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Abstract. Indistinguishability obfuscation has become one of the most
exciting cryptographic primitives due to its far reaching applications in
cryptography and other fields. However, to date, obtaining a plausibly
secure construction has been an illusive task, thus motivating the study
of seemingly weaker primitives that imply it, with the possibility that
they will be easier to construct.

In this work, we provide a systematic study of compressing obfusca-
tion, one of the most natural and simple to describe primitives that is
known to imply indistinguishability obfuscation when combined with
other standard assumptions. A compressing obfuscator is roughly an
indistinguishability obfuscator that outputs just a slightly compressed
encoding of the truth table. This generalizes notions introduced by Lin
et al. (PKC 2016) and Bitansky et al. (TCC 2016) by allowing for a
broader regime of parameters.

We view compressing obfuscation as an independent cryptographic
primitive and show various positive and negative results concerning its
power and plausibility of existence, demonstrating significant differences
from full-fledged indistinguishability obfuscation.

First, we show that as a cryptographic building block, compressing
obfuscation is weak. In particular, when combined with one-way func-
tions, it cannot be used (in a black-box way) to achieve public-key
encryption, even under (sub-)exponential security assumptions. This is
in sharp contrast to indistinguishability obfuscation, which together with
one-way functions implies almost all cryptographic primitives.

Second, we show that to construct compressing obfuscation with per-
fect correctness, one only needs to assume its existence with a very
weak correctness guarantee and polynomial hardness. Namely, we show
a correctness amplification transformation with optimal parameters that
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relies only on polynomial hardness assumptions. This implies a univer-
sal construction assuming only polynomially secure compressing obfus-
cation with approximate correctness. In the context of indistinguisha-
bility obfuscation, we know how to achieve such a result only under
sub-exponential security assumptions together with derandomization
assumptions.

Lastly, we characterize the existence of compressing obfuscation with
statistical security. We show that in some range of parameters and for
some classes of circuits such an obfuscator exists, whereas it is unlikely
to exist with better parameters or for larger classes of circuits. These
positive and negative results reveal a deep connection between compress-
ing obfuscation and various concepts in complexity theory and learning
theory.

1 Introduction

Program obfuscation is an intriguing and powerful concept in modern cryp-
tography. A program obfuscator is a compiler that “scrambles” programs into
ones that are hard to reverse engineer, while preserving their functionality. The
predominant notion that captures the above concept is indistinguishability obfus-
cation, introduced in the seminal work of Barak et al. [14], which has inspired a
vibrant area of research in recent years. Informally, indistinguishability obfusca-
tion (iO) guarantees that the obfuscations of two functionally equivalent circuits
of the same size are computationally indistinguishable.

There are two main reasons why iO has become such a central primitive—
its potential to exist and its power. As opposed to stronger notions of obfus-
cation that are known not to exist for all circuits (such as virtual black-
box obfuscation [14]), general purpose iO might be realizable, and in fact,
since the work of Garg et al. [38] many candidate constructions of iO have
emerged [5,8,13,27,38,42,44,68,73]. As for its power, iO serves as a hub for
an impressive number of cryptographic primitives, ranging from classical con-
cepts such as one-way functions [53], public-key encryption [70], trapdoor per-
mutations [19], ZAPs and non-interactive witness-indistinguishable proofs [18],
to ones that are still far beyond the reach of any other assumption, such as
deniable encryption [70], fully-secure multi-input functional encryption [45], and
many others.

Despite immense efforts to construct iO from concrete assumptions, all cur-
rently known candidate constructions have been shown to be vulnerable to
attacks [7,12,23,32,33,43,62,66].1 Another line of work shows how to con-
struct iO from some seemingly “simpler” or “weaker” generic cryptographic
primitives (together with more standard assumptions). These include prim-
itives such as low-degree multilinear maps [4,55,56,59], compact functional
encryption schemes [3,20], compact randomized encodings [58], and variants of
1 Some of the attacks apply directly to the candidate construction while some only

apply to the underlying graded encoding scheme [34,35,42]. See Ananth et al. [1,
Appendix A] for an overview.
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exponentially-efficient indistinguishability obfuscation [17,57], all of which have
no known instantiations from standard assumptions.

The difficulty of constructing iO motivates the study of such seemingly
weaker cryptographic primitives, with the hope that such a study could elu-
cidate the foundations of iO. In this paper, we focus on the primitive which
is arguably the simplest to define and the closest in its nature to iO: indistin-
guishability obfuscation with nontrivial compression, or in short, compressing
obfuscation.

Compressing obfuscation. For functions t(s, n) and �(s, n), we say that an
obfuscator O is (t, �)-compressing if, when given a circuit C of size s on n inputs,
the obfuscator O(C) runs in time t(s, n) and has output length �(s, n). In the
case of iO, both t and � are polynomial in s and n, but in general, we allow them
to be super-polynomial, or even (sub-)exponential. This definition generalizes
existing relaxations of iO (such as XiO and SXiO which we discuss below) and
allows us to characterize the extent to which efficiency impacts the existence,
applications, and limitations of obfuscation. Throughout this work, we mostly
focus on the following two settings of parameters, which intuitively, are relaxed
versions of iO that only allow obfuscating circuits with logarithmic input size:

– XiO. The first (and weaker) setting of parameters is that of exponentially-
efficient iO (XiO), introduced by Lin et al. [57]. XiO allows the running
time of the obfuscator to be as large as the truth table of the circuit to
be obfuscated, but requires the size of the obfuscated circuit to be slightly
smaller than its truth table. More formally, for a function c (which denotes
the compression of XiO), we say that c-XiO is a (t, �)-compressing obfuscator
with t(s, n) = poly(2n, s) and �(s, n) = c(n) · poly(s). When there exists a
constant ε > 0 such that c(n) = 2n(1−ε), we denote c-XiO simply by XiO. Lin
et al. [57] showed that XiO for all circuits and Learning With Errors (LWE),
both with sub-exponential security, imply iO.

– SXiO. The second (and stronger) setting of parameters is that of strong XiO
(SXiO), introduced by Bitansky et al. [17]. SXiO requires that the time to
obfuscate a circuit is slightly smaller than the truth table of the circuit. More
formally, for a function c, we say that c-SXiO is a (t, �)-compressing obfuscator
with t(s, n) = �(s, n) = c(n) · poly(s). Similar to the above case, when there
exists some constant ε > 0 such that c(n) = 2n(1−ε), we denote this simply by
SXiO. Bitansky et al. [17] showed that SXiO and any public-key encryption,
both with sub-exponential security, imply iO.

These two settings of parameters have seemingly minor differences, but nev-
ertheless, are not known to be equivalent. Moreover, as mentioned above, their
known implications illustrate the richness of the world of compressing obfusca-
tion, and indicate that efficiency is a fundamental property of obfuscation. Since
the regime of parameters for compressing obfuscation is somewhat non-standard
(especially, the distinction between time and output length in XiO), it has not
received adequate attention, and as a result we know very little about it.
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In this work, we provide a systematic study of compressing obfuscation as an
independent cryptographic primitive, and thus characterize the extent to which
efficiency plays a role in obfuscation.

1.1 Our Results

Our results span a wide range of topics concerning compressing obfuscation,
including limitations of its power, existence in an information-theoretic setting,
constructions for limited classes of functions, and correctness amplification.

XiO vs. PKE. We start by exploring the power of XiO as an independent
cryptographic primitive. One the one hand, we know that when combined with
LWE it implies full-fledged iO (which in turn implies almost all cryptographic
primitives). On the other hand, as opposed to iO [53], we do not even know
whether XiO by itself2 implies one-way functions — the most basic cryptographic
primitive.

