
Fast Distributed RSA Key Generation
for Semi-honest and Malicious

Adversaries

Tore Kasper Frederiksen1, Yehuda Lindell2,3(B), Valery Osheter3,
and Benny Pinkas2

1 Security Lab, Alexandra Institute, Aarhus, Denmark
tore.frederiksen@alexandra.dk

2 Department of Computer Science, Bar-Ilan University, Ramat Gan, Israel
yehuda.lindell@biu.ac.il, benny@pinkas.net

3 Unbound Tech Ltd., Petach Tikva, Israel
valery.osheter@unboundtech.com

Abstract. We present two new, highly efficient, protocols for securely
generating a distributed RSA key pair in the two-party setting. One
protocol is semi-honestly secure and the other maliciously secure. Both
are constant round and do not rely on any specific number-theoretic
assumptions and improve significantly over the state-of-the-art by allow-
ing a slight leakage (which we show to not affect security).

For our maliciously secure protocol our most significant improvement
comes from executing most of the protocol in a “strong” semi-honest
manner and then doing a single, light, zero-knowledge argument of cor-
rect execution. We introduce other significant improvements as well. One
such improvement arrives in showing that certain, limited leakage does
not compromise security, which allows us to use lightweight subprotocols.
Another improvement, which may be of independent interest, comes in
our approach for multiplying two large integers using OT, in the mali-
cious setting, without being susceptible to a selective-failure attack.

Finally, we implement our malicious protocol and show that its perfor-
mance is an order of magnitude better than the best previous protocol,
which provided only semi-honest security.

1 Introduction

RSA [RSA78] is the oldest, publicly known, public key encryption scheme. This
scheme allows a server to generate a public/private key pair, s.t. any client

T. K. Frederiksen—The majority of the work was done while at Bar-Ilan University,
Israel.
Tore, Yehuda and Benny were supported by the BIU Center for Research in Applied
Cryptography and Cyber Security in conjunction with the Israel National Cyber
Bureau in the Prime Minsters Office. Yehuda and Benny were also been funded by
the Israel Science Foundation (grant No. 1018/16). Tore has also received funding
from the European Union’s Horizon 2020 research and innovation programme under
grant agreement No. 731583.

c© International Association for Cryptologic Research 2018
H. Shacham and A. Boldyreva (Eds.): CRYPTO 2018, LNCS 10992, pp. 331–361, 2018.
https://doi.org/10.1007/978-3-319-96881-0_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-96881-0_12&domain=pdf

332 T. K. Frederiksen et al.

knowing the public key can use this to encrypt a message, which can only be
decrypted using the private key. Thus the server can disclose the public key and
keep the private key secret. This allows anyone to encrypt a message, which
only the server itself can decrypt. Even though RSA has quite a few years on its
back, it is still in wide use today such as in TLS, where it keeps web-browsing
safe through HTTPS. Its technical backbone can also be used to realize digital
signatures and as such is used in PGP. However, public key cryptography, RSA
in particular, is also a primitive in itself, widely used in more complex cryp-
tographic constructions such as distributed signature schemes [Sho00], (homo-
morphic) threshold cryptosystems [HMRT12] and even general MPC [CDN01].
Unfortunately, these complex applications are not in the client-server setting,
but in the setting of several distrusting parties, and thus require the private
key to be secretly shared between the parties. This is known as distributed key
generation and in order to do this, without a trusted third party, is no easy feat.
Even assuming the parties act semi-honestly, and thus follow the prescribed pro-
tocol, it is a slow procedure as the fastest known implementation takes 15 min
for 2048 bit keys [HMRT12]. For the malicious setting we are unaware of pre-
vious implementation. However, in many practical settings such a key sharing
only needs to be done once for a static set of parties, where the key pair is then
used repeatedly afterwards. Thus, a setup time of 15 min is acceptable, even if
it is not desirable. Still, there are concrete settings where this is not acceptable.

Motivation. In the world of MPC there are many cases where a setup time of
more than a few seconds is unacceptable. For example consider the case of a static
server and a client, with a physical user behind it, wishing to carry out some
instant, ad-hoc computation. Or the setting where several users meet and want
to carry out an auction of a specific item. In these cases, and any case where a
specific set of participating parties will only carry out few computations, it is not
acceptable for the users to wait more than 15 min before they start computing.
In such cases only a few seconds would be acceptable.

However, if a maliciously secure shared RSA key pairs could be generated in
a few seconds, another possible application appears as well: being able to gen-
erate public key pairs in an enterprise setting, without the use of a Hardware
Security Module (HSM). A HSM is a trusted piece of hardware pervasively used
in the enterprise setting to construct and store cryptographic keys, guaranteed
to be correct and leakage free. However, these modules are slow and expensive,
and in general reflects a single point of failure. For this reason several compa-
nies, such as Unbound and Sepior have worked on realizing HSM functionality
in a distributed manner, using MPC and secret-sharing. This removes the sin-
gle point of failure, since computation and storage will be distributed between
physically separated machines, running different operating systems and having
different system administrators. Thus if one machine gets fully compromised by
an adversary, the overall security of the generated keys will not be affected. This
has been done successfully for the generation of symmetric keys, which usually
does not need a specific mathematical structure. Unfortunately, doing this for
RSA keys is not so easy. However, being able to generate a key pair with the

Fast Distributed RSA Key Generation 333

private key secretly shared will realize this functionality. But for such a dis-
tributed system to be able to work properly in an enterprise setting such gener-
ation tasks must be completed in a matter of seconds.

In this paper we take a big step towards being able to generate a shared
RSA key between two parties in a matter of seconds, even if one of the parties is
acting maliciously and not following the prescribed protocol. Thus opening up
for realizing the applications mentioned above.

The Setting. We consider two parties P1 and P2 whose goal is to generate
an RSA modulus of a certain length, such that the knowledge of the private
key is additively shared among them. Namely, the parties wish to compute the
following:

Common input: A parameter � describing the desired bits of the primes in an
RSA modulus, and a public exponent e.

Common output: A modulus N of length 2� bits.
Private outputs: P1 learns outputs p1, q1, d1, and P2 learns outputs p2, q2, d2,

for which it holds that
– (p1 + p2) and (q1 + q2) are prime numbers of length � bits.
– N = (p1 + p2) · (q1 + q2).
– e · (d1 + d2) = 1 mod φ (N).

(Namely, (d1 + d2) is the RSA private key for (N, e).)

Furthermore, we want the functionality to work (or abort) even if one of the
parties is not following the protocol. That is, in the malicious setting.

Distributed RSA Key Generation. It turns out that all prior work follows a
common structure for distributed RSA key generation. Basically, since there is
no efficient algorithm for constructing random primes, what is generally done
is simply to pick random, odd numbers, and hope they are prime. However,
the Prime Number Theorem tells us that this is not very likely. In fact, for
numbers of the size needed for RSA, the probability that a random odd number
is prime is around one in 350. Thus to generate an RSA key, many random prime
candidates must be generated and tested in some way. Pairs of prime candidates
must then be multiplied together to construct a modulus candidate. Depending
on whether the tests of the prime candidates involve ensuring that a candidate
is prime except with negligible probability, or only that it is somewhat likely to
be prime, the modulus candidate must also be tested to ensure that it is the
product of two primes. We briefly outline this general structure below:

Candidate Generation: The parties generate random additive shares of
potential prime numbers. This may involve ensuring that a candidate is prime
except with negligible probability, insuring that the candidate does not con-
tain small prime factors, or simply that it is just an odd number.

Construct Modulus: Two candidates are multiplied together to construct a
candidate modulus.

Verify Modulus: This involves ensuring that the public modulus is the prod-
uct of two primes. However, this is not needed if the prime candidates were
guaranteed to be prime (except with negligible probability).

334 T. K. Frederiksen et al.

Construct Keys: Using the additive shares of the prime candidates, along with
the modulus, the shared RSA key pair is generated.

With this overall structure in mind we consider the chronology of efficient dis-
tributed RSA key generation.

Related Work. Work on efficient distributed RSA key generation was started
with the seminal result of Boneh and Franklin [BF01]. A key part of their
result is an efficient algorithm for verifying biprimality of a modulus without
knowledge of its factors. Unfortunately, their protocol is only secure in the semi-
honest setting, against an honest majority. Several followup works handle both
the malicious and/or dishonest majority setting [PS98,FMY98,Gil99,ACS02,
DM10,HMRT12,Gav12]. First Frankel et al. [FMY98] showed how to achieve
malicious security against a dishonest minority. Their protocol proceeds like
Boneh and Franklin’s scheme [BF01], but uses different types of secret shar-
ing along with zero-knowledge arguments to construct the modulus and do the
biprimality test in a malicious secure manner. Furthermore, for their simulation
proof to go through, they also require that all candidate shares are committed
to using an equivocable commitment. Poupard and Stern [PS98] strengthened
this result to achieve security against a malicious majority (specifically the two-
party setting) using 1-out-of-β OT, with some allowed leakage though. Later
Gilboa [Gil99] showed how to get semi-honest security in the dishonest major-
ity (specifically two-party) setting. Gilboa’s approach follows along the lines of
Boneh and Franklin’s protocol [BF01], by using their approach for biprimal-
ity testing, but also introduces three new efficient approaches for computing
the modulus from additive shares: one based on homomorphic encryption, one
based on oblivious polynomial evaluation and one based on oblivious transfer.
Both Algesheimer et al. [ACS02] and Damg̊ard and Mikkelsen [DM10] instead do
a full primality test of the prime candidates individually, rather than a biprimal-
ity test of the modulus. In particular the protocol of Algesheimer et al. [ACS02]
is secure in the semi-honest setting (but can be made malicious secure) against a
dishonest minority, and executes a distributed Rabin-Miller primality test using
polynomial secret sharing with Θ(log(N)) round complexity, where N is the
public modulus. On the other hand Damg̊ard and Mikkelsen’s protocol [DM10]
is maliciously secure against a dishonest minority and also executes a distributed
Rabin-Miller test, using a special type of verifiable secret sharing called repli-
cated secret sharing which allows them to achieve constant round complexity.
Later Hazay et al. [HMRT12] introduced a practical protocol maliciously secure
against a dishonest majority (in the two-party setting), which is leakage-free.
More specifically their protocol is based on the homomorphic encryption app-
roach from Gilboa’s work [Gil99], but adds zero-knowledge proofs on top of all
the steps to ensure security against malicious parties. However, they conjectured
that it would be sufficient to only prove correctness of a constructed modulus.
This conjecture was confirmed correct by Gavin [Gav12]. In his work Gavin
showed how to build a maliciously secure protocol against a dishonest majority
(the two-party setting) by having black-box access to methods for generating
a modulus candidate which might be incorrect, but is guaranteed to not leak

Fast Distributed RSA Key Generation 335

info on the honest party’s shares. The protocol then verifies the execution for
every failed candidate and for the success modulus a variant of the Boneh and
Franklin biprimality test [BF01] is carried out in a maliciously secure manner
by using homomorphic encryption and zero-knowledge.

Contributions. We present two new protocols for distributed RSA key genera-
tion. One for the semi-honest setting and one for the malicious setting. Neither
of our protocols rely on any specific number theoretic assumptions, but instead
are based on oblivious transfer (OT), which can be realized efficiently using
an OT extension protocol [KOS15,OOS17]. The malicious secure protocol also
requires access to an IND-CPA encryption scheme, coin-tossing, zero-knowledge
and secure two-party computation protocols. In fact, using OT extension signif-
icantly reduces the amount of public key operations required by our protocols.
This is also true for the maliciously secure protocol as secure two-party compu-
tation (and thus zero-knowledge) can be done black-box based on OT.

