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Abstract. One potential problem when writing parallel programs with
OpenMP is to introduce determinacy races where for a given input,
the program may unexpectedly produce different final outputs at dif-
ferent runs. Such startling behavior can result from incorrect ordering
of OpenMP tasks. We present a method to detect determinacy races
in OpenMP tasks at runtime. Based on OpenMP program semantics,
our proposed solution models an OpenMP program as a collection of
tasks with inferred dependencies among them where a task is implic-
itly created with a parallel region construct or explicitly created with
a task construct. We define happens-before relation among tasks based
on such dependencies for determining an execution order when detect-
ing determinacy races. Based on this formalization, we developed a tool,
TaskSanitizer, which detects and reports concurrent memory accesses
whose tasks do not have common dependencies. Finally, TaskSanitizer
works at runtime, has been able to find bugs in micro-benchmarks and
it is reasonably efficient to be utilized in a working environment.

1 Introduction

OpenMP 3.0 introduced shared memory task execution model [1] in which pro-
grammers specify computations in units called tasks, which can be executed by
concurrent threads. In OpenMP 4.0 [2], a programmer can specify execution
order between tasks through in and out data dependencies, where a succeeding
task waits for the completion of the preceding task’s execution. Even though
programmers have more flexibility to express various types of parallelism with
the new tasking attributes, these new features can introduce subtle bugs if the
operational semantics and scheduling policy of the OpenMP runtime are not rea-
soned about. One of such concurrency bugs is a determinacy race which occurs
when concurrently executing entities access the same memory location without
specified ordering between them and at least one access is a write to that mem-
ory location [8,16,21,22]. As a result, a program with determinacy races may
produce different final output results at different runs on the same input [18].
Determinacy races are possible if the programmer does not specify necessary
dependency between concurrent tasks which access the same memory locations.
Since there is no specific order defined by the programmer, the scheduler is free
to execute the tasks in any order or concurrently.
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The existing state-of-the-art runtime race detection tools for OpenMP such
as Archer [3] – and general race detectors [11] – check for proper locking in
programs which protects shared memory objects but can fail to detect determi-
nacy races which stem from improper ordering of executions. Protecting memory
accesses with critical sections or other explicit locking is not sufficient to avoid
determinacy races. Rather, proper ordering of the executing entities is essential
to avoid undesirable nondeterminism in OpenMP programs for correctness.

We present an algorithm to detect determinacy races in OpenMP programs
by utilizing the concept of OpenMP tasks and their dependencies. Unlike the
state-of-the-art race detection tools [3] that rely on happens-before model at
thread level, we apply happens-before model at task level, which provides the
advantage of reducing randomness due to scheduling. We implement our algo-
rithm as an open source tool based on compile-time instrumentation through
LLVM [15] compiler pass to instrument shared memory accesses in the pro-
gram. The tool uses the OpenMP Performance Tools API (OMPT) [7] to moni-
tor OpenMP-related events such as task creation, scheduling, and execution. In
summary, the main contributions of this paper are:

– A formal definition of the determinacy races and a technique for detecting
such races in OpenMP tasks. To our knowledge, no prior work has been done
for detecting determinacy races in OpenMP tasks with mixed structures of
critical and non-critical sections.

– Determinacy race detection tool for OpenMP called TaskSanitizer [20].
– Evaluation of our method using micro-benchmark applications and compari-

son of results against a race detection tool for OpenMP programs.

2 Background in OpenMP Tasks

Explicit tasks in OpenMP can be created with the construct omp task, which
is readily available since OpenMP 3.0 [1]. For each task, OpenMP creates a
work block which includes a sequence of program statements and the data envi-
ronment. This block is set aside to be executed by a thread until the runtime
schedules it. Starting with OpenMP 4.0 [2], it is possible to specify execution
order among explicit tasks using the depend clause, where a programmer spec-
ifies input and output data dependencies between tasks. A collection of tasks
through dependencies forms an implicit task dependency graph in which a task
is not runnable until all its dependencies are satisfied. The runnable tasks can
then be scheduled by the OpenMP runtime. If two or more tasks are simulta-
neously runnable at a given point in time, they can execute in any order or
concurrently.

