 1 condition are under one µsec, so are not
shown.

codes (see discussion in Sect. 4.3). For instance, at 64 threads, the 27 point case
requires, on average, more than four milliseconds to drain the queue, and at 256
threads requires 147147 ms.

More reasonable decompositions reduce search depths and times, but these
remain surprisingly large (Fig. 2(a) and (b)). For instance, a 32-by-32 decompo-
sition using a 5 point stencil has 124 receiving threads and 128 total messages,
yielding an average search depth of 35.512 items and an average queue drain
time of 91.78µs; the 9 point stencil increases these to 85.18 items searched and
486.54µs to drain the queue.

(a) Average Search Depth (b) Average Queue Drain Time

Fig. 3. 3D domain decomposition. Sending threads for 7pt never oversubscribe; those
for 27pt oversubscribe at 8 × 8 × 4 (Ts = 344). Grey region highlights drain times
≥1 ms.
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Figure 3(a) and (b) show search depths and times for a 3d cube decomposition
using 7 and 27 point stencils. For an 8 × 8 × 4 decomposition where Tr = 184,
a 7 point stencil results in Mt = 256 giving an average search depth of 65.85
items and an average queue drain time of 479.15µs, while the 27 point stencil
(Mt = 2072) results in 410.02 items and drain time of 14.86 ms. A less-ambitious
decomposition to 4 × 4 × 4 yields 56 communicating boundary threads. With a
7 point stencil (Mt = 96), we observe an average search depth of 25.1 items
and drain time of 41.02µs. Under the same conditions, the 27 point stencil
(Mt = 728) has an average depth of 135.86 items and a time of 1044.17µs.

Finally, Fig. 4(a) and (b) show results for another common 3d decomposi-
tion strategy, where the problem is decomposed only along the z axis. Because
this decomposition has no internal cells, every thread communicates across the
boundaries to neighboring MPI processes, putting additional stress on match-
ing. For example, a 1× 1× 256 decomposition (Tr = 256) using a 7 point stencil
(Mt = 576) has an average search depth of 114.81 and a drain time of 3.29 ms,
while the 27 point counterpart has a depth of 967.27 and time of 163.05 ms.

(a) Average Search Depth (b) Average Queue Drain Time

Fig. 4. Linear 3D domain decomposition; x and y dimensions are both 1, while z varies.
7pt sending threads oversubscribe at z = 128 (ts = 514), 27pt at z = 32 (Ts = 274).
Grey region highlights drain times ≥1 ms.

4.3 Discussion

Single-threaded MPI codes often leverage deterministic communication patterns
to optimize search so that search depths can be kept shallow (typically less than
ten elements), even when matching lists grow long (a few thousand elements,
total) [11]. Furthermore, contemporary hybrid MPI+X codes typically do not
take advantage of thread multiple mode due to inefficiencies in current implemen-
tations. However, not only are these implementation issues being addressed for
the exascale time frame (2020s), recent surveys show send/recv will remain the
dominant programming model for exascale applications, and developers antici-
pate taking advantage of multi-threaded MPI communication [7]).
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The results reported here suggest the matching overhead introduced by multi-
threaded point-to-point MPI communication may be unacceptable for the future
performance of some scientific codes. For example, molecular dynamics codes
commonly use halo exchanges of the sorts investigated here. It is important to
note that these halo-exchanges represent the highest scalability and lowest com-
plexity of the communication patterns observed in scientific computing. From
discussions with the developers of leading MD codes and comparative bench-
marks [14,16], we observe the number of timesteps performed per second – where
each step includes a halo exchange – ranges from tens to thousands (where each
timestep simulates 1 femtosecond of time). This creates a total time budget per
timestep of 100 ms to less than 1 ms. In the preceding timing graphs, this budget
is highlighted in grey. This is the region where message matching overhead alone
can exceed the iteration’s time budget. Our results confirm this budget can be
met for low thread-counts across all common communication patterns. However,
as thread counts grow, and non-determinism increases, these same communica-
tion patterns can introduce more overhead than the entire current budget for
completing a timestep at a competitive application speed. MPI matching over-
heads can take up to 30x to 300x the target iteration time for highly-scalable
stencil communication patterns.

5 Related Work

Understanding MPI message matching has been a topic of interest that has been
explored for single threaded MPI in the past. Initial work by Underwood and
Brightwell [21] explored the performance impact of long lists. Further studies by
Barrett et al. [3] showed the impact of match list length on a variety of system
architectures.

A significant body of contemporary work exploring how to enhance the per-
formance of MPI Message Matching exists, with some approaches looking to
alter the matching list themselves to hash tables [12] or modifying the funda-
mental match list structures [24]. Other approaches have used a hybrid hash
table approach, to accelerate common cases while providing long list perfor-
mance [6]. Work using unique hardware features [17] and GPUs [13] has also
been performed. Alternative solutions accelerate matching by not providing sup-
port for some MPI features [8]. MPI message matching hardware has also been
explored [22] and specified/developed [4,9]. While hardware mitigates the long
list matching performance concerns, it is limited in how many elements can be
supported in the hardware match unit (typically 1K–4K). Despite this, recent
work has shown that modern applications don’t need these solutions: by leverag-
ing programmer knowledge and sequential execution determinism, search depths
can be kept low, even for long lists [11]. However, as noted above, many appli-
cation developers expect to leverage communication libraries in ways that don’t
provide the same levels of ordering determinism that exist today [7]. To the best
of the authors’ knowledge there is no publicly available empirical data showing
the effect of the lack of determinism on processes such as MPI message match-
ing. While some new approaches with hybrid fine-grained over-decomposition of
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computation has been done that would create large amounts of non-determinism
in some cases [5,18], this work did not introduce the effect, as it serialized the
threaded access to MPI in order to avoid the issues we explore in this paper
(with the penalty of not having concurrent network accesses). The goal of this
paper is to explore the effects of multithreaded non-determinism on message
matching to enable new techniques as well as support traditional multi-threaded
MPI access.

6 Conclusions

As we move towards exascale, we expect developers to both retain common sten-
cil communication patterns under a send/receive model, and to take advantage
of improvements in fully multithreaded MPI runtimes [7]. However, the potential
impact of the nondeterminism introduced by multithreading on MPI’s mechanic
for receiver-side data placement – message matching – is not well-understood.

In this paper, we addressed this gap by characterizing the number of threads
engaged in inter-process communication, and the number of messages exchanged,
when common stencil patterns are converted to multithreaded messaging. On
this basis, we conducted an empirical study of the consequences of multithreading
for average message matching search depths and queue drain times, assuming
a BSP model. Results indicate that under some decompositions and stencils,
search depths and times may become unacceptable given current performance
expectations.
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