One of the original applications of obfuscation, which was proposed by Diffie
and Hellman back in 1976 [36], is to transform private-key encryption into public-
key encryption. When combined with one-way functions, iO can be used to per-
form such a transformation, as shown by [38,70]. This raises the same question
regarding XiO: Can it bridge the gap between the world of private-key cryptog-
raphy and that of public-key cryptography? We provide evidence that it cannot,
and thus show a concrete lower bound on its potential power.

Theorem 1.1 (informal). There is no fully black-box construction of a per-
fectly correct key-agreement protocol from one-way functions and perfectly correct
2(1−ε)n-XiO for any constant ε > 0, even with sub-exponential security.

The result is obtained by following the black-box framework of [9,10,15],
where they consider obfuscation for oracle-aided circuits. This captures exactly
the flavor of constructions which give public-key encryption from one-way func-
tions and iO [70]. We make various modifications to this framework to capture
the notion of XiO for oracle-aided circuits.

Previously, by combining [9,17], the above result follows for the case of
2(1−ε)n-XiO where 0 < ε ≤ 1/2 (i.e., the obfuscator has only somewhat weak
compression).3 In contrast, our separation works even when given access to an
obfuscator with very strong compression (i.e. any constant ε > 0) and even if
the obfuscator satisfies perfect correctness.

The frameworks that this result is based on are rooted in the ideas of Impagli-
azzo and Rudich [51], who show a separation between one-way permutations and
key-agreement. Their result holds both for the case of key-agreement with per-
fect or imperfect completeness. Nevertheless, we note that our separation does
not hold for imperfect key-agreement, and we leave the extension to future work.
2 Assuming any average- or worst-case hardness assumption. This is necessary as XiO

exists unconditionally if P = NP.
3 Indeed, [9] showed a separation of perfect key-agreement from imperfect private-key

FE, and [17] showed a black-box construction of 2n/2-XiO from private-key FE.
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Statistical security. Our result that it is unlikely that key-agreement can be
constructed from XiO and one-way functions can be viewed as “good news”,
as it hints that XiO is a somewhat “weak” primitive, and therefore it might
be possible to base its existence on well-studied assumptions. In fact, it might
even be possible that compressing obfuscation exists unconditionally (even if
P �= NP). Toward this end, we show almost matching upper and lower bounds
for the existence of compressing obfuscation with statistical security, both for
the case of perfect correctness and that of approximate correctness. Our results
show tight connections between compressing obfuscation and various concepts
in complexity theory and learning and thus we view this as one of the central
takeaways of this work.

For the case of approximate correctness, we show a 2nε

-SXiO for ε > 0 for
small classes of circuits (such as AC0). On the other hand, we show that such an
obfuscator cannot exist for larger classes of circuits that contain a (puncturable)
PRF, unless SAT ∈ AM[2nε

], where SAT is the problem of deciding whether a
formula is unsatisfiable and AM[t(n)] is the class of all languages on instances of
size n that have an AM protocol in which the running time of the verifier and
the message sizes are at most t(n).

Theorem 1.2 (informal). There exists a statistically secure and approximately
correct 2nε

-SXiO for AC0 and ε > 0. On the contrary, unless SAT ∈ AM[2nε

],
there is no such obfuscator for any class that contains a (puncturable) PRF.

This result naturally leads to the question of whether we can get a similar
statement for the case of perfect correctness. We are unable to get such a result
for SXiO, but we do get it for XiO, albeit with worse compression.4

Theorem 1.3 (informal). There exists a 2n(1−ε)-XiO for ε ∈ 1/poly log(n) with
statistical security and perfect correctness for AC0.

Ruling out statistically secure XiO with any compression is left as an open
problem. We do show that unless SAT ∈ AM[2c(1−ε)n] for a universal constant
c ∈ N, there is no statistically secure and perfectly correct 2n(1−ε)-SXiO for
AC0 (see Theorem 5.2). It is known, by the recent result of Williams [72], that
SAT ∈ AM[Õ(2n/2)]. However, it might be that for larger values of ε (such as
ε = 1 − (0.1/c) or even ε = 1 − o(1)) it holds that SAT /∈ AM[2c(1−ε)n].

The positive results are based on classical (PAC) learning algorithms [60,71]
and the circuit compression algorithm of [31]. Both negative results above rely
on and (carefully) extend analogous arguments from the iO literature [24,47,53].
Goldwasser and Rothblum [47] showed that statistical iO with perfect correctness
cannot exist unless NP ⊆ SZK. Brakerski, Brzuska, and Fleischhacker [24] extend
the result to handle statistical iO with approximate correctness by showing that
(assuming additionally one-way functions) unless coNP ⊆ AM, it cannot exist.
4 The obfuscator we get is weak due to two reasons. First, the class for which we obtain

XiO does not contain (puncturable) PRFs and thus is not sufficient for known trans-
formations to iO. Second, the compression we achieve is not enough for cryptographic
applications.
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Correctness amplification. Our results above suggest that approximate cor-
rectness might be easier to achieve than perfect correctness, in an information
theoretic setting. Is this the case also in the computational setting? To address
this question, we show a transformation from approximately correct XiO to per-
fectly correct XiO, assuming the original XiO applies to a large enough class
of circuits. This transformation achieves optimal parameters and only incurs
polynomial security loss, indicating that correctness is not the bottleneck in
constructing XiO from standard assumptions.

Theorem 1.4 (informal). If there exists an XiO scheme for all polynomial
size circuits which is correct with probability (1/2 + 1/poly) over the the inputs
and the obfuscation, then there exists a perfectly correct XiO scheme, assuming
polynomially-secure LWE and NIZKs.

Prior to this result, there were no correctness amplification procedures for
XiO which required only polynomial security or achieved optimal parameters.
Correctness amplifications for related primitives, such as those of [2,21] for iO,
do not apply to XiO, since they involve a random self-reducibility step which
inherently requires running the obfuscator on polynomial-size inputs. The trans-
formation of Bitansky et al. [16] shows how to transform an XiO which is correct
with probability 0.99 over the inputs and the obfuscation to a weak notion of
functional encryption. This notion of functional encryption was known to imply a
relaxed notion of XiO, namely, XiO with preprocessing [57]. Our transformation
works for a much weaker notion of correctness (as opposed to .99) and results in
full-fledged, perfectly correct XiO (as opposed to XiO with preprocessing).

Technically, our regime of parameters introduces many difficulties which
require us to tailor a construction that is based on a delicate combination of
various types of error-correcting codes together with cryptographic primitives
(inspired by [65]).

While we show this transformation for the case of XiO, our result extends
naturally to the case of SXiO. In particular, we can obtain perfectly correct XiO
from the transformation, or SXiO which is correct on all but a negligible fraction
of obfuscations.

Universal construction. Using our correctness amplification procedure, we
obtain a universal construction of an XiO (resp. SXiO), assuming only the mere
existence of XiO (resp. SXiO) with polynomial security and only (very weak)
approximate correctness. For XiO, the resulting universal construction satisfies
perfect correctness. Note that in the context of iO, perfect correctness is known
to be achievable using only derandomization assumptions [22]. Our result is
obtained by adapting the robust combiner of Ananth et al. [1] to the setting of
XiO (resp. SXiO) and then using our correctness amplification transformation.
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1.2 Related Work

Universal construction and robust combiners. It was shown in [48] that,
in general, a robust combiner implies the existence of a universal construction.
A robust combiner for a cryptographic primitive takes several candidate con-
structions of the primitive and outputs one construction that is as good as any
of the input constructions (see also [49,50]). A combiner for encryption appears
already in [11], and perhaps the most known universal construction is that of
one-way functions, due to [54].

Combiners for obfuscation were given in [1,2,37]. The work of [1] shows a
robust combiner for indistinguishability obfuscation with sub-exponential secu-
rity loss, and assuming either LWE or DDH. The work of [2] removes the sub-
exponential assumption, but does not go all the way to iO—it shows a trans-
forming combiner from candidates for indistinguishability obfuscation of which
one of them is polynomially secure to a secure functional encryption scheme.

