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Abstract. Secure multi-party computation (MPC) is a central crypto-
graphic task that allows a set of mutually distrustful parties to jointly
compute some function of their private inputs where security should hold
in the presence of a malicious adversary that can corrupt any number of
parties. Despite extensive research, the precise round complexity of this
“standard-bearer” cryptographic primitive is unknown. Recently, Garg,
Mukherjee, Pandey and Polychroniadou, in EUROCRYPT 2016 demon-
strated that the round complexity of any MPC protocol relying on black-
box proofs of security in the plain model must be at least four. Following
this work, independently Ananth, Choudhuri and Jain, CRYPTO 2017
and Brakerski, Halevi, and Polychroniadou, TCC 2017 made progress
towards solving this question and constructed four-round protocols based
on non-polynomial time assumptions. More recently, Ciampi, Ostrovsky,
Siniscalchi and Visconti in TCC 2017 closed the gap for two-party proto-
cols by constructing a four-round protocol from polynomial-time assump-
tions. In another work, Ciampi, Ostrovsky, Siniscalchi and Visconti TCC
2017 showed how to design a four-round multi-party protocol for the spe-
cific case of multi-party coin-tossing.

In this work, we resolve this question by designing a four-round
actively secure multi-party (two or more parties) protocol for general
functionalities under standard polynomial-time hardness assumptions
with a black-box proof of security.
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1 Introduction

Secure multi-party computation. A central cryptographic task, secure multi-
party computation (MPC), considers a set of parties with private inputs that wish
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to jointly compute some function of their inputs while preserving privacy and
correctness to a maximal extent [Yao86,CCD87,GMW87,BGW88].

In this work, we consider MPC protocols that may involve two or more
parties for which security should hold in the presence of active adversaries that
may corrupt any number of parties (i.e. dishonest majority). More concretely,
we are interested in identifying the precise round complexity of MPC protocols
for securely computing arbitrary functions in the plain model.

In [GMPP16], Garg, et al., proved a lower bound of four rounds for MPC
protocols that relies on black-box simulation. Following this work, in inde-
pendent works, Ananth et al. [ACJ17] and Brakerski et al. [BHP17] showed
a matching upper bound by constructing four-round protocols based on the
Decisional Diffie-Hellman (DDH) and Learning With Error (LWE) assumptions,
respectively, albeit with super-polynomial hardness. More recently, Ciampi et
al. in [COSV17b] closed the gap for two-party protocols by constructing a four-
round protocol from standard polynomial-time assumptions. The same authors
in another work [COSV17a] showed how to design a four-round multi-party pro-
tocol for the specific case of multi-party coin-tossing.

The state-of-affairs leaves the following fundamental question regarding
round complexity of cryptographic primitives open:

Does there exist four-round secure multi-party computation protocols
for general functionalities based on standard polynomial-time hardness
assumptions and black-box simulation in the plain model?

We remark that tight answers have been obtained in prior works where
one or more of the requirements in the motivating question are relaxed. In
the two-party setting, the recent work of Ciampi et al. [COSV17b] showed
how to obtain a four-round protocol based on trapdoor permutations. Assum-
ing trusted setup, namely, a common reference string, two-round constructions
can be obtained [GGHR14,MW16] or three-round assuming tamper-proof hard-
ware tokens [HPV16].1 In the case of passive adversaries, (or even the slightly
stronger setting of semi-malicious2 adversaries) three round protocols based
on the Learning With Errors assumption have been constructed by Braker-
ski et al. [BHP17]. Ananth et al. gave a five-round protocol based on DDH
[ACJ17]. Under subexponential hardness assumptions, four-round constructions
were demonstrated in [BHP17,ACJ17]. Under some relaxations of superpoly-
nomial simulation, the work of Badrinarayanan et al. [BGJ+17] shows how to
obtain three-round MPC assuming subexponentially secure LWE and DDH. For
specific multi-party functionalities four-round constructions have been obtained,
e.g., coin-tossing by Ciampi et al. [COSV17b]. Finally, if we assume an honest
majority, the work of Damgard and Ishai [DI05] provided a three-round MPC
protocol. If we allow trusted setup (i.e. not the plain model) then a series of works
1 Where in this model the lower bound is two rounds.
2 A semi-malicious adversary is allowed to invoke a corrupted party with arbitrary cho-

sen input and random tape, but otherwise follows the protocol specification honestly
as a passive adversary.



490 S. Halevi et al.

[CLOS02,GGHR14,MW16,BL18,GS17] have shown how to achieve two-round
multiparty computation protocols in the common reference string model under
minimal assumptions. In the tamper proof setup model, the work of [HPV16]
show how to achieve three round secure multiparty computation assuming only
one-way functions.

1.1 Our Results

The main result we establish is a four-round multi-party computation protocol
for general functionalities in the plain model based on standard polynomial-
time hardness assumptions. Slightly more formally, we establish the following
theorem.

Theorem 1.1 (Informal). Assuming the existence of injective one-way func-
tions, ZAPs and a certain affine homomorphic encryption scheme, there exists
a four-round multi-party protocol that securely realizes arbitrary functionalities
in the presence of active adversaries corrupting any number of parties.

This theorem addresses our motivating question and resolves the round complex-
ity of multiparty computation protocols. The encryption scheme that we need
admits a homomorphic affine transformation

c = Enc(m) �→ c′ = Enc(a · m + b) for plaintext a, b,

as well as some equivocation property. Roughly, given the secret key and encryp-
tion randomness, it should be possible to “explain” the result c′ as coming from
c′ = Enc(a′ · m + b′), for any a′, b′ satisfying am + b = a′m + b′. We show
how to instantiate such an encryption scheme by relying on standard additively
homomorphic encryption schemes (or slight variants thereof). More precisely, we
instantiate such an encryption scheme using LWE, DDH, Quadratic Residuos-
ity (QR) and Decisional Composite Residuosity (DCR) hardness assumptions.
ZAPs on the other hand can be instantiated using the QR assumption or any
(doubly) enhanced trapdoor permutation such as RSA or bilinear maps. Injec-
tive one-way functions are required to instantiate the non-malleable commitment
scheme from [GRRV14] and can be instantiated using the QR. In summary, all
our primitives can be instantiated by the single QR assumptions and therefore
we have the following corollary

Corollary 1.2. Assuming QR, there exists a four-round multi-party protocol
that securely realizes arbitrary functionalities in the presence of active adver-
saries corrupting any number of parties.

1.2 Our Techniques

Starting point: the [ACJ17] protocol. We begin from the beautiful work of
Ananth et al. [ACJ17], where they used randomized encoding [AIK06] to reduce
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the task of securely computing an arbitrary functionality to securely computing
the sum of many three-bit multiplications. To implement the required three-bit
multiplications, Ananth et al. used an elegant three-round protocol, consisting
of three instances of a two-round oblivious-transfer subprotocol, as illustrated in
Fig. 1.

Fig. 1. The three-bit multiplication protocol from [ACJ17], using two-round oblivious
transfer. The OT sub-protocols are denoted by OT[Receiver(b), Sender(m0, m1)], and
u, v, w are the receivers’ outputs in the three OT protocols. The outputs of P1, P2, P3

are s1, s2, s3, respectively. The first message in OTγ can be sent in the second round,
together with the sender messages in OTα and OTβ . The sum of s1, s2, s3 results into
the output x1x2x3.

Using this three-round multiplication subprotocol, Ananth et al. constructed
a four-round protocol for the semi-honest model, then enforced correctness in
the third and fourth rounds using zero-knowledge proofs to get security against
a malicious adversary. In particular, the proof of correct behavior in the third
round required a special three-round non-malleable zero-knowledge proof, for
which they had to rely on super-polynomial hardness assumptions. (A four-round
proof to enforce correctness in the last round can be done based on standard
assumptions.) To eliminate the need for super-polynomial assumptions, our very
high level approach is to weaken the correctness guarantees needed in the third
round, so that we can use simpler proofs. Specifically we would like to be able to
use two-round (resettable) witness indistinguishable proofs (aka ZAPs [DN07]).

WI using the Naor-Yung approach. To replace zero-knowledge proofs by
ZAPs, we must be able to use the honest prover strategy (since ZAPs have
no simulator), even as we slowly remove the honest parties’ input from the
game. We achieve this using the Naor-Yung approach: We modify the three-bit
multiplication protocol by repeating each OT instance twice, with the receiver
using the same choice bit in both copies and the sender secret-sharing its input
bits between the two. (Thus we have a total of six OT instances in the modified
protocol.) Crucially, while we require that the sender proves correct behavior
relative to its inputs in both instances, we only ask the receiver to prove that it
behaves correctly in at least one of the two.

In the security proof, this change allows us to switch in two steps from the real
world where honest parties use their real inputs as the choice bit, to a simulated
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world where they are simulated using random inputs. In each step we change
the choice bit in just one of the two OT instances, and use the other bit that we
did not switch to generate the ZAP proofs on behalf of the honest parties.3

We note that intuitively, this change does not add much power to a real-world
adversary: Although an adversarial receiver can use different bits in the two
OT instances, this will only result in the receiver getting random bits from the
protocol, since the sender secret-shares its input bits between the two instances.

Extraction via rewinding. While the adversary cannot gain much by using
different bits in different OT instances, we crucially rely on the challenger in our
hybrid games to use that option. Hence we must compensate somehow for the
fact that the received bits in those OT protocols are meaningless. To that end,
the challenger (as well as the simulator in the ideal model) will use rewinding to
extract the necessary information from the adversary.

But rewinding takes rounds, so the challenger/simulator can only extract
this information at the end of the third round.4 Thus we must rearrange the
simulater so that it does not need the extracted information — in particular the
bits received in the OT protocols — until after the third round. Looking at the
protocol in Fig. 1, there is only one place where a value received in one of the
OTs is used before the end of the third round. To wit, the value u received in
the second round by P1 in OTα is used in the third round when P1 plays the
sender in OTγ .