We show that our maliciously secure protocols is more than an order of
magnitude faster than its competitor. We achieve malicious security so cheaply
mainly by executing a slightly stronger version of our semi-honest protocol
and adding a new, lightweight zero-knowledge argument at the end, to ensure
that the parties have behaved honestly. This overall idea has been hypothe-
sized [HMRT12] and affirmed [Gav12]. However, unlike previous approaches in
this paradigm [DM10,Gav12] our approach does not require rerunning and veri-
fying the honesty of candidates that are discarded, thus increasing efficiency. We
achieve this by introducing a new ideal functionality which gives the adversary
slightly more (yet useless) power than normally allowed. This idea may be of
independent interest as it is relevant for other schemes where many candidate
values are constructed and potentially discarded throughout the protocol. We
furthermore show how to eliminate much computation in the malicious setting
by allowing a few bits of leakage on the honest party’s prime shares. We carefully
argue that this does not help an adversary in a non-negligible manner.

We also introduce a new and efficient approach to avoid selective failure
attacks when using Gilboa’s protocol [Gil99] for multiplying two large integers
together. We believe this approach may be of independent interest as well.

Finally, we present an implementation of our maliciously secure protocol,
showing it to be an order of magnitude faster than the most efficient previous
semi-honest protocol [HMRT12]. In particular, a four thread implementation
takes on average less than 40 s to generate a maliciously secure 2048 bit key,
whereas the protocol of Hazay et al. [HMRT12] on average required 15 min for
a semi-honestly secure 2048 bit key.

2 Preliminaries

Our protocols use several standard building blocks, namely oblivious transfer,
and for the maliciously secure protocol, coin-tossing, an IND-CPA encryption
scheme, a zero-knowledge protocol along with secure two-party computation. We
here formalize these building blocks.

336 T. K. Frederiksen et al.

FIGURE 2.1 (F�,β
OT)

Functionality interacts with a sender snd and receiver rec. It is initialized with
the public values �, β ∈ N. It proceeds as follows:

– Upon receiving (transfer) from snd and (receive, i) from rec with
i ∈ {0, . . . , β − 1} the functionality picks uniformly random values
m0, . . . , mβ−1 ∈ {0, 1}� and sends (transfer, m0, . . . , mβ−1) to snd and
(transfer, mi) to rec.

– If a party is maliciously corrupted then it will receive its output first
and if it returns the message (deliver) then the functionality will give
the honest party its output, otherwise if the corrupted party returns the
message (abort), then output (abort) to the honest party.

Ideal functionality for random oblivious transfer

Random OT. Our protocol relies heavily on random OT both in the candidate
generation and construction of modulus phases. The functionality of random OT
is described in Fig. 2.1. Specifically we suffice with a functionality that samples
the sender’s messages at random and lets the receiver choose which one of these
random messages it wishes to learn. Random OTs of this form can be realized
highly efficiently based on an OT extension, which uses a small number of “base”
OTs to implement any polynomial number of OTs using symmetric cryptography
operations alone. The state-of-the-art 1-out-of-2 OT extension is given by Keller
et al. [KOS15] and for 1-out-of-β OT, by Orrù et al. [OOS17]. In some cases
we need the sender to be able to specifically choose its messages. However, this
is easily achieved by using the random OT-model as a black box and we will
sometimes abuse notation and assume that F�,β

OT supports specific messages,
by allowing the sender to input the message (transfer, a0, . . . , aβ−1), and the
receiver receiving message (transfer, ai).

AES. Our maliciously secure scheme also requires usage of AES. However, any
symmetric encryption scheme will do as long as it is a block-cipher (with blocks
of at least κ bits) and can be assumed to be a pseudo-random permutation
(PRP) and used in a mode that is IND-CPA secure. We will denote this scheme
by AES : {0, 1}κ × {0, 1}∗ → {0, 1}∗ and have that AES−1

K (AESK(M)) = M
when K ∈ {0, 1}κ

,M ∈ {0, 1}∗.

Coin-tossing. We require a coin-tossing functionality several places in our mali-
ciously secure protocols. Such a functionality samples a uniformly random ele-
ment from a specific set and hands it to both parties. We formally capture the
needed functionality in Fig. 2.2.

Zero-Knowledge Argument-of-Knowledge. As part of the setup phase of our mali-
cious protocol we need both parties to prove knowledge of a specific piece of infor-
mation. For this purpose we require a zero-knowledge argument-of-knowledge.
More formally, let L ⊂ {0, 1}∗ be a publicly known language in NP and ML be
a language verification function of this language i.e. for all x ∈ L there exist

Fast Distributed RSA Key Generation 337

FIGURE 2.2 (FCT)

Functionality interacts with P1 and P2. Upon receiving (toss,R) from both
parties, where R is a description of a ring, sample a uniformly random element
x ∈ R and send (random, x) to both parties.

Corruption: If a party is corrupt, then send (random, x) to this party first,
and if it returns the message (deliver) then send (random, x) to the other
party, otherwise if the corrupted party returns the message (abort) then
output (abort) to the honest party.

Ideal functionality for coin-tossing

FIGURE 2.3 (FML
ZK)

Functionality interacts with two parties P and V . It is initialized on a deter-
ministic polytime language verification function ML : {0, 1}∗ × {0, 1}∗ →
{�, ⊥}. It proceeds as follows:

– On input (prove, x, w) from P and (verify, x′) from V . If x = x′ and
ML(x, w) = � output (�) to V , otherwise output (⊥).

Ideal functionality for zero-knowledge argument-of-knowledge

a string w of length polynomial in the size of x s.t. ML(x,w) = � and for all
x �∈ L,w ∈ {0, 1}∗ then ML(x,w) = ⊥. Thus this function outputs � if and only
if w is a string that verifies that x belongs to the language L. We use this to
specify the notion of a zero-knowledge argument-of-knowledge that a publicly
known value x ∈ L. Specifically one party, P the prover, knows a witness w and
wish to convince the other party, V the verifier, that ML(x,w) = � without
revealing any information on w.

We formalize this in Fig. 2.3 and note that such a functionality can be realized
very efficiently using garbled circuits [JKO13] or using the “MPC-in-the-head”
approach [GMO16].

Two-party Computation. We use a maliciously secure two-party computation
functionality in our protocol. For completeness we here formalize the ideal func-
tionality we need for this in Fig. 2.4. Such a functionality can be implemented
efficiently in constant rounds using a garbled circuit protocol [Lin16].

Notation. We let κ be the computational security parameter and s the statistical
security parameter. We use � to denote the amount of bits in a prime factor of an
RSA modulus. Thus � ≥ κ. We use [a] to denote the list of integers 1, 2, . . . , a. We
will sometimes abuse notation and implicitly view bit strings as a non-negative
integer.

338 T. K. Frederiksen et al.

FIGURE 2.4 (Ff
2PC)

Functionality interacts with two parties P1 and P2. It is initialized on a deter-
ministic polytime function f : {0, 1}n1+n2 → {0, 1}m1+m2 . It proceeds as
follows:

Input: On input (input, xI) from PI where xI ∈ {0, 1}nI , where no message
(input, ·) was given by PI before, store xI .

Output: After having received messages (input, ·) from both P1 and P2,
compute y1‖y2 = y = f(x) where x = x1‖x2 and y1 ∈ {0, 1}m1 , y2 ∈
{0, 1}m2 . Then return (output, y1) to P1 and (output, y2) to P2.

Corruption: If party PI is corrupt, then it is given yI from the functionality
before y3−I is given to P3−I . If PI returns the message (deliver) then
send y3−I to party PI , otherwise if P3−I returns the message (abort)
then output (abort) to PI .

Ideal functionality for two-party computation

3 Construction

This section details constructions of protocols for two-party RSA key generation.
We first describe in Sect. 3.1 the general structure of our protocols. We describe
in Sect. 3.2 a protocol for the semi-honest setting which is considerably more
efficient than previous protocols for this task. Finally, we describe in Sect. 3.3
our efficient protocol which is secure against a malicious adversary.

3.1 Protocol Structure

Following previous protocols for RSA key generation, as described in Sect. 1, the
key generation protocol is composed of the following phases:

Candidate Generation: In this step, the two parties choose random shares
p1 and p2, respectively, with the hope that p1 + p2 is prime. For our mali-
ciously secure protocol they also commit to their choices. The parties then
run a secure protocol, based on 1-out-of-β OT, which rules out the possibility
that p1 + p2 is divisible by any prime number smaller than some pre-agreed
threshold B1. We call this the first trial division.
If p1 + p2 is not divisible by any such prime then it passed on to the next
stage, otherwise it is discarded.

Construct Modulus: Given shares of two candidate primes p1, p2 and q1, q2,
the parties run a secure protocol, based on 1-out-of-2 OT, which computes
the candidate modulus N = (p1 + p2)(q1 + q2). The output N is learned by
both parties.

Verify Modulus: This step consists of two phases in our semi-honest protocol
and three phases in the malicious protocol. Both protocols proceeds s.t. once
N is revealed and in the open, the parties run a second trial division, by
locally checking that no primes smaller than a threshold B2 (B1 < B2) are

Fast Distributed RSA Key Generation 339

a factor of N . If N is divisible by such a number then N is definitely not a
valid RSA modulus and is discarded. For an N not discarded, the parties run
a secure biprimality test which verifies that N is the product of two primes. If
it is not, it is discarded. For the malicious protocol, a proof of honesty phase
is added to ensure that N is constructed in accordance with the commitments
from Candidate Generation and that N is indeed a biprime, constructed using
the “correct” shares, even if one party has acted maliciously.

Construct Keys: Up to this point, the parties generated the modulus N .
Based on the value Φ(N) mod e and their prime shares p1, q1, respectively
p2, q2, the parties can locally compute their shares of the secret key d1, respec-
tively d2 s.t. e · (d1 + d2) = 1 mod φ(N).

In principle, the protocol could run without the first and second trial division
phases. Namely, the parties could choose their shares, compute N and run the
biprimality test to check whether N is the product of two primes. The goal of
the trial division tests is to reduce the overall run time of the protocol: Checking
whether p is divisible by β, filters out 1/β of the candidate prime factors, and
reduces, by a factor of 1−1/β, the number of times that the other phases of the
protocol need to run. It is easy to see that trial divisions provide diminishing
returns as β increases. The thresholds B1, B2 must therefore be set to minimize
the overall run time of the protocol.

The phases of the protocol are similar to those in previous work that was
described in Sect. 1. Our protocol has two major differences: (1) Almost all cryp-
tographic operations are replaced by the usage of OT extension, which is consid-
erably more efficient than public key operations was has been used previously.
(2) Security against malicious adversaries is achieved efficiently, by observing
that most of checks that are executed in the protocol can be run while being
secure only against semi-honest adversaries, assuming privacy is kept against
malicious attacks and as long as the final checks that are applied to the chosen
modulus N are secure against malicious adversaries.

3.2 The Semi-honest Construction

The protocol consists of the phases described in Sect. 3.1, and is described in
Figs. 3.2 and 3.3. These phases are implemented in the following way:

Candidate Generation: The parties P1 and P2 choose private random strings
p1 and p2, respectively, of length � − 1 bits, subject to the constraint that the
two least significant bits of p1 are 11, and the two least significant bits of p2 are
0 (this ensures that the sum of the two shares is equal to 3 modulo 4).

The parties now check, for each prime number 3 ≤ β ≤ B1, that (p1 + p2) �=
0 mod β. In other words, if we use the notation a1 = p1 mod β and a2 = −p2 mod
β, then the parties need to run a secure protocol verifying that a1 �= a2.