Existence of iO. Mahmoody et al. [63] showed that iO cannot be based on ran-
dom oracles or on constant degree multilinear maps (in a black-box way). Garg
et al. [40] showed that iO cannot be constructed from any type of encryption
that has an “all-or-nothing” type of security (as in PKE or Witness Encryp-
tion). Lastly, Garg et al. [41] studied the minimal compactness needed from a
functional encryption scheme to imply iO, and giving matching constructions,
following [3,20].

Limitations on the power of iO were studied by Asharov and Segev [9,10] and
by Bitansky, Degwekar and Vaikuntanathan [15]. So far, we know that iO and
one-way functions do not imply collision-resistant hash functions [9], domain-
invariant one-way permutations [10], and hardness in NP ∩ coNP [15]. Also, iO
and one-way permutations do not imply hardness in SZK [15].

Relaxations of iO. In addition to (S)XiO, another relaxation of iO is decompos-
able obfuscation (dO), which was recently introduced by Liu and Zhandry [61].
Decomposable obfuscation relaxes the security requirement of iO by requiring
that obfuscations of circuits which satisfy a new notion of functional equivalence
are indistinguishable. In particular, it is efficient to verify if two circuits satisfy
their notion of functional equivalence, unlike traditional functional equivalence.
This is similar to the case of XiO, because it is applied on circuits with only
logarithmic input size for polynomial time applications. In [61], they question
whether iO with efficiently verifiable functional equivalence implies public-key
encryption. In fact, they have to assume the existence of public-key encryption
for all the applications of dO that they show which imply public-key encryption.
As mentioned above, we show a separation from XiO and OWFs to public key
encryption. Therefore, our result serves as further evidence to the hypothesis
that (non) efficiently checkable functional equivalence is one of the key factors
which distinguishes iO from notions like XiO and dO.
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Compressing primitives. Recently, compressing witness encryption (WE)
was studied by Brakerski et al. [25]. Witness encryption, introduced by Garg
et al. [39], allows encrypting a message relative to a statement x ∈ L for a lan-
guage L ∈ NP such that anyone holding a witness to the statement can decrypt
the message, but if x /∈ L, then it is computationally hard to decrypt. A com-
pressing WE is such that the encryption time (and thus size) is less than the
time it takes to solve the NP instance. Brakerski et al. showed that such a WE
scheme can be constructed under “standard” assumptions (such as LWE or bilin-
ear maps with sub-exponential security). This is in sharp contrast to SXiO (or
even XiO).

Paper organization. We proceed with a technical overview of our results. We
refer the reader to the full version of the paper for important preliminaries and
definitions. In Sect. 3 we show our correctness amplification transformation, and
in Sect. 4 we prove our impossibility result on constructing key-agreement from
XiO and OWFs. In Sect. 5 we present our positive and negative results regarding
statistically secure compressing obfuscation. Most of the technical material is
omitted and appears in the full version.

2 Technical Overview

In this section we provide a high level overview of our results. We start with
the correctness amplification (and its application to universal constructions) in
Sect. 2.1. We proceed with the limitations on the power of XiO in Sect. 2.2, and
conclude with our constructions and impossibilities of statistically secure XiO
in Sect. 2.3.

2.1 Correctness Amplification

Our correctness amplification for XiO is a transformation from an approxi-
mately correct XiO scheme to an XiO scheme that is perfectly correct. Here,
by approximately correct, we mean an XiO scheme which is correct with prob-
ability (1/2 + 1/poly) over the inputs and the obfuscation, and by perfectly
correct, we mean an XiO scheme which is correct on all inputs and all obfus-
cations with probability 1. The starting point for our correctness amplification
is the transformation of Bitansky et al. [16], which transforms an XiO scheme
which is correct with probability .99 over the obfuscation and the inputs to a
functional encryption (FE) scheme which is correct on all inputs (with all but
negligible probability). At a high level, FE is a type of encryption which enables
generating functional keys, such that decryption of a ciphertext corresponding
to a message m with a functional key for a circuit C results in C(m). The hope
is that if we can adapt the [16] transformation to our case, then we can attempt
to transform the correct FE back to XiO.
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From approximately correct XiO to correct FE. In [16], they first observe
that by averaging and standard BPP-type amplification, their XiO scheme can
be amplified to one which is correct with probability .9 only over the inputs.
Then, they transform this XiO to a correct FE using an error-correcting code,
as follows. To encrypt a message m, they obfuscate a circuit Gm which, on input
i, outputs an encryption of (m, i) using a succinct functional encryption scheme
sFE, that exists based on LWE [46]. Call the resulting obfuscated circuit ˜Gm.
To generate a secret key for a circuit C, they generate an sFE secret key for a
circuit C ′ that on input (m, i) outputs the ith bit of ECC(C(m)), where ECC is
an error-correcting code. To decrypt, they first evaluate the obfuscated circuit
˜Gm on every input i to obtain a list of encryptions of (m, i) for all i. Then, they
use the sFE secret key to decrypt each of these encryptions and finally, decode
the result.

The reason why this is enough for [16] is that, first, by the BPP amplification,
they obtain correct encryptions of (m, i) for a .9 fraction of i’s, with all but
negligible probability over the obfuscation. This lets them calculate (ECC(C(m))i

for a large (� 3/4) fraction of the i’s. Second, they rely on the error-correcting
code which, given (ECC(C(m))i for many (� 3/4) i’s, can recover C(m).

In our case, a natural attempt would be to replicate their first step and
then use an error-correcting code with better parameters for the second step.
However, this approach fails: we are only guaranteed correctness with probability
(1/2 + 1/poly(λ)) over the obfuscation and the inputs, which is not enough for
averaging and BPP-type amplification. Nevertheless, the framework of [16] is
still a convenient starting point for us.

Our first challenge is to obtain every bit of the encryption of (m, i) for suffi-
ciently many i’s. One idea is to apply an error-correcting code to the output of
Gm, so that for any index i for which Gm correctly outputs enough of the bits
of the encryption of (m, i), we can decode successfully. While this is not possible
for our regime of parameters using classical binary error-correcting codes, this
is achievable with binary list-decodable codes, which output a list of possibilities
upon decoding a codeword, rather than a unique decoding. Therefore, we modify
the circuit Gm to output a list-decodable encoding of the encryption of (m, i),
one bit at a time, which will be decoded at decryption time. This introduces
the complication that list-decoding gives many possibilities for the encryption
of (m, i) for each i. To address this, we employ a combination of NIZK proofs
and commitments which enable us to uniquely decode from the decoded list.
At a high level, we impose the requirement that in addition to the ciphertext
of (m, i), the circuit Gm on input i must output a NIZK proof certifying that
the ciphertext is correct. This ensures that we obtain sFE encryptions of (m, i)
for a noticeable fraction of the inputs i. Thus, we have replaced the BPP-type
amplification of [16] with list-decodable codes, NIZK proofs, and commitment
schemes.

After this change, we have that for a noticeable (but small, say 1%) fraction
of the i’s, we obtain a correct encryption of (m, i). If we decrypt this with
the sFE secret key of [16], we would hope to obtain (ECC(C(m)))i for enough
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i’s such that ECC can successfully decode to C(m), but this does not quite
work because we only have a very small fraction of correct encryptions. Indeed,
no (binary) error-correcting code can recover from more than 50% error! To
overcome this, we notice that we have additional information (thanks to the
NIZK) – we know exactly for which i’s we obtained correct sFE encryptions of
(m, i). Therefore, we replace the error-correcting code in the [16] construction
with a code that can recover from a high fraction (say 99%) of erasures. To obtain
optimal parameters, this requires us to have sFE output alphabet symbols rather
than bits, but this does not impact the correctness of the scheme. Combining
these two steps, we obtain an FE scheme with amplified correctness. As far as
we know, this combination of list-decodable codes and erasure-correcting codes
is novel to this work.