This causes a real problem in the security proof: Consider the case where
P2 is an adversarial sender and P1 an honest receiver. In some hybrid we would
want to switch the choice bit of P1 from its real input to a random bit, and argue
that these hybrids are close by reduction to the OT receiver privacy. Inside the
reduction, we will have no access to the values received in the OT, so we cannot
ensure that it is consistent with the value that P1 uses as the sender in OTγ

(with P3 as the receiver). We would like to extract the value of u from the
adversary, but we are at a bind: we must send to the adversary the last message
of OTγ before we can extract u, but we cannot compute that message without
knowing u.

Relaxing the correctness guarantees. To overcome the difficulty from above,
we relax the correctness guarantees of the three-bit multiplication protocol,
allowing the value that P1 sends in OTγ (which we denote by u′) to differ from
the value that it received in OTα (denoted u). The honest parties will still use
u′ = u, but the protocol no longer includes a proof for that fact (so the adversary
can use u′ �= u, and so can the challenger). This modification lets us introduce
into the proof an earlier hybrid in which the challenger uses u′ �= u, even on
behalf of an honest P1. (That hybrid is justified by the sender privacy of OTγ .)

3 We do not need to apply a similar trick to the sender role in the OT subprotocols,
since the sender bits are always random.

4 To get it by then, the ZAPs are performed in parallel to the second and third rounds
of the three-bit multiplication protocol.
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Then, we can switch the choice bit of P1 in OTα from real to random, and the
reduction to the OT receiver privacy in OTα will not need to use the value u.5

Dealing with additive errors. Since the modified protocol no longer requires
proofs that u′ = u, an adversarial P1 is free to use u′ �= u, thereby introducing
an error into the three-bit multiplication protocol. Namely, instead of computing
the product x1x2x3, an adversarial P1 can cause the result of the protocol to be
(x1x2 + (u′ − u))x3. Importantly, the error term e = u′ − u cannot depend on
the input of the honest parties. (The reason is that the value u received by P1

in OTα is masked by r2 and hence independent of P2’s input x2, so any change
made by P1 must also be independent of x2.).

To deal with this adversarial error, we want to use a randomized encoding
scheme which is resilient to such additive attacks. Indeed, Genkin et al. presented
transformations that do exactly this in [GIP+14,GIP15,GIW16]. Namely, they
described a compiler that transforms an arbitrary circuit C to another circuit C′

that is resilient to additive attacks. Unfortunately, using these transformations
does not work out of the box, since they do not preserve the degree of the cir-
cuit. So even if after using randomized encoding we get a degree-three function,
making it resilient to additive attacks will blow up the degree, and we will not
be able to use the three-bit multiplication protocol as before.

What we would like, instead, is to first transform the original function f that
we want to compute into a resilient form f̂ , then apply randomized encoding
to f̂ to get a degree-three encoding g that we can use in our protocol. But this
too does not work out of the box: The adversary can introduce additive errors in
the circuit of g, but we only know that f̂ is resilient to additive attacks, not its
randomized encoding g. In a nutshell, we need distributed randomized encoding
that has offline (input independent) and online (input dependent) procedures
that satisfies the following three conditions:

– The offline encoding has degree-3 (in the randomness);
– The online procedure is decomposable (encodes each bit separately);
– The offline procedure is resilient to additive attacks on the internal wires of

the computation.

As such the encoding procedure in [AIK06] does not meet these conditions.

BMR to the rescue. To tackle this last problem, we forgo “generic” random-
ized encoding, relying instead on the specific multiparty garbling due to Beaver
et al. [BMR90] (referred to as “BMR encoding”) and show how it can be mas-
saged to satisfy the required properties.6 For this specific encoding, we carefully
align the roles in the BMR protocol to those in the three-bit multiplication pro-
tocol, and show that the errors in the three-bit multiplication instances with

5 The reduction will still need to use u in the fourth round of the simulation, but by
then we have already extracted the information that we need from the adversary.

6 We remark that our BMR encoding differs from general randomized encoding as
we allow some “local computation” on the inputs before it is fed into the offline
encoding procedure.
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a corrupted P1 can be effectively translated to an additive attack against the
underlying computation of f̂ , see Lemma 3.2. Our final protocol, therefore, pre-
compiles the original function f to f̂ using the transformations of Genkin et
al., then applies the BMR encoding to get f̂ ′ which is of degree-three and still
resilient to the additive errors by a corrupted P1. We remark here that another
advantage of relying on BMR encoding as opposed to the randomized encoding
from [AIK06] is that it can be instantiated based on any one-way function. In
contrast the randomized encoding of [AIK06] requires the assumption of PRGs
in NC1.

A Sketch of the Final Protocol. Combining all these ideas, our (almost)
final protocol proceeds as follows: Let C be a circuit that we want to evaluate
securely, we first apply to it the transformation of Genkin et al. to get resilience
against additive attacks, then apply BMR encoding to the result. This gives us
a randomized encoding for our original circuit C. We use the fact that the BMR
encoding has the form CBMR(x; (λ, ρ)) = (x ⊕ λ, g(λ, ρ)) where each output bit
of g has degree three (or less) in the (λ, ρ). Given the inputs x = (x1, . . . , xn),
the parties choose their respective pieces of the BMR randomness λi, ρi, and
engage in our modified three-bit multiplication protocol Π ′ (with a pair of OT’s
for each one in Fig. 1), to compute the outputs of g(λ, ρ). In addition to the third
round message of Π ′, each party Pi also broadcasts its masked input xi ⊕ λi.

Let witi be a witness of “correct behavior” of party Pi in Π ′ (where the wit-
ness of an OT-receiver includes the randomness for only one of the two instances
in an OT pair). In parallel with the execution of Π ′, each party Pi also engages in
three-round non-malleable commitment protocols for witi, and two-round ZAP
proofs that witi is indeed a valid witness for “correct behavior” (in parallel to
rounds 2,3). Once all the proofs are verified, the parties broadcast their final mes-
sages si in the protocol Π ′, allowing them to complete the computation of the
encoding output g(λ, ρ). They now all have the BMR encoding CBMR(x; (λ, ρ)),
so they can locally apply the corresponding BMR decoding procedure to com-
pute C(x).

Other Technical Issues Non-malleable Commitments. Recall that we
need a mechanism to extract information from the adversary before the fourth
round, while simultaneously providing proofs of correct behavior for honest par-
ties via ZAPs. In fact, we need the stronger property of non-malleability, namely
the extracted information must not change when the witness in the ZAP proofs
changes.

Ideally, we would want to use standard non-malleable commitments and
recent work of Khurana [Khu17] shows how to construct such commitments in
three rounds. However, our proof approach demands additional properties of the
underlying non-malleable commitment, but we do not know how to construct
such commitments in three rounds. Hence we relax the conditions of standard
non-malleable commitments. Specifically, we allow for the non-malleable com-
mitment scheme to admit invalid commitments. (Such weaker commitments are
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often used as the main tool in constructing full-fledged non-malleable commit-
ments, see [GRRV14,Khu17] for few examples.)

A consequence of this relaxation is the problem of “over-extraction” where an
extractor extracts the wrong message from an invalid commitment. We resolve
this in our setting by making each party provide two independent commitments
to its witness, and modify the ZAP proofs to show that at least one of these two
commitments is a valid commitment to a valid witness.

This still falls short of yeilding full-fledged non-malleable commitments, but
it ensures that the witness extracted in at least one of the two commitments is
valid. Since the witness in our case includes the input and randomness of the OT
subprotocols, the challenger in our hybrids can compare the extracted witness
against the transcript of the relevant OT instances and discard invalid witnesses.

Another obstacle is that in some intermediate hybrids, some of the informa-
tion that the challenger should commit to is only known in later rounds of the
protocol, hence we need the commitments to be input-delayed. For this we rely
on a technique of Ciampi et al. [COSV16] for making non-malleable commit-
ments into input-delayed ones. Finally, we observe that we can instantiate the
“weak simulation extractable non-malleable commitments” that we need from
the three-round non-malleable commitment scheme implicit in the work of Goyal
et al. [GRRV14].

Equivocable oblivious transfer. In some hybrids in the security proof, we
need to switch the sender bits in the OT subprotocols. For example in one step
we switch the P2 sender inputs in OTα from (−r2, x2−r2) to (−r2, x̃2−r2) where
x2 is the real input of P2 and x̃2 is a random bit. (We also have a similarly step
for P1’s input in OTγ .)

For every instance of OT, the challenger needs to commit to the OT random-
ness on behalf of the honest party and prove via ZAP that it behaved correctly
in the protocol. Since ZAPs are not simulatable, the challenger can only provide
these proofs by following the honest prover strategy, so it needs to actually have
the sender randomness for these OT protocols. Recalling that we commit twice
to the randomness, our security proof goes through some hybrids where in one
commitment we have the OT sender randomness for one set of values and in the
other we have the randomness for another set. (This is used to switch the ZAP
proof from one witness to another).

But how can there be two sets of randomness values that explain the same
OT transcript? To this end, we use an equivocable oblivious transfer protocol.
Namely, given the receiver’s randomness, it is possible to explain the OT tran-
script after the fact, in such a way that the “other sender bit” (the one that
the receiver does not get) can be opened both ways. In all these hybrids, the
OT receiver gets a random output bit. So the challenger first runs the protocol
according to the values in one hybrid, then rewinds the adversary to extract
the randomness of the receiver, where it can then explain (and hence prove) the
sender’s actions in any way that it needs, while keeping the OT transcript fixed.

We show how to instantiate the equivocable OT that we need from
(a slightly weak variant of) additive homomorphic encryption, with an additional
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equivocation property. Such encryption schemes can in turn be constructed under
standard (polynomial) hardness assumptions such as LWE, DDH, Quadratic
Residuosity (QR) and Decisional Composite Residuosity (DCR).

Premature rewinding. One subtle issue with relying on equivocable OT is
that equivocation requires knowing the randomness of the OT receiver. To get
this randomness, the challenger in our hybrids must rewind the receiver, so
we introduce in some of the hybrids another phase of rewinding, which we call
“premature rewinding.” This phase has nothing to do with the adversary’s input,
and it has no effect on the transcript used in the main thread. All it does is
extract some keys and randomness, which are needed to equivocate.