Previous approaches for doing this involved using a modified BGW pro-
tocol [BF01], Diffie-Hellman based public key operations (which have to be
implemented over relatively long moduli, rather than in elliptic-curve based
groups) [HMRT12], and using a 1-out-of-β OT [PS98]. We take our point of

340 T. K. Frederiksen et al.

FIGURE 3.1 (OT-divisibility Test)

The parties have common input β ∈ N and P1 has p1 ∈ N and P2 has p2 ∈ N.
The procedure returns ⊥ iff β|(p1 + p2), otherwise it returns �.

1. P2 inputs (transfer) to Fκ,β
OT and learns random messages {mi}i∈[β].

2. P1 computes a1 = p1 mod β and inputs (receive, a1) to Fκ,β
OT and gets

output (deliver, ma1).
3. P2 lets a2 = −p2 mod β and sends ma2 to P1.
4. P1 checks whether ma1 = ma2 and outputs ⊥ and sends it to P2 if this is

the case, otherwise it outputs � and sends this to P2.

The 1-out-of-β OT based trial division procedure

departure in the latter approach, but improve the efficiency by having a lower
level of abstraction and using an efficient random OT extension. We describe
our approach by procedure Div-OT in Fig. 3.1.

The parties run this test for each prime 3 ≤ β ≤ B1 in increasing order (where
B1 is the pre-agreed threshold). Note that the probability that the shares are
filtered by the test is 1/β and therefore the test provides diminishing returns as
β increases. The threshold B1 is chosen to optimize the overall performance of
the entire protocol.

Construct Modulus: Once two numbers pass the previous test, the parties
have shares of two candidate primes p1, p2 and q1, q2. They then run a secure
protocol which computes the candidate modulus

N = (p1 + p2) (q1 + q2) = p1q1 + p2q2 + p1q2 + p2q1.

The multiplication p1q1 (resp. p2q2) is computed by P1 (resp. P2) by itself. The
other two multiplications are computed by running a protocol by Gilboa [Gil99],
which reduces the multiplication of � − 1 bit long numbers to � − 1 invocations
of 1-out-of-2 OTs, implemented using an efficient OT extension. The protocol
works as follows: Assume that the sender’s input is a and that the receiver’s input
is b, and that they must compute shares of a · b. Let the binary representation
of b be b = b�−1, . . . , b2, b1. For each bit the two parties run a 1-out-of-2 OT
protocol where the sender’s inputs are (ri, (ri + a) mod 22�), and the receiver’s
input is bi, where ri is a random 22� bit integer. Denote the receiver’s output as
ci = ri + a · bi mod 22�. It is easy to verify that

a · b =
(∑

i∈[�−1]2
i−1 · ci

)
+

(∑
i∈[�−1] − 2i−1 · ri

)
.

These will therefore be the two outputs of the multiplication protocol. We imple-
ment this protocol based on random OT.

After constructing the modulus, the parties verify that the public exponent
e will work with this specific modulus. I.e. that gcd(φ(N), e) = 1. Namely, that
gcd(N − p − q + 1, e) = 1. This is done in the same manner as Boneh and
Franklin [BF01], where P1 computes w1 = N + 1 − p1 − q1 mod e and P2

Fast Distributed RSA Key Generation 341

computes w2 = p2 + q2 mod e. The parties exchange the values w1 and w2 and
then verify that w1 �= w2. If instead w1 = w2 it means that e is a factor of φ(N)
and the parties discard the candidate shares.

PROTOCOL 3.2 (Semi-honest Key Generation ΠRSA-semi - Part 1)

Candidate Generation
1. P1 picks a uniformly random value p̃1 ∈ Z2�−3 and defines p1 = 4 ·

p̃1 + 3.
2. P2 picks a uniformly random value p̃2 ∈ Z2�−3 and defines p2 = 4p̃2.
3. Let B = {β ≤ B1|β is prime}. The parties execute procedure Div-OT

in Fig. 3.1 for each β ∈ B, where P1 uses input p1 and P2 input p2. If
any of these calls output ⊥, then discard the candidate pair p1, p2.

Construct Modulus
Let p1, q1, p2, q2 be two candidates that passed the generation phase above,
where P1 knows p1 = 4 · p̃1+3, q1 = 4 · q̃1+3 and P2 knows p2 = 4 · p̃2, q2 =
4 · q̃2.
1. The parties execute the following steps for each α ∈ {p, q} and i ∈

[� − 1]:
(a) P2 chooses a uniformly random value rα,i ∈ Z22� and sets c0,α,i =

rα,i and

c1,α,i =

{
rα,i + q2 mod 22� if α = p

rα,i + p2 mod 22� if α = q

(b) P2 invokes F2�,2
OT with input (transfer, c0,α,i, c1,α,i).

(c) P1 inputs (receive, α1,i) to F2�,2
OT , α1,i is the i’th bit of α1. P1 thus

receives the message (deliver, cα1,i,i) from F2�,2
OT for i ∈ [� − 1].

2. P1 computes zα
1 =

∑
i∈[�−1] cα1,i,i · 2i−1 mod 22� and P2 computes

zα,i
2 = − ∑

i∈[�−1] rα,i · 2i−1 mod 22�.

3. P2 computes a2 = p2q2 + zp
2 + zq

2 mod 22� and sends this to P1.
4. P1 computes a1 = p1q1 + zp

1 + zq
1 mod 22� and sends this to P2.

5. P1 and P2 then compute (p1 + p2)(q1 + q2) = N = (a1 + a2 mod P)
mod 22�.

6. P1 computes w1 = N + 1 − p1 − q1 mod e and sends this to P2.
Similarly P2 computes w2 = p2 + q2 mod e and sends this to P1.

7. P1 and P2 checks if w1 = w2. If this is the case they discard the
candidate N and its associated shares p1, q1, p2, q2. Otherwise they
define the value w = w1 − w2 mod e for later use.

Protocol for semi-honestly secure RSA key generation in the FOT-hybrid model

Verify Modulus: As previously mentioned, for our semi-honest protocol the
verification of the modulus consists of two phases in a pipelined manner; first a
trial division phase and then a full biprimality test. Basically, the full biprimality
test is significantly slower than the trial division phase, thus, the trial division
phase weeds out unsuitable candidates much cheaper than the biprimality test.
Thus, overall we expect to execute the biprimality test much fewer times when
doing trial division first.

342 T. K. Frederiksen et al.

PROTOCOL 3.3 (Semi-honest Key Generation ΠRSA-semi - Part 2)

Trial Division
Let B = {B1 < p ≤ B2|p is prime} for some previously decided B2.
P2 then executes trial division of the integers up to B2. If a factor is
found then send ⊥ to P1 and discard N and its associated prime shares
p1, q1, p2, q2. Otherwise send � to P1.

Biprimality Test
The parties execute the biprimality test described in Fig. 3.4 and discard
the candidate N if the test fails.

Generate Shared Key
1. Both parties use the value w computed in 7 in Construct Modulus

associated with the candidate N to compute b = w−1 mod e, and
then finally P1 computes d1 = �−b·(N+1−p1−q1)+1

e
	. If e| − p2 − q2

then P2 computes d2 = 1 + �−b·(−p2−q2)
e

	, otherwise P2 computes

d2 = �−b·(−p2−q2)
e

	.
2. P1 outputs (N, p1, q1, d1) and P2 outputs (N, p2, q2, d2).

Protocol for semi-honestly secure RSA key generation in the FOT-hybrid model

FIGURE 3.4 (Biprimality test [BF01])

1. The parties execute following test s times.
(a) P1 samples a random value γ ∈ Z

×
N with Jacobi symbol 1 over N .

(b) P1 sends γ to P2.

(c) P1 computes γ1 = γ
N+1−p1−q1

4 mod N and sends this value to P2.

(d) P2 checks if γ1 ·γ −p2−q2
4 mod N
= ±1. In this case P2 sends ⊥ to P1

and the parties break the loop and discard the candidate N .
2. The parties verify that gcd(N, p + q − 1) = 1.

(a) P1 chooses a random number r̄1 ∈ Z2�+s and P2 chooses a random
r̄2 ∈ Z2�+s . (The parties will verify that gcd((r̄1+ r̄2) ·(p+q−1), N) =
1.)

(b) The parties run a multiplication protocol (similar to that run in
the “Construct Modulus” step modulo 22�+s+2) where they com-
pute shares α1, α2 (known to P1, P2 respectively) of r̄1 · (p2 + q2 − 1)
mod 22�+s+2, and shares β1, β2 of r̄2 · (p1 + q1) mod 22�+s+2.

(c) P1 sends to P2 the value s1 = r̄1(p1 + q1) + α1 + β1 mod 22�+s+2.
(d) P2 computes s2 = r̄2(p2 + q2 −1)+α2 +β2 mod 22�+s+2, and verifies

that gcd(s1 + s2, N) = 1. If this is not the case then it sends ⊥ to P1

and discard the candidate N .

The biprimality test of Boneh and Franklin [BF01]

The trial division phase itself is very simple: since both parties know the
candidate modulus N , one party simply try to divide it by all primes numbers
in the range B1 < β ≤ B2. If successful, then N is discarded.

If N passes the trial division, we must still verify that it is in fact a biprime,
except with negligible probability. To do this we use a slightly modified version

Fast Distributed RSA Key Generation 343

FIGURE 3.5 (FRSA-semi)

Functionality interacts with parties P1 and P2. Upon query of an integer � ∈ N

and a prime e from both parties the functionality proceeds as follows:

– Sample random values p1, p2, q1, q2 of � − 1 bits each s.t. p1 ≡ q1 ≡ 3
mod 4 and p2 ≡ q2 ≡ 0 mod 4, p = p1 + p2 and q = q1 + q2 are prime,
and gcd((p − 1)(q − 1), e) = 1.

– Compute d = e−1 mod (p − 1)(q − 1), let b = ((p − 1)(q − 1))−1 mod e

and set d2 = �−b·(−p2−q2)
e

	 and d1 = d − d2.
– Output (N = pq, b, p1, q1, d1) to P1 and (N = pq, b, p2, q2, d2) to P2.

Ideal functionality for generating a shared RSA key semi-honestly

of the biprimality suggested by Boneh and Franklin [BF01], which relies on
number-theoretic properties of N = pq where p = 3 mod 4 and q = 3 mod 4.
(Note that in the prime-candidate generation, p and q were guaranteed to have
this property.) The test is described in Fig. 3.4. By slightly modified, we mean
that step 2), which ensures that gcd(N, p + q − 1) = 1, is computed without the
need of doing operations in the group ZN [x]/(x2 + 1))∗/Z∗

N .

Construct Keys: This phase is a simplified version of what is done by Boneh
and Franklin [BF01]. Using the values w1 and w2 defined in construct modulus
the parties compute w = w1 − w2 mod e and then b = w−1 mod e. P1 defines
its share of the private key as d1 =
−b·(N+1−p1−q1)+1

e �. P2 defines its share of
the private key as d2 = 1 +
−b·(−p2−q2)

e � or d2 =
−b·(−p2−q2)
e � or depending on

whether e|p2 + q2 or not.
We formally describe the full semi-honest protocol in Figs. 3.2 and 3.3.

Ideal functionality. The exact ideal functionality, FRSA-semi, our semi-honest pro-
tocol realizes is expressed in Fig. 3.5. The functionality closely reflects the specific
construction of the modulus and the shares of the private key of our protocol.
In particular, we notice that both primes of the public modulus are congruent
to 3 modulo 4, which is needed for the Boneh and Franklin biprimality test to
work. Based on these shared primes, the shares of the private keys are gener-
ated and handed to the parties. This part of the functionality closely follows the
previous literature [BF01,Gil99,ACS02,DM10,Gav12]. First notice using primes
congruent to 3 modulo 4 does not decrease security. This follows since all primes
suitable for RSA are odd this means that only about half of potential primes are
not used. Thus the amount of possible moduli are reduced by around 75%. How-
ever, this is similar to all previous approaches. Furthermore, this does not give
an adversary any noticeable advantage in finding primes used in key generation.