Every part of an OpenMP program executes in a task assigned to one or more
threads. For example, implicit tasks can be generated at parallel regions with the
OpenMP parallel construct and each implicit task is executed to completion by
one thread in the thread group of the parallel region [1]. Figure 1 shows a simple
OpenMP program, where a default implicit task is created as part of the main
program. This task then creates two implicit tasks through the parallel region
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at line 3. One of these tasks executes the single region at line 4, which creates
two explicit tasks t and u at lines 6 and 10, respectively. Both of these tasks
have critical sections, in which they set different values to a shared variable i.
This example has a determinacy race which is explained in detail in Sect. 3.

Fig. 1. OpenMP example illustrates explicit and implicit tasks and their logical flow
dependency between tasks. The code example has a determinacy race.

3 Determinacy Race Detection

In this section, we first define determinacy races and present motivation on
detecting them with the help of an OpenMP example. Then, we formally define
a task with its operations and we devise happens-before (HB) relations between
these operations for capturing partial ordering among them. Finally we use the
defined HB relations to present our algorithm for detecting determinacy races.

3.1 Definition and Motivating Example

Determinacy race occurs between two tasks if the following two conditions are
satisfied: (i) there is no ordering between these tasks enforced by task depen-
dency, and (ii) both tasks access a common shared memory location and at least
one access is a write. If simultaneously runnable tasks modify the same memory
locations, different scheduling (i.e; order of execution) of these tasks may result
in nondeterministic final values on these memory locations.

Many runtime race detection algorithms [9,23,24] do not take the notion of
dependency into account. They monitor proper synchronization of threads on
memory accesses to detect races. In this work, we monitor the proper ordering
of tasks and critical sections to ensure that different possible ordering of critical
sections in these tasks always generate a single, deterministic final program state.
This helps the programmer to notice if nondeterminisim was not intentional.
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We have provided a simple OpenMP program in Fig. 1, where there is no
specified dependency between tasks t and u. As a result, their critical sections
can execute in any order and thus the final result for i can either be 1 or 2
despite the fact that accesses to the shared variable are protected by a common
lock. Unless the developer intends the program to behave as such, only one
deterministic result is expected. The same issue arises if one of the tasks reads
the value of i in a critical region and the other task writes to i. It is worth noting
that in a typical program these two tasks might have been created in separate
function calls, thus the critical sections may be well far apart from each other
and can be easily overlooked.

3.2 Formalizing Task Operations

In order to establish HB relations and set up rules between tasks for detecting
determinacy races, we first define relevant task operations:

– create(t,u): task t creates task u.
– wait(t,u): task t awaits termination of task u at taskwait or at a barrier.
– read(t,mem): task t reads value from shared memory location mem.
– write(t,mem,v): task t writes value v to shared memory location mem.
– out(t,u,x): signifies dependency from task t to task u through storage

location x. Task t is the predecessor and u is the dependent task.
– in(u,t,x): signifies dependency from task t to task u through storage loca-

tion x. Task u becomes runnable once t completes its execution.

Having defined task operations, we elaborate on shared memory accesses and
associate them to segments of a task, rather than the task itself. We define a task
as an enclosed sequence of unique tasksegments and synchronization operations
executed together, as shown in Fig. 2. A tasksegment is a sequence of consecu-
tive shared memory accesses between two synchronization operations in a task.
Therefore, a synchronization operation in a task ends the current tasksegment
and a new tasksegment starts at the next shared memory access operation in the
task after the synchronization operation. We define synchronization operations
as operations which trigger execution among tasks and are create, wait, out,
and in. For example, Fig. 3 shows three tasks (a parent and two child tasks) but
contains four tasksegments. In other words, in our formal task operations we dif-
ferentiate the code bodies (e.g. tasksegment s1 and tasksegment s4 ) that result
from imperfectly nested tasks. Since this is necessary to establish HB relations,
we revise the shared memory access operations as follows:

– read(t,s,mem) shared memory access that appears in tasksegment s where
task t reads a value from shared memory location mem.