No four-round proofs. A side benefit of using BMR garbling is that the
authentication properties of BMR let us do away completely with the four-round
proofs from [ACJ17]. In our protocol, at the end of the third round the parties
hold a secret sharing of the garbled circuit, its input labels, and the translation
table to interpret the results of the garbled evaluation. Then in the last round
they just broadcast their shares and input labels, then reconstruct the circuit,
evaluate the circuit, and recover the result.

Absent a proof in the fourth round, the adversary can report arbitrary values
as its shares, even after seeing the shares of the honest parties, but we argue
that it still can not violate privacy or correctness. It was observed in prior work
[LPSY15] that faulty shares for the garbled circuit itself or the input labels can
at worst cause an honest party to abort, and such an event will be independent
of the inputs of the honest parties. Roughly speaking, this is because the so
called “active path” in the evaluation is randomized by masks from each party.
Furthermore, if an honest party does not abort and completes evaluation, then
the result is correct. This was further strengthened in [HSS17], and was shown
to hold even when the adversary is rushing. One course of action still available to
the adversary is to modify the translation tables, arbitrarily making the honest
party output the wrong answer. This can be fixed by a standard technique of
precompiling f to additionally receive a MAC key from each party and output
the MACs of the output under all keys along with the output. Each honest party
can then verify the garbled-circuit result using its private MAC key.

A modular presentation with a “defensible” adversary. In order to make
our presentation more modular, we separate the issues of extraction and non-
malleability from the overall structure of the protocol by introducing the notion
of a “defensible” adversary. Specifically, we first prove security in a simpler model
in which the adversary voluntarily provides the simulator with some extra infor-
mation. In a few more details, we consider an “explaining adversary” that at
the end of the third round outputs a “defense” (or explanation) for its actions
so far.7

This model is somewhat similar to the semi-malicious adversary model of
Asharov et al. [AJL+12] where the adversary outputs its internal randomness
7 The name “defensible adversaries” is adapted from the work of Haitner et al.

[HIK+11].
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with every message. The main difference is that here we (the protocol design-
ers) get to decide what information the adversary needs to provide and when.
We suspect that our model is also somewhat related to the notion of robust
semi-honest security defined in [ACJ17], where, if a protocol is secure against
defensible adversaries and a defense is required after the kth round of the pro-
tocol, then it is plausible that the first k rounds admits robust semi-honest
security.

Once we have a secure protocol in this weaker model, we add to it commit-
ment and proofs that would let us extract from the adversary the same infor-
mation that was provided in the “defense”. As we hinted above, this is done by
having the adversary commit to that information using (a weaker variant of)
simulation extractable commitments, and also prove that the committed values
are indeed a valid “defense” for its actions. While in this work we introduce
“defensible” adversaries merely as a convenience to make the presentation more
modular, we believe that it is a useful tool for obtaining round-efficient protocols.

1.3 Related and Concurrent Work

The earliest MPC protocol is due to Goldreich et al. [GMW87]. The round
complexity of this approach is proportional to the circuit’s multiplication depth
(namely, the largest number of multiplication gates in the circuit on any path
from input to output) and can be non-constant for most functions. In Table 1, we
list relevant prior works that design secure multiparty computation for arbitrary
number parties in the stand-alone plain model emphasizing on the works that
have improved the round complexity or cryptographic assumptions.

Table 1. Prior works that design secure computation protocols for arbitrary number
of parties in the plain model where we focus on constant round constructions.

Protocol Functionality Round Assumptions Sub-exponential

[BMR90,KOS03] General O(1) CRHF, ETDP Yes

[Pas04] General O(1) CRHF, ETDP No

[PW10] General O(1) ETDP Yes

[LP11,Goy11] General O(1) ETDP No

[LPV12] General O(1) OT No

[GMPP16] General 6 LWE Yes

5 iO Yes

[ACJ17] General 5 DDH No

4 DDH Yes

[BHP17] General 4 LWE Yes

[COSV17b] Coin Tossing 4 ETDP No

In concurrent work, simultaneously Benhamouda and Lin [BL18] and Garg
and Srinivasan [GS17] construct a five-round MPC protocol based on minimal
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assumptions. While these protocols rely on the minimal assumption of 4-round
OT protocol, they require an additional round to construct their MPC.

In another concurrent work, Badrinarayanan et al. [BGJ+18] establish the
main feasibility result presented in this work, albeit with different techniques
and slightly different assumptions. Their work compiles the semi-malicious pro-
tocol of [BL18,GS17] while we build on modified variants of BMR and the 3-bit
multiplication due to [ACJ17]. Both works rely on injective OWFs, and whereas
we also need ZAPs and affine homomorphic encryption scheme, they also need
dense cryptosystems and two-round OT.

2 Preliminaries

2.1 Affine Homomorphic PKE

We rely on public-key encryption schemes that admit an affine homomorphism
and an equivocation property. As we demonstrate via our instantiations, most
standard additively homomorphic encryption schemes satisfy these properties.
Specifically, we provide instantiations based on Learning With Errors (LWE),
Decisional Diffie-Hellman (DDH), Quadratic Residuosity (QR) and Decisional
Composite Residuosity (DCR) hardness assumptions.

Definition 2.1 (Affine homomorphic PKE). We say that a public key
encryption scheme (M = {Mκ}κ,Gen,Enc,Dec) is affine homomorphic if

– Affine transformation: There exists an algorithm AT such that for every
(PK,SK) ← Gen(1κ), m ∈ Mκ, rc ← Drand(1κ) and every a, b ∈
Mκ, DecSK(AT(PK, c, a, b)) = am + b holds with probability 1, and c =
EncPK(m; rc), where Drand(1κ) is the distribution of randomness used by Enc.

– Equivocation: There exists an algorithm Explain such that for every
(PK,SK) ← Gen(1κ), every m,a0, b0, a1, b1 ∈ Mκ such that a0m + b0 =
a1m + b1 and every rc ← Drand(1κ), it holds that the following distributions
are statistically close over κ ∈ N:

• {σ ← {0, 1}; r ← Drand(1κ); c∗ ← AT(PK, c, aσ, bσ; r) : (m, rc, c
∗, r,

aσ, bσ)}, and
• {σ ← {0, 1}; r ← Drand(1κ); c∗ ← AT(PK, c, aσ, bσ; r);

t ← Explain(SK, aσ, bσ, a1−σ, b1−σ,m, rc, r) : (m, rc, c
∗, t, a1−σ, b1−σ)},

where c = EncPK(m; rc).

In the full version [HHPV17], we demonstrate how to meet Definition 2.1
under a variety of hardness assumptions.

Definition 2.2 (Resettable reusable WI argument). We say that a two-
message delayed-input interactive argument (P, V ) for a language L is reset-
table reusable witness indistinguishable, if for every PPT verifier V ∗, every
z ∈ {0, 1}∗, P r[b = b′] ≤ 1/2+μ(κ) in the following experiment, where we denote
the first round message function by m1 = wi1(r1) and the second round message
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function by wi2(x,w,m1, r2). The challenger samples b ← {0, 1}. V ∗ (with aux-
iliary input z) specifies (m1

1, x
1, w1

1, w
1
2) where w1

1, w
1
2 are (not necessarily dis-

tinct) witnesses for x1. V ∗ then obtains second round message wi2(x1, w1
b ,m1

1, r)
generated with uniform randomness r. Next, the adversary specifies arbitrary
(m2

1, x
2, w2

1, w
2
2), and obtains second round message wi2(x2, w2

b ,m2
1, r). This con-

tinues m(κ) = poly(κ) times for a-priori unbounded m, and finally V ∗ outputs b.

ZAPs (and more generally, any two-message WI) can be modified to obtain
resettable reusable WI, by having the prover apply a PRF on the verifier’s mes-
sage and the public statement in order to generate the randomness for the proof.
This allows to argue, via a hybrid argument, that fresh randomness can be used
for each proof, and therefore perform a hybrid argument so that each proof
remains WI. In our construction, we will use resettable reusable ZAPs. In gen-
eral, any multitheorem NIZK protocol implies a resettable reusable ZAP which
inturn can be based on any (doubly) enhanced trapdoor permutation.

2.2 Additive Attacks and AMD Circuits

In what follows we borrow the terminology and definitions verbatim from
[GIP+14,GIW16]. We note that in this work we work with binary fields F2.

Definition 2.3 (AMD code[CDF+08]). An (n, k, ε)-AMD code is a pair of
circuits (Encode,Decode) where Encode : Fn → F

k is randomized and Decode :
F

k → F
n+1 is deterministic such that the following properties hold:

– Perfect completeness. For all x ∈ F
n,

Pr[Decode(Encode(x)) = (0,x)] = 1.

– Additive robustness. For any a ∈ F
k,a �= 0, and for any x ∈ F

n it holds that

Pr[Decode(Encode(x) + a) /∈ ERROR] ≤ ε.

Definition 2.4 (Additive attack). An additive attack A on a circuit C is a
fixed vector of field elements which is independent from the inputs and internal
values of C. A contains an entry for every wire of C, and has the following
effect on the evaluation of the circuit. For every wire ω connecting gates a and
b in C, the entry of A that corresponds to ω is added to the output of a, and
the computation of the gate b uses the derived value. Similarly, for every output
gate o, the entry of A that corresponds to the wire in the output of o is added to
the value of this output.

Definition 2.5 (Additively corruptible version of a circuit). Let C : FI1×
. . . × F

In → F
O1 × . . . × F

On be an n-party circuit containing W wires. We
define the additively corruptible version of C to be the n-party functionality fA :
F

I1 × . . . × F
In × F

W → F
O1 × . . . × F

On that takes an additional input from
the adversary which indicates an additive error for every wire of C. For all
(x,A), fA(x,A) outputs the result of the additively corrupted C, denoted by
CA, as specified by the additive attack A (A is the simulator’s attack on C)
when invoked on the inputs x.
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Definition 2.6 (Additively secure implementation). Let ε > 0. We say
that a randomized circuit ̂C : Fn → F

t × F
k is an ε-additively-secure implemen-

tation of a function f : Fn → F
k if the following holds.