Next notice that the value φ(N) mod e is leaked. This leakage comes implic-
itly from how the shares d1 and d2 are constructed (although it is made explicit
in the ideal functionality). We note that since we use the method of Boneh and
Franklin [BF01] for this computation, this leakage is also present in their work
and any other protocol that uses this approach to generate the shared keys.

344 T. K. Frederiksen et al.

Specifically this means that at most log(e) bits of information on the honest
party’s secret shares are leaked. Thus when e is small, this does not pose any
issue. However, using the common value of e = 216+1 this could pose a problem.
We show how to avoid leaking φ(N) mod e in our maliciously secure protocol.

Using this functionality we get the following theorem:

Theorem 3.6. The protocol ΠRSA-semi in Figs. 3.2 and 3.3 securely realizes the
ideal functionality FRSA-semi in Fig. 3.5 against a static and semi-honest adver-
sary in the F ·,·

OT-hybrid model.

We will not prove this theorem directly. The reason being that the following
section will make it apparent that all steps of the semi-honest protocol is also
part of the malicious protocol. Now remember that a simulator for a semi-honest
protocol receives the output of the corrupt party. In our protocol this will in
particular mean the prime shares. Thus our semi-honest simulator will proceed
like the malicious one for the same steps, using the corrupt party’s prime shares.

3.3 Malicious Construction

The malicious protocol follows the semi-honest one with the following exceptions:

– The underlying OT functionality must be maliciously secure.
– An extractable commitment to each party’s choice of shares is added to the
construct candidate phase. This is needed since the simulator must be able to
extract the malicious party’s choice of shares in order to construct messages
indistinguishable from the honest party, consistent with any cheating strategy
of the malicious party.

– A new and expanded version of the Gilboa protocol is used to compute a
candidate modulus. This is done since a malicious P2 (the party acting as the
sender in the OTs) might launch a selective failure attack (details below).

– We use OT to implement an equality check of w1 = N +1−p1−q1 mod e and
w2 = p2 + q2 mod e to ensure that gcd(φ(N), e) = 1 without leaking w1 and
w2, and thus avoid leaking φ(N) mod e which is leaked in the semi-honest
protocol.

– A proof of honesty step is added to the verify modulus phase, which is used
to have the parties prove to one another that they have executed the protocol
correctly.

– The private key shares are randomized and computed using a secure protocol.

For OT we simply assume access to any ideal functionalities as described in
Sect. 2. Regarding the AES-based commitments, the expanded Gilboa protocol
and the proof of honesty, we give further details below.

AES-based commitments. We implement these “commitments” as follows: Before
Candidate Generation, in a phase we will call Setup each party “commits” to
a random AES key K by sending c = AESAESr(K)(0) for a random r (chosen
by coin-tossing). This unusual “double encryption” ensure that c is not only

Fast Distributed RSA Key Generation 345

hiding K, through the encryption, but also binding to K. The key K is then
used to implement a committing functionality. This is done by using K as the
key in an AES encryption, where the value we want to commit to is the message
encrypted. However, for our proof to go through we require this “commitment”
to be extractable. Fortunately this is easily achievable if the simulator knows
K and to ensure this we do a zero-knowledge argument of knowledge of K s.t.
c = AESAESr(K)(0). By executing this zero-knowledge argument the simulator
can clearly extract K (assuming the zero-knowledge argument is an ideal func-
tionality).

Expanded Gilboa Protocol. The usage of OT in the malicious setting is infamous
for selective failure vulnerabilities [KS06,MF06] and our setting is no different.
Specifically, what a malicious P2 can do is to guess that P1’s choice bit is 0 (or 1)
in a given step of the Gilboa protocol. In this case, P2 inputs the correct message
for choice 0, i.e. the random string r. But for the message for a choice of 1 it
inputs the 0-string. If P2’s guess was correct, then the protocol executes correctly.
However, if its guess was wrong, then the result of the Gilboa protocol, i.e. the
modulus, will be incorrect. If this happens then the protocol will abort during
the proof of honesty. Thus, two distinct and observable things happen dependent
on whether P2’s guess was correct or not and so P2 learns the choice bit of P1

by observing what happens. In fact, P2 can repeat this as many times as it
wants, each time succeeding with probability 1/2 (when P1’s input is randomly
sampled). This means that with probability 2−x it can learn x of P1’s secret
input bits.

To prevent this attack we use the notion of noisy encodings. A noisy encoding
is basically a linear encoding with some noise added s.t. decoding is only possible
when using some auxiliary information related to the noise. We have party P1

noisily encode its true input to the Gilboa protocol. Because of the linearity it
is possible to retrieve the true output in the last step of the Gilboa protocol
(where the parties send their shares to each other in order to learn the result
N) without leaking anything on the secret shares of P1, even in the presence of
a selective failure attack.

In a bit more detail, we define a 2−s-statistically hiding noisy encoding of a
value a ∈ Z2�−1 as follows:

– Let P be the smallest prime larger than 22�.
– Pick random values h1, . . . , h2�+3s, g ∈ FP and random bits d1, . . . , d2�+3s

under the constraint that g +
∑

i∈[2�+3s] hi · di mod P = a.
– The noisy encoding is then (h1, . . . , h2�+3s, g) and the decoding info is (d1, . . . ,

d2�+3s).

Now for each of its shares, p1 and q1, P1 noisily encodes as described and
sends the noisy encodings (hp,1, . . . , hp,2�+3s, gp) and (hq,1, . . . , hq,2�+3s, gq) to
P2. Next, when they execute the OT steps, P1 uses the decoding info (dp,1, . . . ,
dp,2�+3s) and (dq,1, . . . , dq,2�+3s) of p1 and q1 respectively and uses this as input
the OTs instead of the bits of p1 and q1. For each such bit of p1, P2 inputs to the
OT a random value c0,p,i = ri and the value c1,p,i = ri + q2 (and also operates

346 T. K. Frederiksen et al.

in a similar way for q). P1 then receives the values cdp,i,p,i, cdq,i,q,i ∈ ZP and P2

holds the values c0,p,i, c1,p,i, c0,q,i, c1,q,i ∈ ZP . It turns out that leaking at most s
bits of (dp,1, . . . , dp,2�+3s) and (dq,1, . . . , dq,2�+3s) to P2 does not give more than a
2−s advantage in finding the value encoded. Thus, even if P2 launches s selective
failure attacks it gains no significant knowledge on P1’s shares.

After having completed the OTs, the parties compute their shares of the mod-
ulus N by using the linearity of the encodings. We believe that this approach to
thwart selective failure attacks, when multiplying large integers, could be used
other settings as well. In particular, we believe that for certain choices of param-
eters our approach could make a protocol like MASCOT [KOS16] more efficient
since it would be possible to eliminate (in their terminology) the combining step.

Proof of Honesty. The proof of honesty has three responsibilities: first, it
is a maliciously secure execution of the full biprimality test of Boneh and
Franklin [BF01]; second, it verifies that the modulus is constructed from the val-
ues committed to in candidate generation. Finally it generates a random sharing
of the private key. The proof of honesty is carried out twice. Once where party
P1 acts as the prover and P2 the verifier, and once where P2 acts the prover and
P1 the verifier. Thus each party gets convinced of the honesty of the other party
and learns their respective shares of the private key.

To ensure a correctly executed biprimality test, a typical zero-knowledge
technique is used, where coin-tossing is used to sample public randomness and
the prover randomizes its witness along with the statement to prove. The verifier
then gets the option to decide whether he wants to learn the value used for
randomizing or the randomized witness. This ensures that the prover can only
succeed with probability 1/2 in convincing the verifier if it does not know a
witness.

To ensure that the modulus was constructed from the values committed to,
a small secure two-party computation is executed which basically verifies that
this is the case. Since the commitments are AES-based, this can be carried out
in a very lightweight manner. Furthermore, to ensure that the values used in the
maliciously secure biprimality test are also consistent with the shares committed
to, we have the prover commit to the randomization values as well and verify
these, along with their relation to the shares. Finally, we let the proving party
input some randomness which is used to randomize the verifying party’s share
of the private key. We formally describe the full protocol in Figs. 3.7, 3.8, 3.9
and 3.10.

Ideal Functionality. We express the ideal functionality that our protocol real-
izes in Fig. 3.12 When there is no corruption the functionality simply proceeds
almost as the semi-honest functionality in Fig. 3.5. That is, making a shared key
based on random primes congruent to 3 modulo 4, but where the shares of the
secret key are sampled at random in the range between −22�+s and 22�+s. This
means that the value φ(N) mod e is not leaked. When a party is corrupted the
adversary is allowed certain freedoms in its interaction with the ideal function-
ality. Specifically the adversary is given access to several commands, allowing it
and the functionality to generate a shared RSA key through an interactive game.

Fast Distributed RSA Key Generation 347

PROTOCOL 3.7 (Malicious Key Generation ΠRSA - Part 1)

Setup
1. The parties call (toss, {0, 1}κ) on FCT twice to sample uniformly ran-

dom bitvectors r1, r2 ∈ {0, 1}κ. (Note that these outputs are known
to both parties.)

2. For I ∈ {1, 2} party PI picks a uniformly random value KI ∈ {0, 1}κ,
computes and sends AESAESrI (KI)(0) = cI to P3−I .

3. Let ML be the function outputting � on input ((rI , cI), KI)
if and only if AESAESrI (KI)(0) = cI . For I ∈ {1, 2} party

PI inputs (prove, (rI , cI), KI) on FML
ZK and party P3−I inputs

(verify, (rI , cI)). (The simplest way of implementing these proofs
is probably using garbled circuits [JKO13].)

4. If any of these calls output (⊥) then the parties abort. Otherwise they
continue.

Candidate Generation
1. P1 picks a uniformly random value p̃1 ∈ Z2�−3 , defines p1 = 4 · p̃1 + 3,

computes and sends Hp̃1 = AESK1(p̃1) to P2.
2. P2 picks a uniformly random value p̃2 ∈ Z2�−3 and defines p2 = 4 · p̃2,

computes and sends Hp̃2 = AESK2(p̃2) to P1.
3. Let B = {β ≤ B1|β is prime}. The parties execute procedure Div-OT

in Fig. 3.1 for each β ∈ B, where P1 uses input p1 and P2 input p2.
If any of these calls output ⊥, then discard the candidate pair p1, p2.

Protocol for maliciously secure RSA key generation.

The functionality closely reflects what the adversary can do in our protocol.
Specifically we allow a malicious party to repeatedly query the functionality to
learn a random modulus, based on its choice of prime shares. This is reflected
by commands sample and construct. Sample lets the adversary input its desired
share of a prime and the functionality then samples a random share for the
honest party s.t. the sum is prime. This command also ensures that the primes
work with the choice of public exponent e. I.e., that gcd(e, (p − 1)(q − 1)) = 1.
Specifically it verifies that the gcd of e and the prime candidate minus one is equal
to one. This implies that no matter which two primes get paired to construct a
modulus, it will always hold that gcd(e, φ(N)) = 1. Construct lets the adversary
decide on two primes (of which it only knows its own shares) that should be
used to construct a modulus and generate shares of the secret key in the same
manner as done by Boneh and Franklin [BF01]. Finally, the adversary can then
decide which modulus it wishes to use, which is reflected in the command select.