– write(t,s,mem,v) shared memory access that appears in tasksegment s

where task t writes value v to shared memory location mem.
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Fig. 2. Defining a task as a sequence of tasksegments (taskseg) and synchronizations

3.3 Happens-Before Relations Between Task Operations

For partial ordering of operations in an OpenMP program, we use happens-before
(HB) ordering of events [14] by employing dependency among synchronization
operations. Happens-before relation is a transitive-closure relation. For given
three operations a, b, and c if there is an HB relation from a to b and from b
to c, then there is an HB relation from a to c. We will infer this relation while
categorizing HB relations between tasks operations. We use symbol ≺ to refer
to an HB relation in general and use <π to refer to an inferred HB relation due
to transitive-closure property.

a ≺ b ∧ b ≺ c → a <π c

We identify four types of HB edges among operations between tasks. These
are (i) an HB relation among memory operations performed within a taskseg-
ment; (ii) between a task and its child task through create; (iii) relation between
out and in dependency operations; and (iv) relation at wait operation. We then
use these HB relations to infer HB relations among tasksegments in tasks.

1. HB by program order: This is the basic type of HB relation where pro-
gram operations within a tasksegment are ordered according to their execution
sequence. Similarly, tasksegments within a task are ordered by program order.

2. HB relation by task dependency: If tasks t and u have a commonly
specified data dependency such that u has an input dependency from t, then
all tasksegments – as well as their enclosing memory operations – in t happen-
before all tasksegments in u.

out(t, u, x) ≺ in(u, t, x)
∀taskseg(t,a)∀taskseg(u,b)taskseg(t,a) <π taskseg(u,b)

3. HB relation between a task and its child task: tasksegments of a task
which execute before creating a child task happens-before the tasksegments exe-
cuted in the created child task. For two tasks t and u :

create(t, u)

∀taskseg(t,a)taskseg(t,a) <π create(t, u) → ∀taskseg(u,b)taskseg(t,a) <π taskseg(u,b)

4. HB relation at taskwait and barrier synchronizations: The last oper-
ation of a child task happens before the taskwait or implicit barrier synchro-
nization operation of the parent task. Therefore, all tasksegments of such task
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have HB relation with subsequent tasksegments of the parent task after the wait
operation is completed.

wait(t, u)

∀taskseg(t,a)wait(t, u) <π taskseg(t,a) → ∀taskseg(u,b)taskseg(u,b) <π taskseg(t,a)

Fig. 3. Example with four categories of HB relation among operations of tasks

We use example Fig. 3 to illustrate the four categories of HB relations. The
memory operations at lines 11 and 12 belong to the same tasksegment s3 and
thus are ordered by program order. Moreover, there is an HB relation between
memory operations at lines 4 and 7 because their corresponding tasksegments
have an HB relation through task creation synchronization operation as task t

executing the single region creates an explicit task u at line 5. Moreover, all oper-
ations in tasksegment s2 happen-before all operations in tasksegment s3 because
of specified dependency between tasks u and v. Finally, memory operations in
tasksegments s3 and s4 happen before the print statement in tasksegment s4
because of the wait synchronization operation at line 14. Without taskwait, we
would not be able to establish an HB relation between s4 with s2 or s3.

3.4 Determinacy Race Detection Algorithm

Algorithm 1 provides pseudo-code for determinacy race detection between any
two memory operations (α and β) in an OpenMP program. Between lines 4
and 9, it retrieves information of the operations: their task identifiers (IDs),
tasksegment IDs as well as the memory addresses they accessed. Then at line
10, the algorithm checks if the operations access the same memory location
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and belong to two different tasks and tasksegments. At line 11, it checks if the
corresponding tasksegments do not have an HB relation as inferred using the
four HB types from Sect. 3.3. If there is no HB, then it reports a determinacy
race bug if one operation is a write and the other a read at lines 12 and 13. In
the case that they both are write actions, it reports a determinacy race if they
are not commutative (lines 14–16).

Algorithm 1. Detecting determinacy race between two shared memory opera-
tions
1: procedure checkDeterminacyRace(α, β)
2: Input: α � a shared memory operation
3: Input: β � another shared memory operation
4: t ← getTaskID(α)
5: u ← getTaskID(β)
6: seg1 ← getTasksegmentID(α)
7: seg2 ← getTasksegmentID(β)
8: mem1 ← getMemoryAddress(α)
9: mem2 ← getMemoryAddress(β)