These techniques nearly work, with the caveat that our first step only gives us
the correct encryptions of enough (m, i) when the obfuscator uses “good” random
coins. Nevertheless, this can be remedied by using BPP-type amplification and
leveraging the fact that our FE scheme always decrypts to ⊥ or to the correct
output, C(m). Therefore, this results in an FE scheme which is correct for all
inputs with all but negligible probability.

From correct FE to correct XiO. The only remaining step is to transform
the FE back to XiO. The FE scheme we obtain from the above transformations
is weakly sublinear compact, a weak notion of compactness which does not suffice
for known transformations to XiO without assuming sub-exponential security.
FE with weak sublinear compactness has the property that while the encryption
time is proportional to the circuit size of circuits supported by the scheme,
the ciphertext lengths are compact. We take advantage of this by having an
obfuscation consist of many “short” encryptions, which exactly captures the
requirement that the obfuscator has a long running time but a nontrivial output
length.

To obfuscate a circuit C, we encrypt a circuit Cx for each x ∈ {0, 1}n/2,
where Cx(·) = C(x‖·). Then, we generate a functional key sk for a circuit T ,
which, given a circuit on n/2 bits, outputs its truth table. The ciphertexts and
functional key serve as our obfuscation, which gives the desired efficiency for XiO
exactly because of the weak compactness of FE. To evaluate the obfuscation on
an input x = x1‖x2, we use FE to decrypt Cx1 with sk, and select the element
of the truth table corresponding to x2. This transformation yields a correct and
secure XiO scheme, in which for any circuit C and every input x, it holds that
the obfuscation of C at the point x agrees with C(x) with all but negligible
probability.

In the technical section, we present the full construction in a more stream-
lined manner. In particular, we compose the XiO to FE transformation with
the FE to XiO transformation described above, which yields a transformation
from approximately correct XiO to XiO that is correct on any input with all but
negligible probability over the randomness of the obfuscator.
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Given an XiO which is correct on any input with all but negligible probability,
we can then apply another BPP-style transformation (this time we apply parallel
repetitions and then take the majority vote) to get an obfuscator that for all but
negligible fraction of the obfuscations the obfuscated circuit completely agrees
with the input circuit. To conclude our correctness amplification, we observe
that the running time for XiO allows the obfuscator to compute the truth table
of the circuit it obfuscates. Therefore, we modify the obfuscator to check if an
obfuscation ˜C of a circuit C is correct by running over all inputs. If ˜C agrees
with C, then ˜C is used as the obfuscation, and if not, we simply output C in
the clear. This takes advantage of the running time of XiO, and incurs only a
negligible loss in security, thus resulting in a perfectly correct XiO.

A universal construction. An important application of correctness amplifica-
tion is a universal construction. We show a universal construction for XiO (resp.
SXiO) by combining our correctness amplification with the results of [1].

A universal construction for a primitive can be obtained via a robust com-
biner for that primitive, which is a transformation that takes several candidate
constructions of the primitive and outputs one construction that is as good as
any of the input constructions. It is robust in the sense that it should work even
if some of the candidates have weak correctness guarantees, have bad running
times, etc. A universal construction is then acquired by enumerating over all
possible candidates while making sure not to be “fooled” by bad faulty candi-
dates so that we end up with a correct candidate. Thus, it is guaranteed that
the resulting candidate is correct and secure.

We observe that a combiner (i.e., a secure candidate assuming one exists) for
XiO (resp. SXiO) can be obtained by adapting the construction for iO of Ananth
et al. [1] which further relied on LWE. In the case of iO, their construction, on
input circuit C, obfuscates a variant of C that has the same input domain as
C. In the security proof, they go “input-by-input” over this obfuscated circuit
which results in a sub-exponential security loss. We notice that, in the case
of XiO (resp. SXiO), the number of inputs in the above obfuscated circuit is
at most logarithmic, so the very same proof can be carried out, losing only a
polynomial term. Then, to make the combiner robust we use our correctness
amplification procedure. This results in a universal construction of perfect XiO
(resp. imperfect SXiO), assuming the existence of XiO (resp. SXiO) with very
weak correctness.

2.2 Impossibility of Key-Agreement

To illustrate the difference between the power of compressing obfuscation and
iO, we revisit one of the primary applications of iO—transforming a private-
key scheme into a public-key one. In the context of iO, this transformation
is performed by obfuscating the encryption circuit of a private-key encryption
scheme, while embedding the symmetric secret key into the circuit. The public
key is then simply the obfuscated circuit. In order to encrypt a message m, one
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has to choose randomness r and run the obfuscated circuit on (m, r) to obtain
the ciphertext c. An important property of this construction is the ability to
obfuscate circuits with “hardwired cryptography”, e.g., the evaluation circuit of
a pseudorandom function with a hardwired PRF key.

Since XiO is efficient only when obfuscating circuits with logarithmic size
input, one cannot use the above approach with XiO even when the message
space is limited to a single bit. Given the public key, the adversary can learn
the entire truth table of the obfuscated circuit by enumerating over all inputs,
thereby breaking the secrecy of the underlying message. Our proof formalizes
this intuition, and shows that other attempts to make such a transformation
cannot succeed. We formalize this using a black-box separation, showing that
no perfectly complete bit-agreement protocol can be constructed from perfectly
correct XiO and one-way functions.

Modeling non-black-box constructions. Constructions that are based on
indistinguishability obfuscation are almost always non-black-box in the underly-
ing primitives. In the example above, the circuit being obfuscated is the encryp-
tion algorithm of a private-key encryption scheme and thus contains a specific
circuit representation of the underlying one-way function as a sub-circuit. We
follow the framework of Asharov and Segev [9,10] that captures such construc-
tions by enabling the obfuscator to run on oracle-aided circuits, i.e., circuits that
might contain oracle gates. We refer to [9,10] for details regarding this model
(see also [15]), and for examples of how it capture common techniques such as
the punctured programming technique of Sahai and Waters [70] and its variants.

The oracle. Our result is obtained by presenting an oracle Γ relative to which
the following properties hold: (1) there exists a one-way function f ; (2) there
exists a perfectly-correct, exponentially-secure XiO scheme for all oracle-aided
circuits Cf ; (3) for any perfectly complete bit-agreement protocol between two
parties, there exists an eavesdropping adversary that makes polynomially many
queries to the oracle Γ and succeeds to recover the bit from the transcript of
the interaction. Our oracle consists of three functions, similar to that of [10]:
(1) a random function f that will serve as the one-way function; (2) a random
length-increasing function O that will serve as the obfuscator (an obfuscation
of an oracle-aided circuit C is a “handle” ̂C = O(C, r) for a random string r),
and (3) a function E that enables evaluations of obfuscated circuits: given some
obfuscated circuit ̂C and an input x, the function E looks for the lexicographically
first pair (C, r) for which O(C, r) = ̂C and returns Cf (x).

The main difference between our oracle and the oracle of [10] is the expansion
factor of the oracle O. In order to capture compressing obfuscation, the expansion
factor that we use is (sub-)exponential in the input size of the circuit C. While
this modification is somewhat minor in syntax, it has a major effect – if the
expansion factor is “small” then it is possible to construct a polynomial time
key-agreement protocol relative to such an oracle (following the construction
of Sahai and Waters [70]), whereas for a larger expansion factor this becomes



On the Complexity of Compressing Obfuscation 765

impossible. As for the existence of one-way functions and indistinguishability of
obfuscated circuits, we derive these almost for free from [10].

In what follows, we first discuss how to break a perfectly complete key-
agreement protocol relative to a random oracle as a warmup. We then discuss
the challenges when dealing with our (more structured) oracle, and discuss why
our approach does not work for iO.