– Completeness. For every x ∈ F
n, Pr[̂C(x) = f(x)] = 1.

– Additive attack security. For any additive attack A there exist aIn ∈ F
n, and

a distribution AOut over F
k, such that for every x ∈ F

n,

SD(CA(x), f(x + aIn) + AOut) ≤ ε

where SD denotes statistical distance between two distributions.

Theorem 2.7 ([GIW16], Theorem 2). For any boolean circuit C : {0, 1}n →
{0, 1}m, and any security parameter κ, there exists a 2−κ-additively-secure imple-
mentation ̂C of C, where |̂C| = poly(|C|, n, κ). Moreover, given any additive
attack A and input x, it is possible to identify aIn such that ̂CA(x) = f(x+aIn).

Remark 2.1. Genkin et al. [GIW16] present a transformation that achieves
tighter parameters, namely, better overhead than what is reported in the pre-
ceding theorem. We state this theorem in weaker form as it is sufficient for our
work.

Remark 2.2. Genkin et al. [GIW16] do not claim the stronger version where
the equivalent aIn is identifiable. However their transformation directly yields a
procedure to identify aIn. Namely each bit of the input to the function f needs
to be preprocessed via an AMD code before feeding it to ̂C. aIn can be computed
as Decode(xEncode + AIn) − x where xEncode is the encoded input x via the AMD
code and AIn is the additive attack A restricted to the input wires. In other
words, either the equivalent input is x or the output of ̂C will be ERROR.

Fig. 2. Additively corruptible 3-bit multiplication functionality.
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3 Warmup MPC: The Case of Defensible Adversaries

For the sake of gradual introduction of our technical ideas, we begin with a
warm-up, we present a protocol and prove security in an easier model, in which
the adversary volunteers a “defense” of its actions, consisting of some of its
inputs and randomness. Specifically, instead of asking the adversary to prove an
action, in this model we just assume that the adversary reveals all its inputs and
randomness for that action.

The goal of presenting a protocol in this easier model is to show that it is
sufficient to prove correct behavior in some but not all of the “OT subprotocols”.
Later in Sect. 4 we will rely on our non-malleability and zero-knowledge machin-
ery to achieve similar results. Namely the adversary will be required to prove
correct behavior, and we will use rewinding to extract from it the “defense” that
our final simulator will need.

3.1 Step 1: 3-Bit Multiplication with Additive Errors

The functionality that we realize in this section, FA
MULT is an additively corrupt-

ible version of the 3-bit multiplication functionality. In addition to the three bits
x1, x2, x3, FA

MULT also takes as input an additive “error bit” eIn from P1, and
eOut from the adversary, and computes the function (x1x2 + eIn)x3 + eOut. The
description of FA

MULT can be found in Fig. 2.
Our protocol relies on an equivocable affine-homomorphic-encryption scheme

(Gen,Enc,Dec,AT,Explain) (over F2) as per Definition 2.1, and an additive secret
sharing scheme (Share,Recover) for sharing 0. The details of our protocol are
as follows. We usually assume that randomness is implicit in the encryption
scheme, unless specified explicitly. See Fig. 3 for a high level description of pro-
tocol ΠDMULT.

Fig. 3. Round 1, 2 and 3 of ΠDMULT protocol. In the fourth round each party Pi adds
the zero shares to sj and broadcasts the result.
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Protocol 1 (3-bit Multiplication protocol ΠDMULT)

Input & Randomness: Parties P1, P2, P3 are given inputs (x1, eIn), x2, x3,
respectively. P1 chooses a random bit s1 and P2 chooses two random bits s2, r2
(in addition to the randomness needed for the sub-protocols below).

Round 1:

• Party P1 runs key generation twice, (pk1
a, sk1

a), (pk2
a, sk2

a) ← Gen,
encrypts C1

α[1] := Encpk1
a
(x1) and C2

α[1] := Encpk2
a
(x1), and broadcasts

((pk1
a,C1

α[1]), (pk2
a,C2

α[1])) (to be used by P2).
• P3 runs key generation four times, (pk1

β , sk1
β), (pk2

β , sk2
β),

(pk1
γ , sk1

γ), (pk2
γ , sk2

γ) ← Gen(1κ).

Next it encrypts using the first two keys, C1
β [1] := Enc

pk
1
β
(x3) and C2

β [1] :=
Enc

pk
2
β
(x3), and broadcasts

(

(pk1
β ,C1

β [1]), (pk2
β ,C2

β [1])
)

(to be used by P2),
and (pk1

γ ,pk2
γ) (to be used in round 3 by P1).

• Each party Pj samples random secret shares of 0, (z1j , z2j , z3j ) ←
Share(0, 3) and sends zi

j to party Pi over a private channel.
Round 2:

• Party P2 samples x1
α, x2

α such that x1
α + x2

α = x2 and r1α, r2α such that
r1α + r2α = r2. It use affine homomorphism to compute C1

α[2] := (x1
α �

C1
α[1]) � r1α and C2

α[2] := (x2
α � C2

α[1]) � r2α.
Party P2 also samples r1β , r2β such that r1β + r2β = r2 and s1β , s2β such
that s1β + s2β = s2, and uses affine homomorphism to compute C1

β [2] :=
(r1β � C1

β [1]) � s1β and C2
β [2] := (r2β � C2

β [1]) � s2β.
P2 broadcasts (C1

α[2],C2
α[2]) (to be used by P1) and (C1

β [2],C2
β [2]) (to be

used by P3).
• Party P3 encrypt C1

γ [1] := Encpk1
γ
(x3) and C2

γ [1] := Encpk2
γ
(x3) and broad-

cast (C1
γ [1],C2

γ [1]) (to be used by P1).
Round 3:

• Party P1 computes u := Decsk1
a
(C1

α[2]) + Decsk2
a
(C2

α[2]) and u′ = u + eIn.
Then P1 samples u1

γ , u2
γ such that u1

γ + u2
γ = u′ and s1γ , s2γ such that

s1γ + s2γ = s1. It uses affine homomorphism to compute C1
γ [2] := (u1

γ �
C1

γ [1]) � s1γ and C2
γ [2] := (u2

γ � C2
γ [1]) � s2γ .

P1 broadcasts (C1
γ [2],C2

γ [2]) (to be used by P3).
Defense: At this point, the adversary broadcasts its “defense:” It gives an
input for the protocol, namely x�. For every “OT protocol instance” where the
adversary was the sender (the one sending C�

�[2]), it gives all the inputs and
randomness that it used to generate these messages (i.e., the values and ran-
domness used in the affine-homomorphic computation). For instances where
it was the receiver, the adversary chooses one message of each pair (either
C1

�[1] or C2
�[1]) and gives the inputs and randomness for it (i.e., the plaintext,

keys, and encryption randomness). Formally, let trans be a transcript of the
protocol up to and including the 3rd round
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trans
def=

(

pk
1
a,C1

α[1],C1
α[2],pk2

a,C2
α[1],C2

α[2], pk
1
β ,C1

β [1],C1
β [2],pk2

β ,C2
β [1],C2

β [2],
pk

1
γ ,C1

γ [1],C1
γ [2],pk2

γ ,C2
γ [1],C2

γ [2]

)

transbP1

def=
(

pk
b
a,Cb

α[1], C1
γ [2],C2

γ [2]
)

trans0P2
= trans1P2

def=
(

C1
α[2],C2

α[2], C1
β [2],C2

β [2]
)

transbP3

def=
(

pk
b
β ,Cb

β [1], pk
b
γ ,Cb

γ [1]
)

we have three NP languages, one per party, with the defense for that party
being the witness:

LP1 =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

trans

∣

∣

∣

∣

∣

∣

∣

∣

∃ (x1, eIn, ρα, ska, σα, u1
γ , u2

γ , s1γ , s2γ)

s.t.

(

(pk1
a, ska = Gen(ρα) ∧ C1

α[1] = Encpk1
a
(x1;σα))

∨ (pk2
a, ska = Gen(ρα) ∧ C2

α[1] = Encpk2
a
(x1;σα))

)

∧ C1
γ [2] = u1

γ � C1
γ [1] � s1γ ∧ C2

γ [2] = u2
γ � C2

γ [1] � s2γ

⎫

⎪

⎪

⎬

⎪

⎪

⎭

(1)

LP2 =

⎧

⎨

⎩

trans

∣

∣

∣

∣

∣

∣

∃ (x1
α, x2

α, s1β , s2β , r1α, r2α, r1γ , r2γ) s.t. r1α + r2α = r1γ + r2γ
∧ C1

α[2] = x1
α � C1

α[1] � r1α ∧ C2
α[2] = x2

α � C2
α[1] � r2α

∧ C1
β [2] = r1β � C1

β [1] � s1β ∧ C2
β [2] = r2β � C2

β [1] � r2β

⎫

⎬

⎭

(2)

LP3 =

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

trans

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∃ (x3, ρβ , skβ , σβ , ργ , skγ , σγ)

s.t.

(

(pk1
β , skβ = Gen(ρβ) ∧ C1

β [1] = Enc
pk

1
β
(x3;σβ))

∨ (pk2
β , skβ = Gen(ρβ) ∧ C2

β [1] = Enc
pk

2
β
(x3;σβ))

)

∧
(

(pk1
γ , skγ = Gen(ργ) ∧ C1

γ [1] = Encpk1
γ
(x3;σγ))

∨ (pk2
γ , skγ = Gen(ργ) ∧ C2

γ [1] = Encpk2
γ
(x3;σγ))

)

⎫

⎪

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎪

⎭

(3)

Round 4:

• P3 computes v := Dec
sk

1
β
(C1

β [2]) + Dec
sk

2
β
(C2

β [2]), w := Decsk1
γ
(C1

γ [2]) +
Decsk2

γ
(C2

γ [2]), and s3 := v + w.
• Every party Pj adds the zero shares to sj, broadcasting Sj := sj+

∑3
i=1 zj

i .