However, the functionality does allow the adversary to learn a few bits of
information of the honest party’s prime shares. In particular, the trial division
part of our candidate generation phase, allows the adversary to gain some knowl-
edge on the honest party’s shares, as reflected in command leak. Specifically the
adversary gets to guess the remainder of the honest party’s shares modulo β,
for each β ∈ B and is informed whether its guess was correct or not. In case the
malicious party is P2 then if any of its guesses for a particular prime is wrong,
the adversary loses the option of selecting the modulus based on this prime.

348 T. K. Frederiksen et al.

PROTOCOL 3.8 (Malicious Key Generation ΠRSA - Part 2)

Construct Modulus
Let p1, q1, p2, q2 be two candidates that passed the generation phase above,
where P1 knows p1 = 4p̃1 + 3, q1 = 4q̃1 + 3 and Hp̃2 , Hq̃2 and P2 knows
p2 = 4p̃2, q2 = 4q̃2 and Hp̃1 , Hq̃1 . Furthermore, let P be the smallest prime
number greater than 22�.
1. For each α ∈ {p, q} party P1 picks a list of values

hα,1, . . . , hα,2�+3s, gα ∈ ZP and a list of bits dα,1, . . . , dα,2�+3s ∈ {0, 1}
uniformly at random under the constraint that gα +

∑
i∈[2�+3s] hα,i ·

dα,i mod P = α1.
2. The parties execute the following steps for each α ∈ {p, q} and i ∈

[2� + 3s]:
(a) P2 chooses a uniformly random value rα,i ∈ ZP and sets

c0,α,i = rα,i and c1,α,i =

{
rα,i + q2 mod P if α = p

rα,i + p2 mod P if α = q
.

(b) P2 invokes F2�+3s,2
OT with input (transfer, c0,α,i, c1,α,i).

(c) P1 inputs (receive, dα,i) to F2�+3s,2
OT . P1 thus receives the message

(deliver, cdα,i,i) from F2�+3s,2
OT .

3. P1 sends the values hα,1, . . . , hα,2�+3s, gα to P2 for α ∈ {p, q}.
4. P1 computes zα

1 =
∑

i∈[2�+3s] cdα,i,i · hα,i mod P and P2 computes

zα
2 = − ∑

i∈[2�+3s] rα,i · hα,i mod P.

5. P2 computes a2 = p2q2 + zp
2 + gp · q2 + zq

2 + gq · p2 mod P and sends
this to P1.

6. P1 computes a1 = p1q1 + zp
1 + zq

1 mod P and sends this to P2.
7. P1 and P2 then compute N = (a1 + a2 mod P) mod 22�.
8. P1 computes w1 = N + 1 − p1 − q1 mod e and similarly P2 computes

w2 = p2 + q2 mod e.
9. P2 inputs (transfer) to Fκ,�log(e)�

OT and learns r0, . . . , rβ−1 ∈ {0, 1}κ.
10. P1 inputs (receive, w1) and thus learns rw1 .
11. P2 sends rw2 to P1.
12. If rw1 = rw2 then P1 informs P2 of this and they both discard the

candidate N and its associated shares p1, q1, p2, q2.

Protocol for maliciously secure RSA key generation.

The functionality keeps track of the adversary’s queries and what was leaked
to it, through the set J and dictionary C. Basically the set J stores the unique
ids of primes the simulator has generated and which the adversary can use to
construct an RSA modulus. Thus the ids of primes already used to construct
a modulus are removed from this set. The same goes for primes a malicious
P2 have tried to learn extra bits about, but failed (as reflected in leak). The
dictionary C on the other hand, maps prime ids already used to construct an
RSA modulus, into this modulus. This means that once two primes have been
used, using construct, to construct a modulus, their ids are removed from J
and instead inserted into C. After the construction we furthermore allow the

Fast Distributed RSA Key Generation 349

PROTOCOL 3.9 (Malicious Key Generation ΠRSA - Part 3)

Trial Division
Let B = {B1 < p ≤ B2|p is prime}. P2 then executes trial division of the
integers up to B2. If a factor is found then send ⊥ to P1 and discard N
and its associated prime shares p1, q1, p2, q2. Otherwise send � to P1.

Biprimality Test
The parties execute the biprimality test described in Fig. 3.4. However
after step 2.a P1 sends Hr̄1 = AESK1(r̄1) and P2 sends Hr̄2 = AESK2(r̄2).
Furthermore in step 2.b they use the maliciously secure version of the
multiplication protocol from “Construct Modulus” (modulo the smallest
prime larger than 22�+s+2).

Proof of Honesty
The parties call (toss,Z×

N) on FCT enough times to get s distinct random
elements, denoted by γi ∈ Z

×
N s.t. JN (γi) = 1 for i ∈ [s].

(Recall that p̃ denotes p � 2, i.e. p shifted to the right two steps.) Execute
the following steps where P = P1, V = P2 with p̃P = p̃1 and p̃V = p̃2 and
where P = P2, V = P1 with p̃P = p̃2 and p̃V = p̃1. Similarly for q̃1, q̃2:

1. For each i ∈ [s], P computes γi,P = γ
N−5

4 −p̃P −q̃P

i mod N
2. P sends γ1,P , . . . , γs,P to V .
3. For each i ∈ [s], V then verifies that γ−p̃V −q̃V

i · γi,P ≡ ±1 mod N .
4. If any of the checks do not pass then V sends ⊥ to P , outputs ⊥ and

aborts.
5. For each j ∈ [s], P picks a random value tj ∈ {0, 1}�−2+s. It then

computes AESKP (tj) = Htj and sends this to V .

6. For each i, j ∈ [s], P then sends the values γ̄i,j = γ
tj

i mod N to V .
7. The parties call (toss, {0, 1}) on FCT s times to sample uniformly

random bits b1, . . . , bs ∈ {0, 1}.
8. For each j ∈ [s], P then sends vj = bj · (−p̃P − q̃P) + tj to V .
9. For each i, j ∈ [s] V checks that

γ
vj

i mod N =? γ̄i,j · γ
bj

i,P · γ
−bj · N−5

4
i mod N

If this is not the case then it sends ⊥ to P , outputs ⊥ and aborts.

Protocol for maliciously secure RSA key generation.

adversary PI to pick a value w′
I ∈ [0, e[and learn if w′

I = w3−I when w3−I is
constructed according to the protocol using the honest party’s shares. However,
if the corrupt party is P2 and it guesses correctly then it won’t be allowed to use
the candidate.

Finally we have the command abort which allows an adversary to abort the
functionality at any point it wishes, as is the norm in maliciously secure dishonest
majority protocols.

Security. If there is no corruption we have the same security as described for
the semi-honest protocol in Sect. 3.2, except that φ(N) mod e is not implicitly
leaked by party’s secret key share. Next we see that allowing the adversary to
query the functionality for moduli before making up its mind does not influ-

350 T. K. Frederiksen et al.

PROTOCOL 3.10 (Malicious Key Generation ΠRSA - Part 4)

Proof of Honesty (continued)
11. P picks uniformly at random a value ρP ∈ {0, 1}2�+s.
12. The parties define the following function f , where P gives private

input (p̃P , q̃P , KP , r̄P , ρP), V gives private input (p̃V , q̃V , KV , r̄V). Let
σ = sP +sV mod P, based on the values from step 2 of the biprimality
test, where P is the smallest prime larger than 22�+s+2. They both give
public input (N, e, cP , rP , cV , rV , σ, Hp̃P , Hq̃P , Hr̄P , Hp̃V , Hq̃V , Hr̄V ,
{bj , vj , Htj }i∈[s]):

w : = N − 5 − 4(p̃P + q̃P + p̃V + q̃V) mod e ,

χ : = (Hp̃P =? AESKP (p̃P)) ∧ (Hq̃P =? AESKP (q̃P))

∧ (cP =? AESAESrP
(KP)(0)) ∧ (Hr̄P =? AESKP (r̄P))

∧ (Hp̃V =? AESKV (p̃V)) ∧ (Hq̃V =? AESKV (q̃V))

∧ (cV =? AESAESrV
(KV)(0)) ∧ (Hr̄V =? AESKV (r̄V))

∧ (∀j ∈ [s] : AESKP (vj + bj · (p̃P + q̃P)) =? Htj)

∧ (N =? (4(p̃V + p̃P) + 3) · (4(q̃V + q̃P) + 3))

∧ σ =? (r̄P + r̄V) · (4(p̃1 + p̃2 + q̃1 + q̃2) + 5)

∧ w
= 0

if V = P1 : dV :=

⌊−(w−1 mod e) · (N − 5 − 4p̃1 − 4q̃1) + 1

e

⌋

else : dV :=

⌊−(w−1 mod e) · (−4p̃2 − 4q̃2)

e

⌋
if χ = 1 : d̄V := dV − ρP

else : d̄V = ⊥
Output (χ, d̄V) to V and (⊥) to P

13. The parties then use F2PC to compute the output of f and abort if
χ = 0.a

Generate Shared Key
1. P1 computes and outputs d1 = d̄1 + ρ1.
2. If e| − 4p̃2 − 4q̃2 then P2 computes and outputs d2 = d̄2 + ρ2, else it

computes and outputs d2 = d̄2 + ρ2 + 1.

a This step must be done in parallel for both the cases where P1 is the
prover and P1 the verifier.

Protocol for maliciously secure RSA key generation.

ence security. Since the adversary is polytime bounded, it can only query for
polynomially many moduli. Furthermore, as the honest party’s shares are ran-
domly sampled by the functionality, and since they are longer than the security
parameter (e.g. 1021 vs. 128) the adversary will intuitively not gain anything

Fast Distributed RSA Key Generation 351

from having this ability. Arguments for why this is the case have been detailed
by Gavin [Gav12].

Regarding the allowed leakage we show in the full version that (for standard
parameters) at most log2(e/(e−1))+2 log2(B1/2) bits are leaked to a malicious
party without the protocol aborting, no matter if P1 or P2 is malicious. If P2 is
malicious it may choose to try to learn (1 + ε)x bits of the honest party’s prime
shares for a small ε ≤ 1 with probability at most 2−x. However, if it is unlucky
and does not learn the extra bits then it will not be allowed to use a modulus
based on the prime it tried to get some leakage on.

We now argue that this leakage is not an issue, neither in theory nor in
practice. For the theoretical part, assume learning some extra bits on the hon-
est party’s prime shares would give the adversary a non-negligible advantage in
finding the primes of the modulus. This would then mean that there exists a
polytime algorithm breaking the security of RSA with non-negligible probabil-
ity by simply exhaustively guessing what the leaked bits are and then running
the adversary algorithm on each of the guesses. Thus if the amount of leaked
bits is O(polylog(κ)), for the computational security parameter κ, then such an
algorithm would also be polytime, and cannot exist under the assumption that
RSA is secure. So from a theoretical point of view, we only need to argue that
the leakage is O(polylog(κ)). To do so first notice that B1 is a constant tweaked
for efficiency. But for concreteness assume it to be somewhere between two con-
stants, e.g., 31 and 3181.1 Since B1 is a constant it also means that the leakage
is constant and thus O(1) ∈ O(polylog(κ)).

However, if the concrete constant is greater than κ this is not actually saying
much, since we then allow a specific value greater than 2κ time to be polynomial
in κ. However, it turns out that for B1 = 31 the exact leakage is only 3.4 bits
and for B1 = 3181 it is 5.7 bits.

Formally we prove the following theorem in the full version.

Theorem 3.11. The protocol ΠRSA in Figs. 3.7, 3.8, 3.9 and 3.10 securely real-
izes the ideal functionality FRSA in Fig. 3.12 against a static and malicious adver-
sary in the F ·,·

OT-, FCT-, FZK-, F2PC-hybrid model assuming AES is IND-CPA and
a PRP on the first block per encryption.