10: if mem1 = mem2 and t �= u and seg1 �= seg2 then � on different tasks
11: if not HappensBefore(seg1, seg2) then � check if no HB
12: if isWrite(α) �= isWrite(β) then � one write, one read
13: reportBug(α, β)
14: else if isWrite(α) and isWrite(β) then � both write
15: if not isCommutative(α, β) then � check commutativity
16: reportBug(α, β)
17: end if
18: end if
19: end if
20: end if
21: end procedure

Detecting Commutative Operations: Shared memory accesses can result in
falsely detected determinacy races if these accesses involve in commutative arith-
metic operations between same-lock critical sections. Two concurrent arithmetic
operations on a shared memory location are commutative if their order of execu-
tion does not alter the final value produced. For example, if var += temp1 and
var -= temp2 are in two different same-lock critical sections, then re-ordering
them does not affect the final value of var. Thus in line 16 of Algorithm1, we
use the formalization of commutativity operation detection proposed in [18] to
identify such memory actions and do not report determinacy races on them.

4 Implementation

As shown in Fig. 4, we implement our method as a tool that has three main
parts (i) instrumentation; (ii) inferring happens-before relation between program
operations; and (iii) determinacy race detection at runtime.
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Fig. 4. Showing implementations of TaskSanitizer: architecture and tool flow

1. Instrumentation: We instrument an OpenMP program source code at
compile-time through LLVM/Clang infrastructure [15]. The instrumentation
injects our determinacy race detection runtime callbacks, which implement
Algorithm 1, in step 2©. We customize the shared memory instrumentation
module of ThreadSanitizer [24] to identify shared memory operations and
associated source code line numbers and functions for traceability in case
of determinacy races. Moreover, we identify and store program statements
which are in critical sections. These are later used by our algorithm to detect
commutative operations on potential determinacy races where our tool does
not report them if the ordering of those critical sections does not alter the
final output.

2. Constructing HB relations: To capture HB ordering between tasks and
operations, we implemented a module that uses the OMPT interface [7] in
step 3© of Fig. 4 to register callbacks which capture synchronization opera-
tions. First, we locate the implicit tasks as well as explicit tasks defined using
the tasking clause for specifying the ordering of program events. Second,
task dependencies through depend clause as well as custom synchronization
idioms such as locks and barriers are located to reason about the happens-
before ordering. Finally, we use these operations to infer HB relations between
task operations. Moreover, we assign a unique identification to each task and
tasksegment at creation, during program execution. This has three advantages
(a) Unique ID differentiates different instances of the same task code block or
tasksegment executed at different times. (b) A task may run to completion by
a single thread or its parts may be scheduled to different threads. Similarly
two concurrent tasks may be executed by the same thread. Our approach is
transparent from threads, hence regardless which thread(s) execute a task, a
unique ID preserves its dependencies with other tasks and avoids false deter-
minacy race alarms. (c) Each tasksegment has the same set of HB meta-data,
as opposed to each memory operation, thus unique ID of the tasksegment is
used to retrieve HB metadata for each of its memory operations.

3. Runtime determinacy race detection: As shown in Fig. 4, we link the
library we implemented at step 3© to produce the instrumented executable
binary, which executes at step 4©. At step 5© relevant program events are
captured at runtime and detection is performed and a bug report is generated
in step 6©. The tool reports a pair of line numbers where a common shared
memory location was accessed by concurrent tasks. This pair is helpful for
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the developer to revisit the source code and eliminate determinacy races. This
module also implements the technique proposed in [18] to check if operations
with determinacy races are commutative as they execute in critical sections
of the same lock given that their execution order does not affect final output
of the program to reduce false positives.

5 Results

We evaluate our tool on nine micro-benchmarks on three categories: (a) the
number and nature of determinacy races reported as well as no determinacy races
reported in correct programs, (b) detection comparison with Archer [3], (c) the
runtime overhead with respect to input size. We first provide a brief summary of
the applications before discussing evaluation results. The first five applications
are custom implementations with races, accessible through TaskSanitizer1.

– RacyBackgroundExample: implements the example in Fig. 1. There are
two tasks each containing a critical section associated with the same lock.
One task sets 1 to shared variable i while the other sets 2 without enforced
dependency thus exhibiting a determinacy race as these operations do not
commute even though they are in critical sections.