Separating key-agreement from a random oracle. As a warmup, we
first present an overview of the result of Impagliazzo and Rudich [51] and
Brakerski et al. [26], who show that for any two polynomial time oracle-aided
algorithms A and B, if 〈Af ,Bf 〉 implements a perfectly-correct bit-agreement
protocol for all functions f , then there exists an oracle-aided algorithm E such
that for any function f learns the agreed bit with probability 1 by making only a
polynomial number of oracle queries to f . The adversary E is given a transcript
T which is a result of an interaction of A and B relative to some oracle f , and is
required to find the key k� that A and B agreed on. Denote by r�

A (resp. r�
B) the

randomness used by A (resp. B) in the real interaction that produced T . The
adversary E initializes a set of queries/answers Q, which will contain the actual
queries made by E to the true oracle f . It also initializes a multiset K = ∅, and
repeats the following polynomially many times:

– Simulation: E simulates an oracle f ′ that is consistent with Q (i.e., f ′(w) =
f(w) for every w ∈ Q), and randomness r′

A, r′
B such that the interaction

〈Af ′
(r′

A),Bf ′
(r′

B)〉 (i.e., running the protocol with respect to the function f ′

with randomness r′
A for A and r′

B for B) results in the transcript T and key
k′. E adds k′ to K.

– Update: E asks f for all queries in f ′ that are not in Q, and updates the
set Q.

At the end of the attack, E outputs the majority value in K. The proof then
relies on the following observation: In each iteration, either (1) in the update
phase, E finds at least one new query that is also made by either A or B during
the real interaction with the function f that produced the transcript T ; or (2)
E adds the real key k� to K.

Intuitively, if (1) does not hold, then the perfect correctness of the bit-
agreement protocol guarantees that (2) holds. In particular, in that case it is
possible to construct a “hybrid” oracle ˜f that behaves like f in the real execu-
tion of A, i.e., Af (r�

A), and behaves like f ′ in the simulated evaluation of B, i.e.,
Bf ′

(r′
B). According to this hybrid oracle, an execution of A with randomness

r�
A and an execution of B with randomness r′

B would result in the transcript T ,
A would output k� (as in the real execution) and B would output k′ (as in the
simulation). Perfect correctness then tells us that k� = k′. This hybrid oracle
can be constructed since the simulated execution and the real execution have
no intersection queries in addition to the queries which are already in Q, and
therefore there are no contradicting queries (i.e., queries w that appear in both
executions for which f(w) �= f ′(w)). As the number of oracle queries A and B
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make during the execution of the protocol is some polynomial q, the majority
value in K is guaranteed to be the correct key after 2q + 1 iterations.

Attacking key-agreement relative to our oracle. We extend the attack
described above relative to our oracle Γ , which is a significantly more structured
than a random oracle and therefore raises several challenges. Recall that our
oracle Γ consists of a three functions f , O, and E , that are dependent. Following
the above template, we construct an adversary that simulates an execution that
produces the transcript T with some simulated oracle Γ ′ = (f ′,O′, E ′). There are
two main challenges with this approach. The first is to show that A and B cannot
gain “extra” information from oracle queries that are not in the intersection
of their query sets. In particular, in the case of a random oracle, the shared
information between A and B can be recovered completely from their shared
oracle queries and the transcript T . In our setting, since the oracles f , O, and
E have dependence, this may not be the case.

The second challenge is to show that a hybrid oracle ˜Γ = ( ˜f, ˜O, ˜E) can be
constructed from the two sets of queries, i.e., from the simulated execution and
the real execution.

As an example, suppose there is a query E( ̂C, x) that is performed in the real
execution and a different query E ′( ̂C, y) that appears in the simulated execution.
Such two queries raise a challenge for constructing a hybrid oracle ˜E which is con-
sistent with these two queries simultaneously. In order to see this, suppose that
in the real execution, the lexicographically first pair (C, r) for which O(C, r) = ̂C
is some pair (C1, r1), and in the simulated execution the lexicographically first
pair (C, r) for which O′(C, r) = ̂C is some pair (C2, r2) �= (C1, r1). As a result,
E( ̂C, x) in the real execution is mapped to Cf

1 (x), whereas E ′( ̂C, y) is mapped
to Cf ′

2 (y), but C1 �= C2.
We solve the first challenge by adding additional oracle queries to the set

of real queries that the parties make, which makes the dependence between
the oracles more explicit. As for the second challenge, interestingly, our proof
does not completely solve it, and we do not fully control to which one of the
two circuits C1 or C2 the hybrid oracle ˜E maps ̂C. Nevertheless, we design the
adversary such that, whenever there is such a contradicting scenario between
the real execution and the simulated execution, it must hold that C1 and C2

are functionally equivalent with respect to the hybrid oracle ˜Γ . Otherwise, i.e.,
when there is some input for which C1 and C2 do not agree, we claim that the
adversary learns a new query that is associated with the real execution. As a
consequence, E learns the entire truth table of any obfuscated circuit ̂C that is
associated in the real execution, which is possible due to the fact that querying
the oracle Γ on all inputs of ̂C results in polynomially many queries. Notably, for
a different expansion factor of the oracle O (which results in iO and not XiO),
this becomes an exponential number of queries, and the above attack fails.
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2.3 Statistically Secure Compressing Obfuscation

This set of results is composed of two main parts. One is positive results showing
that for small classes of circuits compressing obfuscation exists unconditionally.
The other complements the constructions and shows that improvements in the
above obfuscator, either in the compression factor or in the circuit class, will
imply some nontrivial speedup for protocols solving SAT or UNSAT. We have
positive and negative results both for the case of perfect correctness and for the
case of approximate correctness.

Negative results. First, we show that approximately correct and statistically
secure 2nε

-SXiO cannot exist unless coNP ⊆ AM[2nε

] for ε > 0. Here, we follow
on the approach of [24] from the world of iO. There, they show how to use iO
and puncturable PRFs to create two circuits that differ at a single point but
their obfuscations (as random variables) are statistically far. Then, they use
an algorithm that can distinguish these two distributions to solve Unique-SAT
which then implies that coNP ⊆ AM by a result of Mahmoody and Xiao [64]. We
modify the argument to work with compressing obfuscation by making the two
circuits receive only short inputs, and observe that the proof still goes through,
but then solving Unique-SAT on short inputs (say of poly-logarithmic size). We
then apply the result of Mahmoody and Xiao and finally obtain our result by
scaling the parameters.

Second, we show that perfectly correct and statistically secure 2n(1−ε)-SXiO
cannot exist unless coNP ⊆ AM[2(1−ε)n] (with large enough 0 < ε < 1). For this,
we construct an SZK[2(1−ε)n] protocol for all NP. In this protocol, the verifier,
given x ∈ L for a language L, chooses a bit b uniformly at random and obfuscates
a circuit that gets a witness w as input, checks whether it is a valid witness for
x and if so, it outputs b (otherwise it outputs ⊥). This protocol can be shown
to be honest-verifier statistical zero-knowledge with a verifier that runs in time
2(1−ε)n for L. This argument is reminiscent to the argument of [47,53] in the
context of iO. We then carefully apply the transformation of Okamoto [67] to
translate this protocol into an (honest-verifier) SZK protocol for every language
in coNP. This implies that coNP ⊆ AM[2(1−ε)n].

Positive results. We show that compressing obfuscators exists uncondition-
ally for restricted classes of circuits such as AC0 (the class of all constant-depth
circuits) and Mon (the class of all monotone functions). We again construct
compressing obfuscators with perfect correctness and approximate correctness.
The approximately correct obfuscators are obtained by running a classical (PAC)
learning algorithm [71] on the given circuit and outputting the hypothesis. Using
the most efficient learning algorithms for AC0 and Mon, we obtain compressing
obfuscators for these classes. This construction is aligned with the above impos-
sibility that says that we are unlikely to be able to get such an obfuscator for
classes that contain a (puncturable) PRF.