3.4 Outline of Proof

Efficient Malicious Security. One of the reasons we are able to achieve mali-
cious security in such an efficient manner is because of our unorthodox ideal
functionality. In particular, by giving the adversary the power to discard some
valid moduli, we can prove our protocol secure using a simulation argument
without having to simulate the honest party’s shares of potentially valid moduli
discarded throughout the protocol. This means, that we only need to simulate
for the candidate N and its shares p1, q1, p2, q2 that actually get accepted as an
output of the protocol.
1 We find it unrealistic that the a greater or smaller choice will be yield a more efficient

execution of our protocol.

352 T. K. Frederiksen et al.

FIGURE 3.12 (FRSA)

Upon query of bitlength 2� and public exponent e from parties P1 and P2

proceed as functionality FRSA-semi in Fig. 3.5. Otherwise, letting PI for I ∈
{1, 2} denote the corrupt party, the functionality initializes an empty set J
and a dictionary C mapping IDs to a tuple of elements. Allow the adversary
to execute any combination of the following commands:

Sample. On input (j, pI,j) where j
∈ J , pI,j ≤ 2�−1 and pI,j ≡ 3 mod 4 if
I = 1 or pI,j ≡ 0 mod 4 if I = 2: select a random value p3−I,j of � − 1
bits, under the constraint that pj = p1,j + p2,j ≡ 3 mod 4 is prime and
gcd(e, pj − 1) = 1. Add j to J .

Leak. For each j ∈ J and for each β ≤ B1 where β is prime, let PI input a
value aj,β and if I = 1 return a bit indicating if aj,β
= −p2,j mod β. If
I = 2 return a bit indicating if aj,β
= p1,j mod β and set J = J\{j} if
aj,β = p1,j mod β.

Construct. On input (j, j′, w′
I) from PI where j, j′ ∈ J but j, j′
∈ C then

compute
d = e−1 mod (pj − 1)(pj′ − 1). Pick a random integer d1 ∈ [22�+s] and
set d2 = d − d1. Return (N = pj · pj′ , pI , dI) to PI and set C[j] = C[j′] =
(N, d3−I , j, j′) and J = J\{j, j′}. If PI returns a value w′

I,j,j′ ∈ [0, e − 1],
proceed as follows: If I = 1 notify P1 whether w′

1,j,j′ = p2,j +p2,j′ mod e
or not. If instead I = 2 then notify P2 whether w′

2,j,j′ = N+1−(p1,j+p1,j′)
mod e or not. Furthermore, if I = 2 and � was returned set C = C\{j, j′}.

Select. On the first input (j, j′) with j, j′ ∈ C from PI , where C[j] =
(N, d3−I , j, j′) send (N, p3−I,j , q3−I,j , d3−I) to P3−I and stop accepting
commands.

Abort. If PI inputs ⊥ at any time then output ⊥ to both parties and abort.

Ideal functionality for generating shared RSA key

Another key reason for our efficiency improvements is the fact that almost
all of the protocol is executed in a “strong” semi-honest manner. By this we
mean that only privacy is guaranteed when a party is acting maliciously, but
correctness is not. This makes checking a candidate modulus N much more
efficient than if full malicious security was required. At the end of the protocol,
full malicious security is ensured for a candidate N by the parties proving that
they have executed the protocol correctly.

The Simulator. With these observations about the efficiency of the protocol
in mind, we see that the overall strategy for our simulator is as follows, assuming
w.l.o.g. that PI is the honest party and P3−I is corrupted.

For the Setup phase the simulator simply emulates the honest party’s choice
of key KI by sampling it at random. The reason this is sufficient is that because
AES is a permutation and KI is random, thus AESrI (KI) is random in the view
of the adversary. The crucial thing to notice is that nothing is leaked about this
when using it as key in the second encryption under the PRP property. We do
strictly need the second encryption since the encryption key rI is public, thus if

Fast Distributed RSA Key Generation 353

we didn’t have the second encryption an adversary could decrypt and learn KI !
Regarding the zero-knowledge proof we notice that the simulator can extract
the adversary’s input K ′

3−I . We notice that the simulator can emulate FML

ZK by
verifying K ′

3−I in the computation of c3−I . Again we rely on AES being a PRP
to ensure that if K ′

3−I is not the value used in computing c3−I then the check
will always fail because it would require the adversary to find K ′

3−I �= K3−I s.t.
AESr3−I (K ′

3−I) = AESr3−I (K3−I). Thus the adversary is committed to some
specific key K3−I extracted by the simulator.

For Candidate Generation the simulator starts by sampling a random value
p̃I and extracts the malicious party’s share p̃3−I from its “commitment” Hp̃3−I ,
since the simulator knows the key K3−I . Furthermore, since we use AES in a
mode s.t. it is IND-CPA secure the adversary cannot distinguish between the
values Hp̃I simulated or the values sent in the real protocol.

Next see that if 4(p̃1 + p̃2)+3 is not a prime, then the simulator will emulate
the rest of the protocol using the random value it sampled. This simulation will
be statistically indistinguishable from the real world since the simulator and the
honest party both sample at random and follow the protocol. Furthermore, since
the shares don’t add up to a prime, any modulus based on this will never be
output in the real protocol since the proof of honesty will discover if N is not a
biprime.

On the other hand, if the shares do sum to a prime then the simulator
uses sample on the ideal functionality FRSA to construct a prime based on the
malicious party’s share p̃3−I . It then simulates based on the value extracted from
the malicious party. Specifically for the OT-based trial division, the simulator
extracts the messages of the malicious party and uses these as input to leak on
the ideal functionality. This allows the simulator to learn whether the adversary’s
input to the trial division plus the true and internal random value held by the
ideal functionality is divisible by β.

To simulate construction of a modulus, we first consider a hybrid functional-
ity, which is the same as FRSA, except that a command full-leak is added. This
command allows the simulator to learn the honest party’s shares of a prime
candidate, under the constraint that it is not used in the RSA that key the
functionality outputs. It is easy to see that adding this method to the function-
ality does not give the adversary more power, since it can only learn the honest
party’s shares of primes which are independent of the output.

With this expanded, hybrid version of FRSA in place, the simulator emulates
the construction of a modulus by first checking if one of the candidate values
were prime and the other was not. In this case it uses full-leak to learn the
value that is prime and then simulates the rest of the protocol like an honest
party. This will be statistically indistinguishable from the real execution since
the modulus will never be used as output since it is not a biprime and so will be
discarded, at the latest, in the proof of honesty phase.

However, if both candidate values are marked as prime the simulator simu-
lates the extended Gilboa protocol for construction of the modulus. It does so
by extracting the malicious party’s input to the calls to Fκ,β

OT . Based on this it

354 T. K. Frederiksen et al.

can simulate the values of the honest party. This is pretty straightforward, but
what is key is that no info on the honest party’s prime shares is leaked to the
adversary in case of a selective failure attack (when the adversary is the sender
in Fκ,β

OT). To see this, first notice that selecting h1, . . . , h2�+2s, g at random and
computing g +

∑
i∈[2�+2s] hi · di mod P is in fact a 2-universal hash function.

This implies, using some observations by Ishai et al. [IPS09], that whether these
values are picked at random s.t. they hash to the true input or are just random,
is 2−s indistinguishable. Thus extending the function with h2�+2s+1, . . . g2�+3s,
allows the adversary to learn s of the bits di without affecting the indistinguish-
able result. Since s is the statistical security parameter and each di is picked at
random, this implies that the adversary cannot learn anything non-negligible.

The proof of security of the remaining steps is quite straightforward. For trial
division the simulator basically acts as an honest party since all operations are
local. For the biprimality test the simulation is also easy. For step 1, it is simply
following the proof by Boneh and Franklin [BF01], for step 2, simulation can
be done using the same approach as for the Gilboa protocol. Regarding proof of
honesty the simulation follows the steps for the simulation of the biprimality test
and uses the emulation of the coin-tossing functionality to learn what challenge
it needs to answer and can thus adjust the value sent to the verifier that will
make the proof accept. Finally the key generation is also unsurprising as all the
computations are local.

4 Instantiation

Optimizations. Fail-fast. It is possible to limit the amount of tests carried
out on composite candidates, in all of the OT-based trial division, the second
trial division and the biprimality test, by simply employing a fail-fast approach.
That is, to simply break the loop of any of these tests, as soon as a candidate
fails. This leads to significantly fewer tests, as in all three tests a false positive is
more likely to be discovered in the beginning of the test. (For example, a third
of the candidates are likely to fail in the first trial division test, which checks for
divisibility by 3.)

Maximum runtime. In the malicious protocol an adversary can cheat in such
a way that a legitimate candidate (either prime or modulus) gets rejected. In
particular this means that the adversary could make the protocol run forever.
For example, if he tries to learn 1024 bits of the honest party’s shares by cheating
then we expect to discard 21023 good candidate moduli! Thus, tail-bounds for
the choice of parameters should be computed s.t. the protocol will abort once
it has considered more candidate values than would be needed to find a valid
modulus e.w.p. 2−s. In fact, it is strictly needed in order to limit the maximum
possible leakage from selective failure attacks.

Synchronous execution. To ensure that neither party P1 nor party P2 sits idle at
any point in time of the execution of the protocol, we can have them exchange
roles for every other candidate. Thus, every party performs both roles, but on

Fast Distributed RSA Key Generation 355

two different candidates at the same time, throughout the execution of the pro-
tocol. For example, while Alice executes as P1 in the candidate generation on
one candidate, she simultaneously executes the candidate generation as P2 for
another candidate. Similarly for Bob. The result of this is that no party will
have to wait for the other party to complete a step as they will both do the
same amount of computation in each step.

Leaky two-party computation. We already discussed in Sect. 3.3 how leaking a
few bits of information on the honest party’s prime shares does not compromise
the security of the protocol. Along the same line, we can make the observation
that learning a predicate on the honest party’s share will in expectation not
give more than a single bit of information to the adversary. In particular it can
learn at most x bits of information with probability at most 2−x. This is the
same leakage that is already allowed to P2, and thus allowing this would not
yield any significant change to the leakage of our protocol. This means that it
can suffice to construct only two garbled circuits to implement F2PC by using
the dual-execution approach [MF06]. This is compared to the s garbled circuits
needed in the general case where no leakage is allowed [Lin16].

Constant rounds. We note that the way our protocols ΠRSA-semi and ΠRSA are
presented in Figs. 3.2 and 3.3, respectively Figs. 3.7, 3.8, 3.9 and 3.10 does not
give constant time. This is because they are expressed iteratively s.t. candidate
primes are sampled until a pair passing all the tests is found. However it is
possible to simply execute each step of the protocols once for many candidates
in parallel. This is because, based on the Prime Number Theorem, we can find
the probability of a pair of candidates being good. This allows us to compute
the amount of candidate values needed to ensure that a good modulus is found,
except with negligible probability. Unfortunately this will in most situations lead
to many candidate values being constructed unnecessarily. For this reason it is
in practice more desirable to construct batches of candidates in parallel instead
to avoid doing a lot of unnecessary work, yet still limit the amount of round of
communication.

Efficiency Comparison. We here try to compare the efficiency of our protocol
with previous work. This is done in Table 1.

With regards to more concrete efficiency we recall that both our protocols
and previous work have the same type of phases, working on randomly sampled
candidates in a pipelined manner. Because of this feature, all protocols limit
the amount of unsuitable candidates passing through to the expensive phases,
by employing trial division. This leads to fewer executions of expensive phases
and thus to greater concrete efficiency. In some protocols this filtering is applied
both to individual prime candidates and to candidate moduli, leading to min-
imal executions of the expensive phases. Unfortunately this is not possible in
all protocols. For this reason we also show in Table 1 which protocols manage
to improve the expected execution time by doing trial division of the prime
candidates, respectively the moduli.