– Output: All parties set the final output to Z = S1 + S2 + S3.

Lemma 3.1. Protocol ΠDMULT securely realizes the functionality FA
MULT (cf.

Fig. 2) in the presence of a “defensible adversary” that always broadcasts valid
defense at the end of the third round.

Proof. We first show that the protocol is correct with a benign adversary.
Observe that u′ = eIn + x1(x1

α + x2
α) − (r1α + r2α) = eIn + x1x2 − r2, and similarly

v = x3r2 − s2 and w = x3u
′ − s1. Therefore,

S1 + S2 + S3 = s1 + s2 + s3 = s1 + s2 + (v + w)
= s1 + s2 + (x3r2 − s2) + (x3u

′ − s1)
= x3r2 + x3(x1x2 − r2 + eIn)
= (x1x2 + eIn)x3

as required. We continue with the security proof.
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To argue security we need to describe a simulator and prove that the simu-
lated view is indistinguishable from the real one. Below fix inputs x1, eIn, x2, x3,
and a defensible PPT adversary A controlling a fixed subset of parties I ⊆ [3]
(and also an auxiliary input z).

The simulator S chooses random inputs for each honest party (denote these
values by x̂i), and then follows the honest protocol execution using these random
inputs until the end of the 3rd round. Upon receiving a valid “defense” that
includes the inputs and randomness that the adversary used to generate (some
of) the messages Ci

�[j], the simulator extracts from that defense the effective
inputs of the adversary to send to the functionality, and other values to help
with the rest of the simulation. Specifically:

– If P3 is corrupted then its defense (for one of the Ci
β [1]’s and one of the

Ci
γ [1]’s) includes a value for x3, that we denote x∗

3. (A defensible adversary is
guaranteed to use the same value in the defense for C�

β [1] and in the defense
for C

�

γ [1]’s.)
– If P2 is corrupted then the defense that it provides includes all of its inputs

and randomness (since it always plays the “OT sender”), hence the simulator
learns a value for x2 that we denote x∗

2, and also some values r2, s2. (If P2 is
honest then by r2, s2 we denote below the values that the simulator chose for
it.)

– If P1 is corrupted then its defense (for either of the Ci
α[1]’s) includes a value

for x1 that we denote x∗
1.

From the defense for both C1
γ [2],C2

γ [2] the simulator learns the uγ
i ’s and

sγ
i ’s, and it sets u′ := u1

γ + u2
γ and s1 := s1γ + s2γ .

The simulator sets u := x∗
1x

∗
2 − r2 if P2 is corrupted and u := x∗

1x̂2 − r2
if P2 is honest, and then computes the effective value e∗

In := u′ − u. (If P1 is
honest then by s1, u, u′ we denote below the values that the simulator used
for it.)

Let x∗
i and e∗

In be the values received by the functionality. (These are computed
as above if the corresponding party is corrupted, and are equal to xi, eIn if it is
honest.) The simulator gets back from the functionality the answer y = (x∗

1x
∗
2 +

e∗
In)x

∗
3.

Having values for s1, s2 as described above, the simulator computes s3 := y−
s1−s2 if P3 is honest, and if P3 is corrupted then the simulator sets v := r2x

∗
3−s2,

w := ux∗
3 − s1 and s3 := v + w. It then proceeds to compute the values Sj that

the honest parties broadcast in the last round.
Let s be the sum of the si values for all the corrupted parties, and let z be the

sum of the zero-shares that the simulator sent to the adversary (on behalf of all
the honest parties), and z′ be the sum of zero-shared that the simulator received
from the adversary. The values that the simulator broadcasts for the honest
parties in the fourth round are chosen at random, subject to them summing
up to y − (s + z − z′).

If the adversary sends its fourth round messages, an additive output error is
computed as eOut := y−∑

j S̃j where S̃j are the values that were broadcast in the
fourth round. The simulator finally sends (deliver, eOut) to the ideal functionality.
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This concludes the description of the simulator, it remains to prove
indistinguishability. Namely, we need to show that for the simulator
S above, the two distributions REALΠDMULT,A(z),I(κ, (x1, eIn), x2, x3) and
IDEALFA

MULT,S(z),I(κ, (x1, eIn), x2, x3) are indistinguishable. We argue this via
a standard hybrid argument. We provide a brief sketch below.

High-level sketch of the proof. On a high-level, in the first two intermediate
hybrids, we modify the fourth message of the honest parties to be generated
using the defense and the inputs chosen for the honest parties, rather than the
internal randomness and values obtained in the first three rounds of the protocol.
Then in the next hybrid below we modify the messages Si that are broadcast
in the last round. In the hybrid following this, we modify P3 to use fake inputs
instead of its real inputs where indistinguishability relies on the semantic security
of the underlying encryption scheme. In the next hybrid, the value u is set to
random u′ rather than the result of the computation using C2

α[1] and C2
α[2].

This is important because only then we carry out the reduction for modifying
P1’s input. Indistinguishability follows from the equivocation property of the
encryption scheme. Then we modify the input x1 and indistinguishability relies
on the semantic security. Then, we modify the input of P2 from real to fake which
again relies on the equivocation property. Finally we modify the Si’s again to
use the output from the functionality FA

MULT which is a statistical argument and
this is the ideal world. A formal proof appears in the full version [HHPV17].

Between Defensible and Real Security. In Sect. 4 below we show how to
augment the protocol above to provide security against general adversaries, not
just defensible ones, by adding proofs of correct behavior and using rewinding
for extraction.

There is, however, one difference between having a defensible adversary and
having a general adversary that proves correct behavior: Having a proof in the
protocol cannot ensure correct behavior, it only ensures that deviation from the
protocol will be detected (since the adversary cannot complete the proof). So
we still must worry about the deviation causing information to be leaked to the
adversary before it is caught.

Specifically for the protocol above, we relied in the proof on at least one in
each pair of ciphertexts being valid. Indeed for an invalid ciphertext C, it could
be the case that C ′ := (u � C) � s reveals both u and s. If that was the case,
then (for example) a corrupt P1 could send invalid ciphertexts C1,2

α [1] to P2, then
learn both x1,2

α (and hence x2) from P2’s reply.
One way of addressing this concern would be to rely on maliciously secure

encryption (as defined in [OPP14]), but this is a strong requirement, much harder
to realize than our Definition 2.1. Instead, in our BMR-based protocol we ensure
that all the inputs to the multiplication gates are just random bits, and have
parties broadcast their real inputs masked by these random bits later in the pro-
tocol. We then use ZAP proofs of correct ciphertexts before the parties broadcast
their masked real inputs. Hence, an adversary that sends two invalid ciphertexts
can indeed learn the input of (say) P2 in the multiplication protocol, but this
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is just a random bit, and P2 will abort before outputting anything related to
its real input in the big protocol. For that, we consider the following two NP
languages:

L′
P1 =

⎧

⎨

⎩

trans2

∣

∣

∣

∣

∣

∣

∃ (x1, ρα, ska, σα)

s.t.

(

(pk1
a, ska = Gen(ρα) ∧ C1

α[1] = Encpk1
a
(x1;σα))

∨ (pk2
a, ska = Gen(ρα) ∧ C2

α[1] = Encpk2
a
(x1;σα))

)

⎫

⎬

⎭

L′
P3 =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

trans2

∣

∣

∣

∣

∣

∣

∣

∣

∣

∃ (x3, ρβ , skβ , σβ , ργ , skγ)

s.t.

(

(pk1
β , skβ = Gen(ρβ) ∧ C1

β [1] = Enc
pk

1
β
(x3;σβ))

∨ (pk2
β , skβ = Gen(ρβ) ∧ C2

β [1] = Enc
pk

2
β
(x3;σβ))

)

∧ (

(pk1
γ , skγ = Gen(ργ)))

)

⎫

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎭

where trans2 is a transcript of the protocol up to and including the 2rd round.
Note that P2 does not generate any public keys and thus need not prove anything.

3.2 Step 2: Arbitrary Degree-3 Polynomials

The protocol ΠDMULT from above can be directly used to securely compute any
degree-3 polynomial for any number of parties in this “defensible” model, roughly
by just expressing the polynomial as a sum of degree-3 monomials and running
ΠDMULT to compute each one, with some added shares of zero so that only the
sum is revealed.

Namely, party Pi chooses an n-of-n additive sharing of zero zi =
(z1i , . . . , zn

j ) ← Share(0, n), and sends zj
i to party j. Then the parties run one

instance of the protocol ΠDMULT for each monomial, up to the end of the third
round. Let si,m be the value that Pi would have computed in the mth instance
of ΠDMULT (where si,m := 0 if Pi’s is not a party that participates in the protocol
for computing the mth monomial). Then Pi only broadcasts the single value

Si =
∑

m∈[M ]

si,m +
∑

j∈[n]

zi
j .

where M denotes the number of degree-3 monomials. To compute multiple
degree-3 polynomials on the same input bits, the parties just repeat the same
protocol for each output bit (of course using an independent sharing of zero for
each output bit).

In terms of security, we add the requirement that a valid “defense” for the
adversary is not only valid for each instance of ΠDMULT separately, but all these
“defenses” are consistent: If some input bit is a part of multiple monomials
(possibly in different polynomials), then we require that the same value for that
bit is used in all the corresponding instances of ΠDMULT. We denote this modified
protocol by ΠDPOLY and note that the proof of security is exactly the same as
the proof in the previous section.
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3.3 Step 3: Arbitrary Functionalities

We recall from the works of [BMR90,DI06,LPSY15] that securely realizing arbi-
trary functionalities f can be reduced to securely realizing the “BMR-encoding”
of the Boolean circuit C that computes f . Our starting point is the observation
that the BMR encoding of a Boolean circuit C can be reduced to computing
many degree-3 polynomials. However, our protocol for realizing degree-3 poly-
nomials from above lets the adversary introduce additive errors (cf. Functional-
ity FA

MULT), so we rely on a pre-processing step to make the BMR functionality
resilient to such additive attacks. We will immunize the circuit to these attacks
by relying on the following primitives and tools:

Information theoretic MAC {MACα}: This will be required to protect the
output translation tables from being manipulated by a rushing adversary.
Namely, each party contributes a MAC key and along with the output of
the function its authentication under each of the parties keys. The idea here
is that an adversary cannot simply change the output without forging the
authenticated values.