In the perfect correctness case, we use a different tool called a circuit com-
pression algorithm [31]. In circuit compression one is given the truth table of a
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Boolean function f computable by some unknown circuit from a known class of
circuits, and the goal is to find in time poly(2n) a circuit C (not necessarily from
the aforementioned family) computing f so that the size of C is less than the
trivial circuit size ≈2n. We apply such an algorithm on circuits in AC0 and get
an obfuscator with small compression.

3 Correctness Amplification

In this section, we present a correctness amplification procedure for XiO. We
show that assuming the existence of an XiO scheme with very weak correctness,
there exists an XiO construction with a very strong correctness guarantee.

Theorem 3.1. Let p(·) be any polynomial. Let xiO be an XiO scheme for Plog

that is
(

1
2 + 1

p(λ)

)

-approximately correct. Assuming LWE and the existence of

NIZKs, there exists a perfectly correct XiO scheme for Plog.

The correctness amplification proceeds in three phases. First, we transform an
approximately-correct XiO scheme to a (1/poly(λ) − negl(λ))-worst-case correct
XiO scheme. Then, we transform the resulting scheme to a (1 − negl(λ))-worst-
case correct XiO scheme. Then, we transform the resulting scheme to a perfectly
correct XiO scheme.

The main technical contribution of this section is the first step, transform-
ing an approximately-correct XiO scheme to a 1/poly(λ)-worst-case correct XiO
scheme. Therefore, in Sect. 3.1, we present the construction for this step. The
full proof of Theorem 3.1 appears in the full version.

3.1 From Approximately-Correct XiO to Worst-Case Correct XiO

Fix any class of circuits Cs,n ∈ Plog. Throughout this section, we let s = s(λ)
and n = n(λ). Our transformation relies on the following primitives as building
blocks:

– xiO = (xiO.Obf, xiO.Eval) is a (1/2 + γ)-approximately correct XiO scheme
for Plog, where γ = 1/p(λ) for some polynomial p.

– ECC is a Reed-Solomon
(

8·2n
d

γλ , 2
n
d

λ , 8·2n
d

γλ − 2
n
d

λ + 1
)

2λ
erasure correcting code

that can correct up to a (1 − γ
8 )-fraction of erasures using the algorithm

ECC.Dec, where |ECC| is a polynomial of degree d − 1 in its input length.
We assume that all inputs to ECC are padded to size 2

n
d bits. We let �1 =

O(log(λ)) + n
d be the length of the output of ECC.

– LDC is a binary error-correcting code that is (12 − γ
4 , poly)-list decodable using

the algorithm LDC.Dec. We let �2 = O(log(λ)+log(s)+log(n)) be the output
length of LDC when run on inputs of size poly(λ, s, n).

– lFE = (lFE.Setup, lFE.Enc, lFE.Keygen, lFE.Dec) is a λ-output succinct FE
scheme for the class Cs′,n′ ∈ P where s′ =

(

s · 2
n
d

)d−1 · poly(λ) and n′ =
s · poly(λ, n).
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– PRF = (PRF.Key,PRF.Punc,PRF.Eval) is a puncturable PRF.
– C = (C.Commit,C.Open) is a commitment scheme.
– NIZK = (NIZK.Gen,NIZK.P,NIZK.V) is a Multi-NIZK proof system for the

NP language L given by L =
{

(ct, i, comC , com0, pk) : either
1. ∃r0, r1, C such that ct encrypts (C, i) and comC is a commitment to C,

that is, ct = lFE.Enc(pk, (C, i); r0) ∧ comC = C.Commit(C, r1), or
2. ∃r s.t. com0 = C.Commit(1, r)

}

,
We let t = t(λ) = poly(λ, s, n) denote the upper bound on the length of
statements and witnesses in L when instantiated with security parameter λ
(with parameters as used in the following scheme).

In what follows, we denote by Cx1···xk
the circuit C with the first k bits

hardwired to x1 · · · xk. We let T denote a circuit in Cs·2n
d ,s that receives as input

a circuit and outputs its truth table. The transformation is as follows.

Worst-case correct XiO scheme xiO′:

• ˜C ← xiO′.Obf(1λ, C):
1. Sample (msk, pk) ← lFE.Setup(1λ).
2. Generate a key skU ← lFE.Keygen(msk,U) for the circuit U such that

U(D, i) = ECC(T (D))[i],

for any input circuit D, where ECC(T (D))[i] denotes the ith block of
length λ of ECC(T (D)).

3. For every x ∈ {0, 1}n− n
d :

(a) Sample Kx
0 ,Kx

1 ← PRF.Key(1λ), and σx ← NIZK.Gen(1λ, 1t).
(b) Create commitments comx

Cx
= C.Commit(Cx, rx

0 ) to Cx and comx
0 =

C.Commit(0, rx
1 ) to 0 using randomness rx

0 ← {0, 1}λ and rx
1 ←

{0, 1}λ.
(c) Generate the circuit Gx = Gx[Cx, pk,Kx

0 ,Kx
1 , comx

Cx
, comx

0 , r
x
0 , σx]

such that on input (i, j) does the following:
i. Let ct ← lFE.Enc(pk, (Cx, i); PRF.Eval(Kx

0 , i)).
ii. Construct a NIZK proof π = NIZK.P(σx, v, w;PRF.Eval(K1, i))

for the statement v = (ct, i, comx
Cx

, comx
0 , pk) using the witness

w = (Cx,PRF.Eval(Kx
0 , i), rx

0 ).
iii. Output the jth bit of LDC(ct, π), denoted by (LDC(ct, π))j .

(d) Let ˜Gx ← xiO.Obf(1λ, Gx) and let ˜Cx = ( ˜Gx, σx, comx
Cx

, comx
0).

4. Output ˜C =
(

{

˜Cx
}

x∈{0,1}n− n
d

, skU , pk

)

.

• y′ ← xiO′.Eval( ˜C, x):
1. Let x = x1||x2 where |x1| = n − n

d .
2. For every i ∈ [2�1 ]:

(a) For every j ∈ [2�2 ], let cij = xiO.Eval( ˜Gx1 , (i, j)).
(b) Run LDC.Dec(ci1ci2 · · · ci2�2 ) to obtain a list of possible decodings,

where the kth element of the list is (ctki , πk
i ).
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(c) Let k� be the first index k such that NIZK.V(σ, vk
i , πk

i ) = 1 where vk
i =

(ctki , i, comx1
Cx1

, comx1
0 , pk). Set cti = ctk

�

i if k� exists and otherwise set
cti = ⊥.

(d) Run yi ← lFE.Dec(skU , cti).
3. If there are at least γ

8 ·2�1 indices i for which cti �= ⊥, let y = y1y2 · · · y2�1

and run ECC.Dec(y) and output the element corresponding to x2. Other-
wise, output ⊥.

Theorem 3.2. Assume that PRF is a puncturable PRF, lFE is a selectively-
secure λ-output succinct FE scheme for Cs′,n′

, C is a commitment scheme, and
NIZK is a Multi-NIZK for L. Fix any class of circuits Cs,n ∈ Plog. Let p(·) be any
polynomial. Then, if xiO is a (1/2 + 1/p(λ))-approximately-correct XiO scheme
for Plog, then xiO′ is a

(

γ
16 − negl(λ)

)

-worst-case correct XiO scheme for Cs,n,
for a negligible function negl.

The proof of this theorem appears in the full version.

4 On Key-Agreement from XIO and OWFs

In this section, we show a separation from compressing obfuscation and one-way
functions to key-agreement. This separation is largely based on [9,10], and in
particular follows the framework of black-box separations presented in [51].

We refer to the full version for important preliminaries, including the class of
reductions that our proof captures. Throughout this section, for ease of notation,
we denote both the security parameter and the size of circuits by s. While these
could be distinguished, it is natural to combine them in this way, as everything
can be thought of as a function of the circuit size in question. Hereafter, we
say that an oracle-aided algorithm M(1s) with oracle access to Γ is a q-query
algorithm if for every s ∈ N, the algorithm M(1s) makes at most q(s) queries,
and each of its queries have size at most q(s).