356 T. K. Frederiksen et al.

T
a
b
le

1
.

C
o
m

p
a
ri

so
n

o
f

th
e

d
iff

er
en

t
p
ro

to
co

ls
fo

r
d
is

tr
ib

u
te

d
R

S
A

k
ey

g
en

er
a
ti

o
n
.

T
h
e

b
es

t
p
o
ss

ib
le

va
lu

es
a
re

h
ig

h
li
g
h
te

d
in

b
o
ld

.
A

ll
va

lu
es

a
ss

u
m

e
a

co
n
st

a
n
t,

a
n
d

m
in

im
a
l,

a
m

o
u
n
t

o
f
p
a
rt

ic
ip

a
ti

n
g

p
a
rt

ie
s;

i.
e.

2
o
r

3
.
T

h
e

co
lu

m
n
A
m
o
u
n
t
o
f
ca
n
d
id
a
te
s

ex
p
re

ss
es

th
e

ex
p
ec

te
d

a
m

o
u
n
t

o
f

ra
n
d
o
m

ca
n
d
id

a
te

s
th

a
t

m
u
st

b
e

g
en

er
a
te

d
b
ef

o
re

fi
n
d
in

g
a

su
it

a
b
le

m
o
d
u
lu

s.
T

h
e

co
lu

m
n
C
a
n
d
id
a
te

ge
n
er
a
ti
o
n

ex
p
re

ss
es

th
e

co
m

p
u
ta

ti
o
n
a
l
b
it

co
m

p
le

x
it
y

re
q
u
ir

ed
to

co
n
st

ru
ct

a
si
n
gl
e

ca
n
d
id

a
te

p
ri

m
e.

T
h
e

co
lu

m
n
C
o
n
st
ru
ct

m
od
u
lu
s

ex
p
re

ss
es

th
e

co
m

p
u
ta

ti
o
n
a
l
b
it

co
m

p
le

x
it
y

re
q
u
ir

ed
to

co
n
st

ru
ct

a
si
n
gl
e

p
o
te

n
ti

a
l
m

o
d
u
lu

s,
b
a
se

d
o
n

tw
o

p
ri

m
e

ca
n
d
id

a
te

s.
T

h
e

co
lu

m
n
(B

i)
p
ri
m
a
li
ty

te
st

ex
p
re

ss
es

th
e

co
m

p
u
ta

ti
o
n
a
l
b
it

co
m

p
le

x
it
y

re
q
u
ir

ed
to

v
er

if
y

th
a
t
a
si
n
gl
e

p
ri

m
e

ca
n
d
id

a
te

is
p
ri

m
e

ex
ce

p
t
w

it
h

n
eg

li
g
ib

le
p
ro

b
a
b
il
it
y

o
r
(d

ep
en

d
in

g
o
n

th
e

p
ro

to
co

l)
to

v
er

if
y

th
a
t
a
si
n
gl
e

m
o
d
u
lu

s
is

th
e

p
ro

d
u
ct

o
f
tw

o
p
ri

m
es

ex
ce

p
t
w

it
h

n
eg

li
g
ib

le
p
ro

b
a
b
il
it
y.

T
h
e

co
lu

m
n

L
ea
ka
ge

ex
p
re

ss
es

h
ow

m
a
n
y

b
it

s
o
f
in

fo
rm

a
ti

o
n

o
f
th

e
h
o
n
es

t
p
a
rt

y
’s

sh
a
re

s
o
f
th

e
p
ri

m
es

th
a
t

is
le

a
k
ed

to
th

e
a
d
v
er

sa
ry

.
H

er
e

τ
m

ea
n
s

th
a
t

∑ β
∈B

1
lo

g
(β

β
−
1

) b
it

s
ca

n
b
e

le
a
k
ed

to
a

m
a
li
ci

o
u
s

a
d
v
er

sa
ry

.
F
u
rt

h
er

m
o
re

,
th

e
a
d
v
er

sa
ry

is
a
ll
ow

ed
to

p
ic

k
a

p
ro

b
a
b
il
it
y

x
w

it
h

w
h
ic

h
it

le
a
rn

s
(1

+
ε)

x
ex

tr
a

b
it

s.
H

ow
ev

er
,
if

th
e

a
d
v
er

sa
ry

d
o
es

n
o
t

le
a
rn

th
e

ex
tr

a
b
it

s
th

en
th

e
h
o
n
es

t
p
a
rt

y
le

a
rn

s
th

a
t

th
e

a
d
v
er

sa
ry

h
a
s

a
ct

ed
m

a
li
ci

o
u
sl

y.

S
ch

e
m
e

A
ss
u
m
p
ti
o
n
s

Dishonestmajority

Malicioussecure

Primetrialdivision

Modulustrialdivision

R
o
u
n
d
s

A
m
o
u
n
t
o
f

c
a
n
d
id
a
te
s

C
a
n
d
id
a
te

g
e
n
e
ra

ti
o
n

C
o
n
st
ru

c
t

m
o
d
u
lu
s

(B
i)
p
ri
m
a
li
ty

te
st

L
e
a
k
a
g
e

O
u
r
re
su

lt
∗

IN
D
-C

P
A
,

F O
T
,

F C
T

�
�

�
�

O
(1

)
O
(1

)
O
(1

)
O
(�

2
/
lo
g
2
(�
))

O
(�
)

O
(�
)

O
(�
)

O
(�

2
)

O
(�

2
)

O
(�

2
)

O
(s

·�
3
)

τ
+

2

[B
F
0
1
]

N
o
n
e

✗
✗

�
�

O
(1

)
O
(1

)
O
(1

)
O
(�

2
/
lo
g
2
(�
))

O
(�
)

O
(�
)

O
(�
)

O
(�

2
)

O
(�

2
)

O
(�

2
)

O
(s

·�
3
)

2

[F
M

Y
9
8
]

D
L

✗
�

✗
�

O
(1

)
O
(1

)
O
(1

)
O
(�

2
/
lo
g
2
(�
))

O
(�

3
)

O
(�

3
)

O
(s

2
·�

3
)

2

[P
S
9
8
]†

F O
T

�
�

�
�

O
(1

)
O
(1

)
O
(1

)
O
(�

2
/
lo
g
2
(�
))

O
(�
)

O
(�
)

O
(�
)

O
(�

2
)

O
(�

2
)

O
(�

2
)

?
τ
+

2

[G
il
9
9
]

P
R
G
,

F O
T

�
✗

✗
�

O
(1

)
O
(1

)
O
(1

)
O
(�

2
/
lo
g
2
(�
))

O
(�
)

O
(�
)

O
(�
)

O
(�

2
)

O
(�

2
)

O
(�

2
)

O
(s

·�
3
)

2

[A
C
S
0
2
]

N
o
n
e

✗
✗

�
✗

O
(�
)

O
(�

/
lo
g
(�
))

O
(�

/
lo
g
(�
))

O
(�

/
lo
g
(�
))

O
(�
)

O
(�
)

O
(�
)

O
(�

2
)

O
(�

2
)

O
(�

2
)

O
(s

·�
3
)

2

[D
M

1
0
]

C
R
S
,
S
tr
o
n
g
R
S
A

✗
�

�
�

O
(1

)
O
(1

)
O
(1

)
O
(�

2
/
lo
g
2
(�
))

O
(�

3
)

O
(�

3
)

o
(s

·�
3
)

o
(s

·�
3
)

o
(s

·�
3
)

2

[H
M

R
T
1
2
]

D
C
R
,
D
D
H

�
�

�
�

O
(1

)‡
O
(�

2
/
lo
g
2

�)
O
(�

3
)

O
(�

3
)

O
(s

·�
3
)

2
∗ :

F
o
r
th

e
m
a
li
c
io
u
s
p
ro

to
c
o
l

O
(s

2
·�

3
)
o
p
e
ra

ti
o
n
s
a
re

e
x
e
c
u
te
d

o
n
ce

p
e
r
su

c
c
e
ss
fu
l
k
e
y
p
a
ir

g
e
n
e
ra

ti
o
n
.

† :
T
h
e
a
u
th

o
rs

d
o
n
o
t
d
e
sc
ri
b
e
h
o
w

to
e
n
su

re
b
ip
ri
m
a
li
ty

in
c
a
se

o
f
a
m
a
li
c
io
u
s
a
d
v
e
rs
a
ry
.

‡ :
C
o
n
st
a
n
t
ro

u
n
d

o
n

a
v
e
ra

g
e
.

Fast Distributed RSA Key Generation 357

To give a proper idea of the efficiency of the different protocols we must also
consider the asymptotics. However, because of the diversity in primitives used in
the previous protocols, and in the different phases, we try to do this by comparing
the computational bit complexity. Furthermore to make the comparison as fair
as possible we assume the best possible implementations available today are used
for underlying primitives. In particular we assume an efficient OT extension is
used for OTs [KOS15].

Based on the table we can make the following conclusions regarding the effi-
ciency of our protocols. First, considering the semi-honest protocol; we see that
the only real competition is Algesheimer et al. as they expect to test asymptoti-
cally fewer prime candidates than us. However, this comes at the price of a large
amount of rounds requires, making it challenging to use efficiently over the Inter-
net. Furthermore, unlike our protocol, they require an honest majority making
it possible for them to leverage efficient information theoretic constructions.

For the malicious security model we see that the only real competition lies in
the work of Poupard and Stern [PS98]. However, we note that they don’t provide
a full maliciously secure protocol. In particular they do not describe how to do a
biprimality test secure against a malicious and dishonest majority. Thus the only
other protocol considering the same setting as us is the one by Hazay et al.. This
is also the newest of the schemes and is considered the current state-of-the-art
in this setting. However, this protocol requires asymptotically more operations
for candidate generation, construction of modulus and the biprimality test.

Implementation. Below we outline the concrete implementation choices we
made. We implement AES in counter mode, using AES-NI, with κ = 128 bit
keys. For 1-out-of-2 OT (needed during the Construct Modulus phase) we use
the maliciously secure OT extension of Keller et al. [KOS15]. For the base OTs
we use the protocol of Peikert et al. [PVW08] and for the internal PRG we
use AES-NI with the seed as key, in counter mode. For the random 1-out-of-
β OT we use the random 1-out-of-2 OT above using the protocol of Naor and
Pinkas [NP99]. For the coin-tossing we use the standard “commit to randomness
and then open” approach.

In the Construct Modulus phase, instead of having each party sample the
values hα,1, . . . , hα.2�+3s, gα ∈ ZP and send them to the other party, we instead
have it sample a seed and generate these values through a PRG. The party then
only needs to send the seed to the other party. This saves a large amount of
communication complexity without making security compromises.

Our implementation implemented OT extension in batches of 8912 OTs.
Whenever a batch of OTs is finished, the program calls a procedure which gen-
erates a new block of 8192 OTs. Most of the cryptographic operations were
implemented using OpenSSL, but big-integer multiplication was implemented in
assembler instead of using the OpenSSL implementation for efficiency reasons.

We did not implement yet the zero-knowledge argument or the two-party
computation since they can be efficiently realized using existing implementations
of garbled circuits (such as JustGarble [BHKR13] or TinyGarble [SHS+15]) by

358 T. K. Frederiksen et al.

using the protocol of Jawurek et al. [JKO13] for zero-knowledge and the dual-
execution approach [MF06] for the two-party computation. These protocols are
only executed once in our scheme using well tested implementations, and thus,
as is described later in this section, we can safely estimate that the effect on the
total run time is marginal.