AMD codes (Definition 2.3): This will be required to protect the inputs
and outputs of the computation from an additive attack by the adversary.
Namely, each party encodes its input using an AMD code. The original com-
puted circuit is then modified so that it first decodes these encoded inputs,
then runs the original computation and finally, encodes the outcome.

Additive attack resilient circuits (i.e. AMD circuits, Sect. 2.2): This will
be required to protect the computation of the internal wire values from an
additive attack by the adversary. Recall from Sect. 3.1 that the adversary may
introduce additive errors to the computed polynomials whenever corrupting
party P1. To combat with such errors we only evaluate circuits that are
resilient to additive attacks.

Family of pairwise independent hash functions: We will need this to
mask the key values of the BMR encoding. The parties broadcast all keys in
a masked format, namely, h, h(T )⊕ k for a random string T , key k and hash
function h. Then, when decrypting a garbled row, only T is revealed. T and
h can be combined with the broadcast message to reveal k.

Next we explain how to embed these tools in the BMR garbling computa-
tion. Let f(x̂1, . . . , x̂n) be an n-party function that the parties want to compute
securely. At the onset of the protocol, the parties locally apply the following
transformation to the function f and their inputs:

1. Define

f1
(

(x̂1, α1), . . . , (x̂n, αn)
)

=
(

f(x),MACα1(f(x)), . . . ,MACαn
(f(x))

)

where x = (x̂1, . . . , x̂n) are the parties’ inputs.
The MAC verification is meant to detect adversarial modifications to out-

put wires (since our basic model allows arbitrary manipulation to the output
wires).
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2. Let (Encode,Decode) be the encoding and decoding functions for an AMD
code, and define

Encode′(x̂1, . . . , x̂n) = (Encode(x̂1), . . . ,Encode(x̂n))

and
Decode′(y1, . . . , yn) = (Decode(y1), . . . ,Decode(yn)).

Then define a modified function

f2(x) = Encode′(f1(Decode′(x))).

Let C be a Boolean circuit that computes f2.
3. Next we apply the transformations of Genkin et al. [GIP+14,GIW16] to cir-

cuit C to obtain ̂C that is resilient to additive attacks on its internal wire
values.

4. We denote by BMR.Encode
̂C((x1, R1), ..., (xn, Rn)) our modified BMR ran-

domized encoding of circuit ̂C with inputs xi and randomness Ri, as described
below. We denote by BMR.Decode the corresponding decoding function for
the randomized encoding, where, for all i, we have

BMR.Decode(BMR.Encode
̂C((x1, R1), ..., (xn, Rn)), Ri) = ̂C(x1, . . . , xn).

In the protocol for computing f , each honest party Pi with input x̂i begins
by locally encoding its input via an AMD code, xi := Encode(x̂i; $) (where $
is some fresh randomness). Pi then engages in a protocol for evaluating the
circuit ̂C (as defined below), with local input xi and a randomly chosen MAC
key αi. Upon receiving an output yi from the protocol (which is supposed to be
AMD encoded, as per the definition of f2 above), Pi decodes and parses it to
get y′

i := Decode(yi) = (z, t1, . . . , tn). Finally Pi checks whether ti = MACαi
(z),

outputting z if the verification succeeds, and ⊥ otherwise.

A modified BMR encoding. We describe the modified BMR encoding for a
general circuit D with n inputs x1, . . . , xn. Without loss of generality, we assume
D is a Boolean circuit comprising only of fan-in two NAND gates. Let W be
the total number of wires and G the total number of gates in the circuit D. Let
F = {Fk : {0, 1}κ → {0, 1}4κ}k∈{0,1}∗,κ∈N be a family of PRFs.

The encoding procedure takes the inputs x1, . . . , xn and additional random
inputs R1, . . . , Rn. Each Rj comprises of PRF keys, key masks and hash functions
from pairwise independent family for every wire. More precisely, Rj (j ∈ [n]) can
be expressed as {λj

w, kj
w,0, k

j
w,1, T

j
w,0, T

j
w,1, h

j
w,0, h

j
w,1}w∈[W ] where λj

w are bits,
kj

w,b are κ bit PRF keys, T j
w,b are 4κ bits key masks, and hj

w,b are hash functions
from a pairwise independent family from 4κ to κ bits.

The encoding procedure BMR.Encode
̂C on input ((x1, R1), ..., (xn, Rn)) out-

puts
⎧
⎪⎪⎨

⎪⎪⎩

(Rg,j
00 , Rg,j

01 , Rg,j
10 , Rg,j

11 )g∈[G],j∈[n],r1,r2∈{0,1} // Garbled Tables

(hj
w,b, Γ

j
w,b)w∈[W ],j∈[n],b∈{0,1}, // masked key values

(Λw, k1
w,Λw

, . . . , kn
w,Λw

)w∈Inp, // keys and masks for input wires

(λw)w∈Out // Output translation table

⎫
⎪⎪⎬

⎪⎪⎭
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where

Rg,j
r1,r2

=
(

n
⊕

i=1

Fki
a,r1

(g, j, r1, r2)
)

⊕
(

n
⊕

i=1

Fki
b,r2

(g, j, r1, r2)
)

⊕ Sg,j
r1,r2

Sg,j
r1,r2

= T j
c,0 ⊕ χr1,r2 · (T j

c,1 ⊕ T j
c,0)

χr1,r2 = NAND
(

λa ⊕ r1, λb ⊕ r2
) ⊕ λc = [(λa ⊕ r1) · (λb ⊕ r2) ⊕ 1] ⊕ λc

Γ j
w,b = hj

w,b(T
j
w,b) ⊕ kj

w,b

λw =
{

λjw
w if w ∈ Inp // input wire

λ1
w ⊕ · · · ⊕ λn

w if w ∈ [W ]/Inp // internal wire

Λw = λw ⊕ xw for all w ∈ Inp // masked input bit

and wires a, b and c ∈ [W ] denote the input and output wires respectively for
gate g ∈ [G]. Inp ⊆ [W ] denotes the set of input wires to the circuit, jw ∈ [n]
denotes the party whose input flows the wire w and xw the corresponding input.
Out ⊆ [W ] denotes the set of output wires.

We remark that the main difference with standard BMR encoding is that
when decrypting a garbled row, a value T �

�,� is revealed and the key is obtained
by unmasking the corresponding h�

�,�, h
�
�,�(T

�
�,�) ⊕ k�

�,� value that is part of the
encoding. This additional level of indirection of receiving the mask T and then
unmasking the key is required to tackle errors to individual bits of the plaintext
encrypted in each garbled row.

The decoding procedure basically corresponds to the evaluation of the garbled
circuit. More formally, the decoding procedure BMR.Decode is defined iteratively
gate by gate according to some standard (arbitrary) topological ordering of the
gates. In particular, given an encoding information kj

w,Λw
for every input wire

w and j ∈ [n], of some input x, then for each gate g with input wires a and b
and output wire c compute

T j
c = Rg,j

r1,r2
⊕

n
⊕

i=1

(

Fki
a,Λa

(g, j, Λa, Λb) ⊕ Fki
b,Λb

(g, j, Λa, Λb)
)

Let Λc denote the bit for which T j
c = T j

c,Λc
and define kj

c = Γ j
c,Λc

⊕ hj
c,Λc

(T j
c ).

Finally given Λw for every output wire w, compute the output carried in wire w

as Λw ⊕
(

⊕n
j=1 λj

w

)

.

Securely computing BMR.Encode using ΠDPOLY. We decompose the compu-
tation of BMR.Encode into an offline and online phase. The offline part of the
computation will only involve computing the “plaintexts” in each garbled row,
i.e. S�,�

�,� values and visible mask Λw values for input wires. More precisely, the
parties compute

{(Sg,j
00 , Sg,j

01 , Sg,j
10 , Sg,j

11 )g∈[G],j∈[n],r1,r2∈{0,1}, (Λw)w∈Inp}.

Observe that the S�,�
�,� values are all degree-3 computations over the randomness

R1, . . . , Rn and therefore can be computed using ΠDPOLY. Since the Λw values



510 S. Halevi et al.

for the input wires depend only on the inputs and internal randomness of party
Pjw

, the Λw value can be broadcast by that party Pjw
. The offline phase com-

prises of executing all instances of ΠDPOLY in parallel in the first three rounds.
Additionally, the Λw values are broadcast in the third round. At the end of the
offline phase, in addition to the Λw values for the input wires, the parties obtain
XOR shares of the S�,�

�,� values.
In the online phase which is carried out in rounds 3 and 4, each party Pj

broadcasts the following values:

– ˜R�,j
�,� values that correspond to the shares of the S�,j

�,� values masked with Pj ’s
local PRF computations.

– hj
�,�, Γ

j
�,� = hj

�,�(T
j
�,�) ⊕ kj

�,� that are the masked key values.
– λj

w for each output wire w that are shares of the output translation table.

Handling errors. Recall that our ΠDPOLY protocol will allow an adversary
to introduce errors into the computation, namely, for any degree-3 monomial
x1x2x3, if the party playing the role of P1 in the multiplication sub-protocol is
corrupted, it can introduce an error eIn and the product is modified to (x1x2 +
eIn)x3. The adversary can also introduce an error eOut that is simply added to
the result of the computation, namely the S�,�

�,� values. Finally, the adversary can
reveal arbitrary values for λj

w, which in turn means the output translation table
can arbitrarily assign the keys to output values.