We show the separation by presenting a distribution over oracles Γ relative
to which the following properties hold: (1) there does not exist a perfectly cor-
rect key-agreement protocol, (2) there exists an (exponentially) secure one-way
function, and (3) there exists an (exponentially) secure XiO.

Let � be a 2-ary function with �(s, n) > s. The distribution S� over oracles
Γ = (f,O, E) is defined as follows:

• The function f = {fs}s∈N. For every s ∈ N, the function fs : {0, 1}s →
{0, 1}s is a uniformly chosen function. We will use f to implement a one-way
function.

• The function O = {Os,n}s,n∈N. For every s, n ∈ N, the function Os,n :
{0, 1}2s → {0, 1}10�(s,n) is a uniformly chosen function. Intuitively, Os,n will
receive a description of a circuit with size s and input length n, as well as a
string of length s (which represents the randomness of the obfuscator), and
will increase this to a uniformly chosen string of length 10�(s, n). This will be
used to implement the obfuscator for xiO. Note that �(s, n) > s, and therefore
the output of Os,n is at least 10sn.
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• The function Ef,O = {Ef,O
s,n }s∈N,n∈N. For every s, n ∈ N, the function

Ef,O
s,n : {0, 1}10�(s,n) × {0, 1}n → {0, 1}∗ is defined as follows. On input

(y, x) ∈ {0, 1}10�(s,n) × {0, 1}n, the function Ef,O
s,n finds the lexicographically

first oracle-aided circuit C of size s and input size n, and a string r ∈ {0, 1}s

such that Os,n(C, r) = y, and outputs Cf (x). If no such (C, r) exists, it
outputs ⊥. Looking ahead, the oracle Ef,O will be used to implement the
evaluator for xiO.

When �(s, n) = 2n(1−ε) · poly(s) for a constant ε > 0 and a polynomial poly,
relative to this oracle there exists a one-way function f and perfectly correct
XiO scheme. The construction of XiO is natural: Given some circuit C of size s
and input length n, the obfuscator chooses a random r ← {0, 1}s and evaluates
̂C = Os,n(C, r). Then, it checks that the resulting handle ̂C agrees with the input
circuit C: it runs over all inputs x ∈ {0, 1}n and checks that Es,n( ̂C, x) = Cf (x).
If this holds for every input, it outputs (0, ̂C). Otherwise, it outputs (1, C). The
evaluator on input circuit (0, ̂C) and input x returns Es,n( ̂C, x) = Cf (x), whereas
on input circuit (1, C) and input x evaluates Cf (x).5 The following holds, and
is discussed in the full version:

Theorem 4.1. Let �(s, n) = 2nε · poly(s) for some constant 0 ≤ ε < 1 and
polynomial poly and let Γ ← S� with Γ = (f,O, E). Then, for any oracle-aided
q-query algorithm A with q(s) < 2s/4, it holds that

Pr
x←{0,1}s,Γ

[AΓ (fs(x)) ∈ f−1
s (fs(x))

] ≤ 2−s/2.

Moreover, for any class of circuits C with f-gates, there exists an XiO scheme
xiO relative to Γ for the circuit class C such that

∣

∣

∣

∣

Pr
r,Γ

[

ExpXiO
Γ,xiO,D,C(λ; r) = 1

]

− 1
2

∣

∣

∣

∣

< 2−s/4,

for any q-query distinguisher D that makes at most q(s) < 2s/4 queries.6

The main technical difficulty is showing that there is no key-agreement protocol
relative to Γ .

Theorem 4.2. Let �(s, n) = 2nε · poly(s) for a constant 0 ≤ ε < 1 and a poly-
nomial poly. Then, for any perfectly correct oracle-aided bit agreement protocol

5 We note that the technique of enumerating over all inputs is similar to that used in
our correctness amplification, and takes advantage of the ability of XiO to compute
the truth table of the obfuscated circuit.

6 The game ExpXiO
Γ,xiO,D,C(λ; r) is the indistinguishability experiment for XiO, defined

as follows: (1) b ← {0, 1}; (2) (C0, C1, state) ← DΓ
1 (1s) where |C0| = |C1| = s and

CΓ
0 ≡ CΓ

1 . (3) ̂C ← ObfΓ (1s, Cb). (4) b′ ← DΓ
2 (state, ̂C). (5) If b′ = b then output

1. Otherwise, output 0.
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〈A(1s),B(1s)〉 in which A and B run in time at most q(s), there exists an oracle-
aided adversary E that makes q(s)O(1)+1/ε oracle queries such that

∣

∣

∣

∣

Pr
[

ExpKAΓ,(A,B),E(λ) = 1
]

− 1
2

∣

∣

∣

∣

≥ 7
16

,

where the probability is over Γ ← S�, and the randomness of A, B, and E.7

Moreover, the algorithm E can be implemented in polynomial time given access
to a PSPACE-complete oracle.

The full proof of this theorem appears in the full version. Here, we give a
high level overview. We start by defining some notation.

Notation. Let QA, QB, and QE denote the set of oracle queries made by A,
B, and E, respectively. Let [O(x) = y] ∈ Qp denote that a party p queried an
oracle O on x and received y. For example, to denote that A queried O on C
and received ˜C, we write [O(C) = ˜C] ∈ QA. Let QAB = QA ∪ QB be the set of
oracle queries in the real protocol.

For a PPT oracle-aided key-agreement protocol 〈AΓ (1s),BΓ (1s)〉, we let q =
q(s) denote an upper bound on the running time of A and B for any oracle Γ .
Since A and B are run in time at most q, this also bounds the space that the
algorithms consume and their number of oracle queries. As a result, all Os,n and
Es,n queries satisfy s ≤ q and 2εn · poly(s) ≤ q. This implies that n ≤ 1

ε log q.
We will use this bound on n to show that A and B can only query O on circuits
with logarithmic size input, and thus the adversary can learn the truth table of
any circuit queried this way by only making a polynomial number of queries.

We now define an extended set of queries for any query/answer set Q. Intu-
itively, this captures queries that are “known” to an algorithm that makes the
queries in Q. For example, suppose an algorithm M queries Os,n on some (C, r)
and obtains ˜C, and queries f on all queries in the evaluation of Cf (x). Then,
intuitively M knows that Es,n( ˜C, x) = Cf (x) (up to the probability of O being
injective), even without making any E query. The following definition captures
this dependence between the oracles, and will be helpful in our separation.

Definition 4.3. Given a set of queries Q and an oracle Γ , the augmented set
of queries Aug(Q) with respect to Γ is defined as follows:

1. Every query and answer in Q is also in Aug(Q).
2. For every query [Os,n(C, r) = ˜C] ∈ Aug(Q), the set Aug(Q) contains queries

Es,n( ˜C, x) for all x ∈ {0, 1}n.
3. For every query [Es,n( ˜C, x) = y] ∈ Aug(Q) with y �= ⊥, the set Aug(Q)

contains the query Os,n(C, r) = ˜C, and all f-queries made in the evaluation
of Cf (x) = y. where (C, r) is the lexicographically first pre-image of ˜C under
Os,n.

7 The game ExpKAΓ,Π,E(λ) is defined as follows: (1) (kA, kB, T ) ← 〈AΓ (1s), BΓ (1s)〉, (2)

k′ ← EΓ (1s, T ), (3) If k′ = kA then output 1, otherwise output 0.
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For a given set Q with |Q| < q, we bound the size of the set |Aug(Q)|, and
recall that this implies that s < q and n < 1

ε log q. For every query to Os,n in Q,
there are at most 2n corresponding Es,n queries in Aug(Q), each implies at most
s queries to f in Aug(Q). Likewise for any Es,n query in Q might imply at most
2n · s queries in Aug(Q). Therefore, we have

|Aug(Q)| ≤ q · s · 2n ≤ q2 · q1/ε.