– RacyBanking: We mimic the motivating banking example in [18]. An initial
task sets the account balance to 1000. Then three concurrent tasks access
the account balance without specified dependency among them, thus causing
three determinacy races and the updates on the account do not commute.

– RacyFibonacci: This program computes Fibonacci of a given number n
using memoization technique of caching intermediate results in a shared
integer array. A task for n creates two concurrent child tasks to compute
Fibonacci of n-1 and n-2, respectively, and each stores its result in the mem-
oization array. The task then sums the results from the array after a syn-
chronization barrier with the child tasks. There are determinacy races in
this example on five program locations between two concurrent sibling tasks
as they access the memoization array without inferred dependency between
them.

– RacyMapReduce: constructs histogram of words from a text file. It splits
the input text into four chunks. Then each chunk is processed by map tasks.
The partial results are merged into a final histogram by reduce tasks which are
concurrent to each other, exhibiting four determinacy races while inserting
new words into the final histogram and updating word counts.

– RacyPointerChasing: traverses a singly-linked list and creates an explicit
task for each node to insert a number to the node for the purpose of forming
an arithmetic sequence in the linked-list. In this program, two random nodes
in the list mistakenly contain common memory address for storing their terms
which breaks the arithmetic sequence. As a result, their corresponding tasks
concurrently write values to the memory, causing a determinacy race.

1 https://github.com/hassansalehe/TaskSanitizer/tree/master/src/benchmarks.

https://github.com/hassansalehe/TaskSanitizer/tree/master/src/benchmarks


40 H. S. Matar and D. Unat

– sectionslock1-orig-no: As part of the DataRaceBench micro-benchmark
suite [17], this program creates two parallel sections, which have critical sec-
tions in which one section increases a shared variable by 1 and other section
increases it by 2. There are no determinacy races because these operations in
critical sections commute and our tool does not report a bug.

– taskdep1-orig-no: As part of DataRaceBench, the program creates two
explicit tasks with the first task setting 1 to a shared variable and the suc-
ceeding sibling task setting 2. These tasks have specified dependency between
them and thus no determinacy races.

– taskdep3-orig-no: As part of DataRaceBench, this program creates two
explicit tasks. The first task has dependency with each of the other sibling
tasks which are concurrent to each other. Since the concurrent tasks only read
from a shared variable, there is no determinacy race.

– taskdependmissing-orig-yes: As part of DataRaceBench, this program
creates two concurrent explicit tasks which have no dependency in between.
They modify a shared variable and thus constitute a determinacy race.

Table 1. Comparing detection results of TaskSanitizer against Archer

Application Input
size

Number
of tasks

Known
races

TaskSanitizer Archer

Races found Races found

RacyBackgroundExample - 6 1 1 0

RacyBanking - 11 3 3 2

RacyFibonacci 5 137 8 8 11

RacyMapReduce - 17 4 4 1

RacyPointerChasing 14 34 1 1 0

sectionslock1-orig-no - 2 0 0 0

taskdep1-orig-no - 6 0 0 0

taskdep3-orig-no - 8 0 0 0

taskdependmissing-orig-yes - 6 1 1 0 or 1

5.1 Precision Evaluation of TaskSanitizer

Table 1 lists the reported bugs by our tool, TaskSanitizer and number of determi-
nacy races known in advance for micro-benchmarks. In RacyBackgroundEx-
ample two concurrent tasks execute two critical sections which each sets differ-
ent value to a shared memory location. This exhibits a determinacy race since the
tasks do not have HB relation and their memory operations do not commute in
critical sections. Our tool does not check for commutativity in remaining buggy
programs as their operations happen outside critical sections. Even though tasks
with critical sections in sectionslock1-orig-no do have dependency, there is no
determinacy race reported because increment operation in these sections com-
mute. Finally, our tool does not report false positives in the remaining programs.
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5.2 Comparing Detection with Archer

We compare our determinacy race detection results with data race detection
results of Archer [3], which is an efficient tool based on ThreadSanitizer for
detecting data races. Data race detection in Archer differs from determinacy race
detection in our approach on two essences: (i) It relies on thread-level concur-
rency and thus it fails to detect races in concurrent tasks scheduled to execute by
the same thread. (ii) It aims at detecting violations of locking critical sections
which have shared memory accesses whereas our method focuses on different
ordering of events leading to determinacy races.