Our approach to tackle the “eIn” errors is to show that these errors can be
translated to additive errors on the wires of ̂C and then rely on the additive
resilience property of ̂C. Importantly, to apply this property, we need to demon-
strate the errors are independent of the actual wire value. We show this in two
logical steps. First, by carefully assigning the roles of the parties in the mul-
tiplication subprotocols, we can show that the shares obtained by the parties
combine to yield Sg,j

r1,r2
+ eg,j

r1,r2
· (T j

c,0 ⊕ T j
c,1) where eg,j

r1,r2
is a 4κ bit string (and

‘·’ is applied bitwise). In other words, by introducing an error, the adversary
causes the decoding procedure of the randomized encoding to result in a string
where each bit comes from either T j

c,b or T j
c,1−b. Since an adversary can incor-

porate different errors in each bit of S�,�
�,� , it could get partial information from

both the T values. We use a pairwise independent hash function family to mask
the actual key, and by the left-over hash lemma, we can restrict the adversary
from learning at most one key. As a result, if the majority of the bits in eg,j

r1,r2

are 1 then the “value” on the wire flips, and otherwise it is “correct”.8 The
second logical step is to rely on the fact that there is at least one mask bit λj

w

chosen by an honest party to demonstrate that the flip event on any wire will
be independent of the actual wire value.

To address the “eOut” errors, following [LPSY15,HSS17], we show that the
BMR encoding is already resilient to such adaptive attacks (where the adversary

8 Even if a particular gate computation is correctly evaluated, it does not necessar-
ily mean this is the correct wire value as the input wire values to the gate could
themselves be incorrect due to additive errors that occur earlier in the circuit.
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may add errors to the garbled circuit even after seeing the complete garbling and
then deciding on the error).

Finally, to tackle a rushing adversary that can modify the output of the
translation table arbitrarily, we rely on the MACs to ensure that the output
value revealed can be matched with the MACs revealed along with the output
under each party’s private MAC key.

Role assignment in the multiplication subprotocols. As described above,
we carefully assign roles to parties to restrict the errors introduced in the multi-
plication protocol. Observe that χr1,r2 is a degree-2 computation, which in turn
means the expressions T j

c,0⊕χr1,r2(T
j
c,1⊕T j

c,0) over all garbled rows is a collection
of polynomials of degree at most 3. In particular, for every j ∈ [n], every gate
g ∈ G with input wires a, b and an output wire c, Sg,j

r1,r2
involves the computation

of one or more of the following monomials:

– λj1
a λj2

b (T j
c,1 ⊕ T j

c,0) for j, j1, j2 ∈ [n].
– λj1

c (T j
c,1 ⊕ T j

c,0) for j, j1 ∈ [n].
– T j

c,0.

We first describe some convention regarding how each multiplication triple is
computed, namely assign parties with roles P1, P2 and P3 in ΠDMULT (Sect. 3.1),
and what products are computed. Letting Δj

c = (T j
c,1 ⊕ T j

c,0), we observe that
every product always involves Δj

c as one of its operands. Moreover, every term
can be expressed as a product of three operands, where the product λj1

c Δj
c will

be (canonically) expressed as (λj1
c )2Δj

c and singleton monomials (e.g., the bits of
the keys and PRF values) will be raised to degree 3. Then, for every polynomial
involving the variables λj1

a , λj2
b and Δj

c, party Pj will be assigned with the role of
P3 in ΠDMULT whereas the other parties Pj1 and Pj2 can be assigned arbitrarily
as P1 and P2. In particular, the roles are chosen so as to restrict the errors
introduced by a corrupted P1 in the computation to only additive errors of the
form eInδ where δ is some bit in Δj

c, where it follows from our simulation that
eIn will be independent of δ for honest Pj .

We now proceed to a formal description of our protocol.

Protocol 2 (Protocol ΠDMPC secure against defensible adversaries)

Input: Parties P1, . . . , Pn are given input x̂1, . . . , x̂n of length κ′, respectively,
and a circuit ̂C as specified above.
Local pre-processing: Each party Pi chooses a random MAC key αi and
sets xi = Encode(x̂i, αi). Let κ be the length of the resulting xi’s, and we fix
the notation [xi]j as the jth bit of xi. Next Pi chooses all the randomness that
is needed for the BMR encoding of the circuit ̂C. Namely, for each wire w,
Pi chooses the masking bit λi

w ∈ {0, 1}, random wire PRF keys ki
w,0, k

i
w,1 ∈

{0, 1}κ, random functions from a universal hash family hi
w,0, h

i
w,1 : {0, 1}4κ →

{0, 1}κ and random hash inputs T i
w,0, T

i
w,1 ∈ {0, 1}4κ.

Then, for every non-output wire w and every gate g for which w is one of
the inputs, Pi compute all the PRF values Θi,w,g

j,r1,r2
= Fki

w,r1
(g, j, r1, r2) for
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j = 1, . . . , n and r1, r2 ∈ {0, 1}. (The values λi
w, T i

w,r, and Θi,w,g
j,r1,r2

, will
play the role of Pi’s inputs to the protocol that realizes the BMR encoding
BMR.Encode

̂C.)
The parties identity the set of 3-monomials that should be computed by the
BMR encoding BMR.Encode

̂C and index them by 1, 2, . . . ,M . Each party Pi

identifies the set of monomials, denoted by Seti, that depends on any of its
inputs (λi

w, T i
w,r, or Θi,w,g

j,r1,r2
). As described above, each Pi also determines

the role, denoted by Role(t, i) ∈ {P1, P2, P3}, that it plays in the computation
of the t-th monomial (which is set to ⊥ if Pi does not participate in the
computation of the t-th monomial).
– Rounds 1,2,3: For each i ∈ [M ], parties P1, . . . , Pn execute ΠDPOLY for

the monomial pi up until the 3rd round of the protocol with random inputs
for the BMR encoding BMR.Encode

̂C. Along with the message transmitted
in the 3rd round of ΠDPOLY, party Pj broadcasts the following:

• For every input wire w ∈ W that carries some input bit [xj ]k from Pj’s
input, Pj broadcasts Λw = λw ⊕ [xj ]k.

For every j ∈ [n], let {S
,j}
∈M be the output of party Pj for the M degree-3
monomials. It reassembles the output shares to obtain Sg,j

r1,r2
for every garbled

row r1, r2 and gate g.
– Defense: At this point, the adversary broadcasts its “defense:” The

defense for this protocol is a collection of defenses for every monomial
that assembles the BMR encoding. The defense for every monomial is as
defined in protocol ΠDMULT from Sect. 3. Namely, for each party Pi there
is an NP language

L∗
Pi

=

⎧

⎪

⎨

⎪

⎩

(trans1, . . . , transM )

∣

∣

∣

∣

∣

∣

∣

transj ∈ Lp1 , Lp2 , Lp3 if Pi is assigned the role

P1, P2, P3, respectively, in the jth instance of ΠDMULT

∧ all the transj
′
s are consistent with the same value of xi

⎫

⎪

⎬

⎪

⎭

– Round 4: Finally for every gate g ∈ G and r1, r2 ∈ {0, 1}, Pj (j ∈ [n])
broadcasts the following:

• ˜Rg,i
r1,r2

= Fkj
a,r1

(g, j, r1, r2) ⊕ Fkj
b,r2

(g, i, r1, r2) ⊕ Sg,i
r1,r2

for every i ∈ [n].

• kj
w,Λw

for every input wire w.
• λj

w for every output wire w.
• (Γ j

w,0, Γ
j
w,1) = (h(T j

w,0) ⊕ kj
w,0, h(T j

w,1) ⊕ kj
w,1) for every wire w.

– Output: Upon collecting { ˜Rg,j
r1,r2

}j∈[n],g∈[G],r1,r2∈{0,1}, the parties com-
pute each garbled row by Rg,j

r1,r2
=

⊕n
j=1

˜Rg,j
r1,r2

and run the decoding pro-
cedure BMR.Decode on some standard (arbitrary) topological ordering of
the gates. Concretely, let g be a gate in this order with input wires a, b and
output wire c. If a party does not have masks Λa, Λb or keys (ka, kb) cor-
responding to the input wires when processing gate g it aborts. Otherwise,
it will compute

T j
c = Rg,j

r1,r2
⊕

n
⊕

i=1

(

Fki
a,Λa

(g, j, Λa, Λb) ⊕ Fki
b,Λb

(g, j, Λa, Λb)
)

.
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Party Pj identifies Λc such that T j
c = T j

c,Λc
. If no such Λc exists the party

aborts. Otherwise, each party defines ki
c = Γ i

c,Λc
⊕h(T j

c ). The evaluation is
completed when all the gates in the topological order are processed. Finally
given Λw for every output wire w, the parties compute for every output
wire w, Λw ⊕

(

⊕n
j=1 λj

w

)

and decode the outcome using Dec.

This concludes the description of our protocol. We next prove the following
Lemma.

Lemma 3.2 (MPC secure against defensible adversaries). Protocol
ΠDMPC securely realizes any n-input function f in the presence of a “defensi-
ble adversary” that always broadcasts valid defense at the end of the third round.

Proof. Let A be a PPT defensible adversary corrupting a subset of parties I ⊂
[n], then we prove that there exists a PPT simulator S with access to an ideal
functionality F that implements f , and simulates the adversary’s view whenever
it outputs a valid defense at the end of the third round. We use the terminology
of active keys to denote the keys of the BMR garbling that are revealed during
the evaluation. Inactive keys are the hidden keys. Denoting the set of honest
parties by I, our simulator S is defined below.

Description of the simulator.

– Simulating rounds 1–3. Recall that the parties engage in an instance of ΠDPOLY

to realize the BMR encoding BMR.Encode
̂C in the first three rounds. The sim-

ulator samples random inputs for the honest parties and generates their mes-
sages using these random inputs. For every input wire that is associated with
an honest party’s input, the simulator chooses a random Λw and sends these
bits to the adversary as part of the 3rd message. At this point, a defensible
adversary outputs a valid defense. Next the simulator executes the following
procedure to compute the fourth round messages of the honest parties.