Experiments. We implemented our maliciously secure protocol and ran exper-
iments on Azure, using Intel Xeon E5-2673 v.4 - 2.3 Ghz machines with 64 Gb
RAM, connected by a 40.0 Gbps network. are pretty strong servers).

We used the code to run 50 computations of a shared 2048 bit modulus, and
computed the average run time. The results are as follows:

– With a single threaded execution, the average run time was 134 s.
– With four threads, the average run time was 39.1 s.
– With eight threads, the average run time was 35 s.

The run times showed a high variance (similar to the results of the imple-
mentation reported by Hazay et al. [HMRT12] for their protocol). For the single
thread execution, the average run time was 134 s while the median run time was
84.9 s (the fastest execution took 8.2 s and the slowest execution took 542 s).

Focusing on the single thread execution, we measured the time consumed by
different major parts of the protocol. The preparation of the OT extension tables
took on average 12% of the run time, the multiplication protocol computing N
took 66%, and the biprimality test took 7%. (These percentages were quite
stable across all executions and showed little variance.) Overall these parts took
85% of the total run time. The bulk of the time was consumed by the secure
multiplication protocol. In that protocol, most time was spent on computing
the values zα

1 , zα
2 (line 4 in Fig. 3.8). This is not surprising since each of these

computations computes 2� + 3s = 2168 bignum multiplications.
Note that these numbers exclude the time required to do the zero-knowledge

argument of knowledge in Setup and the two-party computation in Proof of Hon-
esty. The zero-knowledge argument of knowledge requires about 12,000 AND
gates (for two AES computations), and our analysis in Appendix A shows that
the number of AND gates that need to be evaluated in the circuits of the honesty
proof is at most 22 million. We also measured a throughput of computing about
3.2 million AND gates in Yao’s protocol on the machines that we were using.
Therefore we estimate that implementing these computations using garbled cir-
cuits will contribute about 7 s to the total time.

Comparing to previous work, the only other competitive protocol (for 2048
bit keys) with implementation work is the one by Hazay et al. [HMRT12]. Unfor-
tunately their implementation is not publicly available and thus we are not able
to make a comparison on the same hardware. However, we do not that the
fastest time they report is 15 min on a 2.3 GHz dual-core Intel desktop, for their
semi-honestly secure protocol.

Fast Distributed RSA Key Generation 359

References

[ACS02] Algesheimer, J., Camenisch, J., Shoup, V.: Efficient computation modulo a
shared secret with application to the generation of shared safe-prime prod-
ucts. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 417–432.
Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45708-9 27

[BF01] Boneh, D., Franklin, M.K.: Efficient generation of shared RSA keys. J.
ACM 48(4), 702–722 (2001)

[BHKR13] Bellare, M., Hoang, V.T., Keelveedhi, S., Rogaway, P.: Efficient garbling
from a fixed-key blockcipher. In: IEEE Symposium on Security and Pri-
vacy, pp. 478–492. IEEE Computer Society (2013)

[CDN01] Cramer, R., Damg̊ard, I., Nielsen, J.B.: Multiparty computation from
threshold homomorphic encryption. In: Pfitzmann, B. (ed.) EURO-
CRYPT 2001. LNCS, vol. 2045, pp. 280–300. Springer, Heidelberg (2001).
https://doi.org/10.1007/3-540-44987-6 18

[DM10] Damg̊ard, I., Mikkelsen, G.L.: Efficient, robust and constant-round dis-
tributed RSA key generation. In: Micciancio, D. (ed.) TCC 2010. LNCS,
vol. 5978, pp. 183–200. Springer, Heidelberg (2010). https://doi.org/10.
1007/978-3-642-11799-2 12

[FMY98] Frankel, Y., MacKenzie, P.D., Yung, M.: Robust efficient distributed RSA-
key generation. In: STOC, pp. 663–672 (1998)

[Gav12] Gavin, G.: RSA modulus generation in the two-party case. IACR Cryp-
tology ePrint Archive 2012:336 (2012)

[Gil99] Gilboa, N.: Two party RSA key generation. In: Wiener, M. (ed.) CRYPTO
1999. LNCS, vol. 1666, pp. 116–129. Springer, Heidelberg (1999). https://
doi.org/10.1007/3-540-48405-1 8

[GMO16] Giacomelli, I., Madsen, J., Orlandi, C.: ZKBoo: faster zero-knowledge for
boolean circuits. In: Holz, T., Savage, S. (eds.) USENIX Security Sympo-
sium, pp. 1069–1083. USENIX Association (2016)

[HMRT12] Hazay, C., Mikkelsen, G.L., Rabin, T., Toft, T.: Efficient RSA key gen-
eration and threshold paillier in the two-party setting. In: CT-RSA, pp.
313–331 (2012)

[IPS09] Ishai, Y., Prabhakaran, M., Sahai, A.: Secure arithmetic computation with
no honest majority. In: Reingold, O. (ed.) TCC 2009. LNCS, vol. 5444,
pp. 294–314. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-
642-00457-5 18

[JKO13] Jawurek, M., Kerschbaum, F., Orlandi, C.: Zero-knowledge using garbled
circuits: how to prove non-algebraic statements efficiently. In: Sadeghi,
A.-R., Gligor, V.D., Yung, M. (eds.) ACM SIGSAC, pp. 955–966. ACM
(2013)

[KOS15] Keller, M., Orsini, E., Scholl, P.: Actively secure OT extension with
optimal overhead. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015.
LNCS, vol. 9215, pp. 724–741. Springer, Heidelberg (2015). https://doi.
org/10.1007/978-3-662-47989-6 35

[KOS16] Keller, M., Orsini, E., Scholl, P.: MASCOT: faster malicious arith-
metic secure computation with oblivious transfer. In: Weippl, E.R.,
Katzenbeisser, S., Kruegel, C., Myers, A.C., Halevi, S. (eds.) ACM
SIGSAC, pp. 830–842. ACM (2016)

[KS06] Kiraz, M.S., Schoenmakers, B.: A protocol issue for the malicious case of
Yao’s garbled circuit construction. In: Proceedings of 27th Symposium on
Information Theory in the Benelux, pp. 283–290 (2006)

https://doi.org/10.1007/3-540-45708-9_27
https://doi.org/10.1007/3-540-44987-6_18
https://doi.org/10.1007/978-3-642-11799-2_12
https://doi.org/10.1007/978-3-642-11799-2_12
https://doi.org/10.1007/3-540-48405-1_8
https://doi.org/10.1007/3-540-48405-1_8
https://doi.org/10.1007/978-3-642-00457-5_18
https://doi.org/10.1007/978-3-642-00457-5_18
https://doi.org/10.1007/978-3-662-47989-6_35
https://doi.org/10.1007/978-3-662-47989-6_35

360 T. K. Frederiksen et al.

[Lin16] Lindell, Y.: Fast cut-and-choose-based protocols for malicious and covert
adversaries. J. Cryptology 29(2), 456–490 (2016)

[MF06] Mohassel, P., Franklin, M.: Efficiency tradeoffs for malicious two-party
computation. In: Yung, M., Dodis, Y., Kiayias, A., Malkin, T. (eds.) PKC
2006. LNCS, vol. 3958, pp. 458–473. Springer, Heidelberg (2006). https://
doi.org/10.1007/11745853 30

[NP99] Naor, M., Pinkas, B.: Oblivious transfer and polynomial evaluation. In:
Vitter, J.S., Larmore, L.L., Leighton, F.T. (eds.) STOC, pp. 245–254.
ACM (1999)

[OOS17] Orrù, M., Orsini, E., Scholl, P.: Actively secure 1-out-of-n OT extension
with application to private set intersection. In: CT-RSA, pp. 381–396
(2017)

[PS98] Poupard, G., Stern, J.: Generation of shared RSA keys by two parties. In:
Ohta, K., Pei, D. (eds.) ASIACRYPT 1998. LNCS, vol. 1514, pp. 11–24.
Springer, Heidelberg (1998). https://doi.org/10.1007/3-540-49649-1 2

[PVW08] Peikert, C., Vaikuntanathan, V., Waters, B.: A framework for efficient
and composable oblivious transfer. In: Wagner, D. (ed.) CRYPTO 2008.
LNCS, vol. 5157, pp. 554–571. Springer, Heidelberg (2008). https://doi.
org/10.1007/978-3-540-85174-5 31

[RSA78] Rivest, R.L., Shamir, A., Adleman, L.M.: A method for obtaining digital
signatures and public-key cryptosystems. Commun. ACM 21(2), 120–126
(1978)

[Sch12] Schneider, T.: Engineering Secure Two-Party Computation Protocols:
Design, Optimization, and Applications of Efficient Secure Function Eval-
uation. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-
30042-4

[Sho00] Shoup, V.: Practical threshold signatures. In: Preneel, B. (ed.) EURO-
CRYPT 2000. LNCS, vol. 1807, pp. 207–220. Springer, Heidelberg (2000).
https://doi.org/10.1007/3-540-45539-6 15

[SHS+15] Songhori, E.M., Hussain, S.U., Sadeghi, A.-R., Schneider, T., Koushanfar,
F.: TinyGarble: highly compressed and scalable sequential garbled cir-
cuits. In: IEEE Symposium on Security and Privacy, pp. 411–428. IEEE
Computer Society (2015)

A The Size of the Circuit for the Proof of Honesty

The circuit that is evaluated in the honesty proof contains the following compo-
nents:

– AES computation: Four AES encryptions of single blocks (for verifying the
commitments to the keys in Step 2), and s+6 encryptions of values of length
|N |/2 + s bits. For |N | = 2048 bits this translates to 4 + 46 · 9 = 418 AES
blocks. With an AES circuit of size 6000 AND gates, this translates to 2.5M
gates.

– Multiplications: The circuit computes two multiplications where each of the
inputs is |N |/2 bits long. For |N | = 2048 using Karatsuba multiplication this
takes 1.040M gates [Sch12].

– Division: The circuit computes a division of an |N | bit value by e = 216 + 1.
For |N | = 2048 the size of this component is about 900K AND gates.

https://doi.org/10.1007/11745853_30
https://doi.org/10.1007/11745853_30
https://doi.org/10.1007/3-540-49649-1_2
https://doi.org/10.1007/978-3-540-85174-5_31
https://doi.org/10.1007/978-3-540-85174-5_31
https://doi.org/10.1007/978-3-642-30042-4
https://doi.org/10.1007/978-3-642-30042-4
https://doi.org/10.1007/3-540-45539-6_15

Fast Distributed RSA Key Generation 361

– Computing the inverse of an |N | bit number modulo e: This operation is
done by first reducing the number modulo e and then raising the result to
the power of e−2 modulo e. The first step takes about 900K AND gates, and
the second step takes 64K AND gates.

– Comparisons, additions, and multiplications by small numbers (smaller than
e): These operations are implemented with a number of gates that is linear
in the size of their inputs, and is therefore quite small. We estimate an upper
bound of 100 K for the number of AND gates in all these operations.

The total size of the circuit is therefore less than 5.5M AND gates. The honesty
proof should be carried out by each of the parties, and dual execution requires
computing the circuit twice. Therefore the total number of AND gates computed
is less than 22M.

	Fast Distributed RSA Key Generation for Semi-honest and Malicious Adversaries
	1 Introduction
	2 Preliminaries
	3 Construction
	3.1 Protocol Structure
	3.2 The Semi-honest Construction
	3.3 Malicious Construction
	3.4 Outline of Proof

	4 Instantiation
	References
	A The Size of the Circuit for the Proof of Honesty