As shown on Table 1, Archer failed to detect races in RacyBackgroundEx-
ample and RacyPointerChasing despite multiple runs. Archer fails to detect
the race in RacyBackgroundExample because memory operations are pro-
tected by a common lock. However, our tool detects determinacy races because
the locks do not enforce deterministic ordering and thus the program can produce
different results at different runs.

Archer does not detect a race in taskdependmissing-orig-yes and other
buggy programs when concurrent tasks in the program are scheduled to exe-
cute with one thread. Therefore, Archer detects the race only if two tasks are
executed by different threads whereas our tool detects the determinacy race in
the program at all runs. This is because Archer depends on program threads
to infer concurrency whereas our approach abstracts away threads and detects
determinacy races at task level. Moreover, the number of races it reported on
the remaining buggy programs varied from zero to the expected depending on
scheduling of concurrent tasks to different threads. However it detected two races
in RacyBanking and did not produce false alarms in correct programs.

5.3 Overhead Evaluation

Even though the focus of this work is the method for detecting determinacy
races, we also measured the slowdown of determinacy race detection in the
micro-benchmark applications which accept varying input sizes, namely Racy-
Fibonacci and RacyPointerChasing as shown in Fig. 5. By increasing input
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Fig. 5. Slowdown of determinacy race detection in programs as input size increases
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size, we calculated execution times of the application without determinacy race
detection as well as with detection. We calculated slowdown by dividing detec-
tion time by execution time without detection. The determinacy race detection
slowdown from this experimental setting ranges from 1.0 to 1.26X, but we plan
to evaluate with larger applications in our future work.

6 Related Work

Archer is an efficient tool for detecting data races in OpenMP programs between
concurrent threads [3]. Through LLVM, it uses static analysis polyhedral tech-
niques to ignore sequential code and instrument concurrent portion of the pro-
gram. Then it uses runtime analysis to detect races in those parts by employing
ThreadSanitizer [24] race detector in the background. In contrast, we detect
determinacy races where ordering between concurrent components is missing.
Archer may fail to detect such cases and it also misses concurrent tasks exe-
cuted by the same thread. By building the happen-before relations on tasks
rather than threads, we can catch these situations.

Determinacy race detection in [25] targets task-based programming models
with async, finish and future constructs. There are works on detecting deter-
minacy races in a very strict two-dimensional pipeline parallel program struc-
tures which restrict task dependency to at most two [6,27]. Other works target
determinacy races [8,16,21,22] for structured parallelism programming models
like X10 and Habanero. Most work targets data race detection [9,12,19,23,24]
which manifest as a result of improper synchronization in programs.

DFinspec [18] proposes a technique for detecting output nondeterminism for
Atomic Dataflow (ADF) [10] programs due to missing or improper ordering
among tasks. It assumes that all concurrent portions of the program execute in
atomic tasks. Unlike ADF, in OpenMP tasks are not atomic, thus the proposed
solution in DFinspec would not work on OpenMP programs. The Starsscheck
tool [5] identifies inconsistencies in pragma annotations for programs written in
Starss programs [13]. The tool verifies that the programmer correctly annotates
the application by checking the input and output dependencies of tasks. By
assuming that a task accesses shared memory through only input dependencies,
it fails to detect concurrent tasks accessing shared memory locations that are
not specified through input dependencies.

A closely related work [8] proposes an algorithm for detecting determinacy
races for Cilk programs [4] in which a spawned thread may execute concurrently
with parent or sibling threads. These threads may need proper synchronization
for shared memory accesses. We target OpenMP tasks where a task becomes
runnable when all its dependencies are satisfied. Vechev et. al [26] uses a static
sequential analysis to verify determinism for task-based parallel programs by
leveraging numerical abstractions. They locate code sections that can execute
concurrently and check for dependent memory accesses between those sections.
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7 Conclusion

We propose a method to detect determinacy races in OpenMP tasks where
unintended missing dependency between tasks can result in nondeterministic
execution. We define happens-before relation among tasks based on their depen-
dencies for determining an execution order when detecting determinacy races
and implement our algorithm as a tool on top of ThreadSanitizer. We evalu-
ated our solution with a set of small applications in terms of bug detection and
overhead. The tool successfully finds bugs in benchmarks and its efficiency is
reasonable.
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