SimGarble(defense):
1. The simulator extracts from the defense λj

w and T j
w,0, T

j
w,0⊕T j

w,1 for every
corrupted party Pj and internal wire w. Finally, it obtains the vector of
errors eg,j

r1,r2
for every gate g, r1, r2 ∈ {0, 1} and j ∈ I, introduced by the

adversary for row (r1, r2) in the garbling of gate g.9

2. The simulator defines the inputs of the corrupted parties by using the Λw

values revealed in round 3 corresponding to the wires w carrying inputs
of the corrupted parties. Namely, for each such input wire w ∈ W , the
simulator computes ρw = Λw ⊕ λw and the errors in the input wires
and fixes the adversary’s input {xI} to be the concatenation of these
bits incorporating the errors. S sends Decode(xI) to the trusted party
computing f , receiving the output ỹ. S fixes y = Encode(ỹ) (recall that
Encode in the encoding of an AMD code). Let y = (y1, . . . , ym).

9 The errors are bits and are extracted for each monomial where the corrupted party
plays the role of P1. For simplicity of notation we lump them all in a single vector.
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3. Next, the simulator defines the S�,�
�,� values, i.e the plaintexts in the gar-

bled rows. Recall that the shares of the S�,�
�,� values are computed using

the ΠDPOLY subprotocol. Then the simulator for the main protocol, uses
the S�,�

�,� values that are defined by the simulation of ΠDPOLY. Next, S
chooses a random Λw ← {0, 1} for every internal wire w ∈ W . Finally, it
samples a single key kj

w for every honest party j ∈ I and wire w ∈ W . We
recall that in the standard BMR garbling, the simulator sets the garbled
row so that for every gate g with input wires a, b and output wire c, only
the row Λa, Λb is decryptable and decrypting this row gives the single
key chosen for wire c (denoted by an active key). In our modified BMR
garbling, we will essentially ensure the same, except that we also need to
simulate the errors introduced in the computation.

More formally, the simulator considers an arbitrary topological order-
ing on the gates. Fix some gate g in this sequence with a, b as input wires
and c as the output wire. Then, for every honest party Pj and random
values T j

c,0 and T j
c,1 that were involved in the computation of the S�,�

�,�

values for this gate within the above simulation of ΠDPOLY, the simulator
defines the bits of Sg,j

Λa,Λb
to be (eg,j

Λa,Λb
· T j

c,Λc
) ⊕ (ēg,j

Λa,Λb
· T j

c,Λ̄c
) if the

majority of the bits in eg,j
Λa,Λb

is 1 and (ēg,j
Λa,Λb

· T j
c,Λc

) ⊕ (eg,j
Λa,Λb

· T j

c,Λ̄c
)

otherwise. Here ēg,j
Λa,Λb

refers to the complement of the vector eg,j
Λa,Λb

and
“·” is bitwise multiplication.

4. Next, it generates the fourth message on behalf of the honest parties.
Namely, for every gate g and an active row Λa, Λb, the shares of the honest
parties are computed assuming the output of the polynomials defined in
the BMR encoding are Sg,j

Λa,Λb
for every j masked with the PRF under

the keys kj
a, kj

b as defined by R̃g,j
Λa,Λb

. For the remaining three rows the
simulator sends random strings. On behalf of every honest party Pj , in
addition to the shares, the fourth round message is appended with a
broadcast of the message (r, h(T j

w,Λw
) ⊕ kj

w) if Λw = 1 and (h(T j
w,Λw

) ⊕
kj

w, r) if Λw = 0 where r is sampled randomly. Intuitively, upon decrypting
Sg,j

Λa,Λb
for any gate g, the adversary learns the majority of the bits of T j

c,Λc

with which it can learn only kj
c .

– The simulator sends the messages as indicated by the procedure above on
behalf of the honest parties. If the adversary provides its fourth message,
namely, ˜Rg,j

r1,r2
for j ∈ [n], g ∈ [G], r1, r2 ∈ {0, 1}, the simulator executes

the following procedure that takes as input all the messages exchanged in
the fourth round, the Λw values broadcast in the third round and the target
output y. It determines whether the final output needs to be delivered to the
honest parties in the ideal world.

ReconGarble(4th round messages, Λw for every input wire w,y):
• The procedure reconstructs the garbling GCA using the shares and the

keys provided. First, the simulator checks that the output key of every key
obtained during the evaluation is the active key kj

c,Λc
encrypted by the

simulator. In addition, the simulator checks that the outcome of GCA is y.
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If both events hold, the the procedure outputs the OK message, otherwise
it outputs ⊥.

– Finally, if the procedure outputs OK the simulator instructs the trusted
party to deliver ỹ to the honest parties.

In the full version [HHPV17], we provide a formal proof of the following
claim:

Claim 3.3 REALΠDMPC,A(z),I(κ, x̂1, . . . , x̂n)
c≈ IDEALF,S(z),I(κ, x̂1, . . . , x̂n).

4 Four-Round Actively Secure MPC Protocol

In this section we formally describe our protocol.

Protocol 3 (Actively secure protocol ΠMPC)

Input: Parties P1, . . . , Pn are given input x̂1, . . . , x̂n of length κ′, respectively,
and a circuit ̂C.

– Local pre-processing: Each party Pi chooses a random MAC key αi

and sets xi = Encode(x̂i, αi). Let κ be the length of the resulting xi’s, and
we fix the notation [xi]j as the jth bit of xi. Next Pi chooses all the ran-
domness that is needed for the BMR encoding of the circuit ̂C. Namely,
for each wire w, Pi chooses the masking bit λi

w ∈ {0, 1}, random wire
PRF keys ki

w,0, k
i
w,1 ∈ {0, 1}κ, random functions from a pairwise indepen-

dent hash family hi
w,0, h

i
w,1 : {0, 1}4κ → {0, 1}κ and random hash inputs

T i
w,0, T

i
w,1 ∈ {0, 1}4κ.

Then, for every non-output wire w and every gate g for which w is one
of the inputs, Pi computes all the PRF values Θi,w,g

j,r1,r2
= Fki

w,r1
(g, j, r1, r2)

for j = 1, . . . , n and r1, r2 ∈ {0, 1}. (The values λi
w, T i

w,r, and Θi,w,g
j,r1,r2

, will
play the role of Pi’s inputs to the protocol that realizes the BMR encoding
BMR.Encode

̂C.)
The parties identify the set of 3-monomials that should be computed by

the BMR encoding BMR.Encode
̂C and enumerate them by integers from [M ].

Moreover, each party Pi identifies the set of monomials, denoted by Seti, that
depends on any of its inputs (λi

w, T i
w,r, or Θi,w,g

j,r1,r2
). As described in Sect. 3.3,

each Pi also determines the role, denoted by Role(t, i) ∈ {P1, P2, P3}, that it
plays in the computation of the t-th monomial(which is set to ⊥ if Pi does
not participate in the computation of the t-th monomial).

– Round 1: For i ∈ [n] each party Pi proceeds as follows:
• Engages in an instance of the three-round non-malleable commitment pro-

tocol nmcom with every other party Pj, committing to arbitrarily chosen
values w0,i, w1,i. Denote the messages sent within the first round of this
protocol by nmcom0

i,j [1],nmcom1
i,j [1], respectively.

• Broadcasts the message Πi,j
DMPC[1] to every other party Pj.
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• Engages in a ZAP protocol with every party other Pj for the NP language
L′

Role(t,i) defined in Sect. 3.1, for every monomial in case Role(t, i) ∈
{P1, P3}. Note that the first message, denoted by ZAPENC

i,j [1] is sent by Pj

(so Pi sends the first message to all the Pj’s for their respective ZAPs).
– Round 2: For i ∈ [n] each party Pi proceeds as follows:

• Sends the messages nmcom0
i,j [2] and nmcom1

i,j [2] for the second round of
the respective non-malleable commitment.

• Engages in a ZAP protocol with every other party Pj for the NP language
LRole(t,i) defined in Sect. 3.1 for every monomial Mt. As above, the first
message, denoted by ZAPCOM

i,j [1] is sent by Pj (so Pi sends the first message
to all the Pj’s for their respective ZAPs).

• Sends the message Πi,j
DMPC[2] to every other party Pj.

• Sends the second message ZAPENC
i,j [2] of the ZAP proof for the language

L′
Role(t,i).

– Round 3: For i ∈ [n] each party Pi proceeds as follows:
• Sends the messages nmcom0

i,j [3], nmcom1
i,j [3] for the third round of the

respective non-malleable commitment. For b ∈ {0, 1} define the NP lan-
guage:

Lnmcom =
{
nmcom∗

i,j [1], nmcom∗
i,j [2], nmcom∗

i,j [3]|
∃ b ∈ {0, 1} and (wi, ρi) s.t. nmcomb

i,j = nmcom(wi; ρi)
}

.

• Chooses w̃0,i and w̃1,i such that ∀t ∈ [Seti], w0,i + w̃0,i = w1,i + w̃1,i =
witi where witi is the witness of transcript (trans0Role(1,i)|| . . . ||
trans0Role(|Seti|,i)||trans0nmcom) and Role(t, i) ∈ {P1, P2, P3}, where transb� is
as defined in Sect. 3.1.

• Generates the message ZAPCOM
i,j [2] for the second round of the ZAP pro-

tocol relative to the NP language

LRole(1,i) ∧ . . . ∧ LRole(|Seti|,i) ∧ Lnmcom ∧ (

wb,i + w̃b,i = witi
)

where LRole(·,i) is defined in protocol 1.
• Broadcasts the message Πi,j

DMPC[3] to every other party Pj.
For every j ∈ [n], let {S
,j}
∈M be the output of party Pj for the M degree-3
polynomials. It reassembles the output shares to obtain Sg,j

r1,r2
for every garbled

row r1, r2 and gate g.
– Round 4: Finally, broadcasts the message Πi,j

DMPC[4] to every other party Pj.
– Output: As defined in ΠDMPC.

This concludes the description of our protocol. The proof for the following
theorem can be found in [HHPV17].

Theorem 4.1 (Main). Assuming the existence of affine homomorphic encryp-
tion (cf. Definition 2.1) and enhanced trapdoor permutations, Protocol ΠMPC

securely realizes any n-input function f in the presence of static, active adver-
saries corrupting any number of parties.
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