We are now ready to define the adversary E.

The adversary E.

• Input: A transcript T of an execution 〈AΓ (1s; r�
A),BΓ (1s; r�

B)〉.
• Oracle Access: Γ = (f,O, E).
• Algorithm:

1. Initialize QE = ∅ and K = ∅.
2. Repeat the following 2q + 1 times:

(a) Simulation phase: Find a valid oracle Γ ′ = (f ′,O′, E ′) and random
strings r′

A, r′
B such that the following holds:

i. Every query in QE is answered the same way in Γ ′ as in QE .
ii. O′

s,n is injective for all s, n ∈ N.
iii. The transcript T ′ outputted by 〈AΓ ′

(1s; r′
A),BΓ ′

(1s, r′
B)〉 is the

same as T .
Abort if no such Γ ′, r′

A, r′
B exist. Let k′

A be the key outputted by A
in this simulation, and add k′

A to K.
(b) Update phase: Let QSim be the queries made by A and B in the

execution 〈AΓ ′
(1s; r′

A),BΓ ′
(1s, r′

B)〉, and consider the set Aug(QSim)
with respect to Γ ′. Query Γ with all queries in Aug(QSim) \ QE and
update QE with these queries.

• Output: The majority key k in K.

Observe that in each iteration, |QSim| < q and E makes at most |Aug(QSim)|
queries to Γ . Therefore, the total number of queries that E makes is bounded
by (2q + 1) · q2 · q1/ε ∈ qO(1)+1/ε.

To complete the proof of Theorem 4.2, the main technical difficulty is in
showing that the adversary E always succeeds to find the key computed in the
real key agreement protocol, assuming that O is an injective function. We denote
this event by injectiveΓ,� and in the full version, we show that the probability
that ¬injectiveΓ,� occurs is bounded by 2−4. We then show the following lemma.

Lemma 4.4. Let k� denote the key computed by A and B in the real execution
of the protocol. If injectiveΓ,� holds, then E does not abort, and in each iteration
either (1) E adds a query in Aug(QAB) to QE, or (2) E adds k� to K.

Proof Sketch. At a high level, the proof is as follows. First, assuming
injectiveΓ,� holds, we show that E does not abort. This follows from the fact
that the real oracle Γ and random strings r�

A and r�
B satisfy the properties
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needed to form the simulated oracle Γ ′ and random strings r′
A and r′

B. Thus,
there exists at least one valid oracle and pair of random strings and therefore E
does not abort.

Then, we show that in each iteration, either (1) E adds a query in Aug(QAB)
to QE , or (2) E adds k� to K. Consider some iteration in which (1) does not hold.
Let Γ ′, r′

A, r′
B be the oracle and random strings chosen by E in this iteration. By

definition, the transcript of this execution is T . Let k′ be the key outputted by
〈AΓ ′

(1s; r′
A),BΓ ′

(1s; r′
B)〉. Assuming that (1) does not hold, we show that there

exists a hybrid oracle ˜Γ for which (k′, k�, T ) ← 〈A˜Γ (1s; r′
A),B ˜Γ (1s; r�

B)〉. That
is, we show an oracle ˜Γ such that when A uses the randomness of the simulation
and B uses the randomness of the real protocol and both run with respect to
˜Γ , A outputs k′ (as in the simulation) while B outputs k� (as in the real),
and the execution produces the transcript T (as in both the real and simulated
protocols). We form this oracle by incorporating all queries in Aug(QAB) and
Aug(QSim) into ˜Γ . Because (1) does not hold, E does not learn any new query in
Aug(QAB), and thus Aug(QAB) and Aug(QSim) agree on all queries and answers.
In the full version, we show that this implies that ˜Γ agrees with all queries in
Aug(QAB)∪Aug(QSim), and that this suffices for the result. Given the existence
of such an oracle, by the perfect correctness, it must hold that k′ = k�, and
therefore, since E adds k′ = k� to K, the claim follows. ��

5 On Statistical Security

In this section we study the possibility for compressing obfuscation with per-
fect (information-theoretic) security. We will distinguish between approximately
correct and perfectly correct compressing obfuscators and show almost tight
results.

For approximately correct obfuscators, one the one hand, we show that there
exists a statistically secure compressing obfuscator for the class of bounded
depth circuits. On the other hand, we show that this is almost tight as any
class that contains a (puncturable) PRF cannot be obfuscated with statistical
secure (under complexity theoretic conjectures). See Theorems 5.4 and 5.5 for
the precise parameters.

For perfectly correct obfuscators, on the one hand, we show that there exists
a statistically secure compressing obfuscator for the class of bounded depth cir-
cuits, but the compression factor will be very weak (the obfuscation time is
poly(2n)). On the other hand, we show that even for depth two circuits, better
compression with better running time is implausible. See Theorems 5.2 and 5.7
for the precise parameters. Due to lack of space, all proofs from this section
appear in the full version.

5.1 Negative Results

We show that it is unlikely that there is a statistically secure compressing obfus-
cator with good enough compression.
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Our first result says that if such an obfuscator exists with strong enough
compression, namely a (2εn, 2εn)-compressing obfuscator with statistical secu-
rity and perfect correctness, then SAT (the problem of deciding whether a SAT
formula is unsatisfiable) has an AM protocol in which the verifier’s running time
is bounded by 2εn. This is not believed to be likely for small enough values of
ε > 0, according to the best of our knowledge. Note that for this result we only
need an obfuscator for depth-2 circuits. This argument relies on ideas from [53]
and can be seen as an extension of an argument from [47].

Definition 5.1. We denote by AM[t, �] the class of all languages on instances
of size n that have an AM protocol in which the running time of the verifier
is at most t(n) and its messages size is at most �(n). The class coAM[t, �] is
defined, analogously, to be the class that contains all the complement languages.
In case that t = �, we will write AM[t] to denote AM[t, t] and coAM[t] to denote
coAM[t, t].

Theorem 5.2. There exists a universal constant c > 0 such that the follow-
ing holds. If there is 0 < ε < 1 and a statistically secure and perfectly correct
(2εn, 2εn)-compressing obfuscation for depth-2 circuits, then SAT ∈ AM[2cεn].

The conclusion in Theorem 5.2 can be stated more generally as a conjecture
that is interesting on its own right. This conjecture is parametrized by an 0 <
ε < 1 and it says that SAT is not in AM[2εn].

Definition 5.3 (Conjecture). There exist ε > 0 for which SAT /∈ AM[2εn].

It is known that the conjecture is false for ε = 1/2 by the recent result of
Williams [72] who showed that SAT ∈ AM[Õ(2n/2)]. However, for smaller values
of ε it is still unknown. The conjecture is particularly appealing in the case that
ε is sub-constant (some o(1)).

Additionally, we give evidence that a compressing obfuscator with statistical
security and only approximate correctness cannot exist for classes of functions
that contain a (puncturable) PRF. This argument relies on and extends the
proof of [24].

Theorem 5.4 [Restatement of Theorem1.2, part II]. There exists a universal
constant c > 0 such that the following holds. If there is 0 < ε < 1 and a statisti-
cally secure and approximately correct (2nε

, 2nε

)-compressing obfuscation for all
circuits, then SAT ∈ AM[2nε

].

5.2 Positive Results

We show that for small classes of circuits there is a compressing obfuscation
with perfect security. We start with the constructions that give approximate
correctness.
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Theorem 5.5 [Restatement of Theorem1.2, part I]. There exist constants 0 <

α < 1 and 0 < β < 1 such that there exists a (1 − s/2nβ

)-approximately
correct (2nα

, 2nα

)-compressing obfuscator with perfect security for the class of
polynomial-size constant-depth n-input Boolean circuits.

Theorem 5.6. There exists a polynomial p(·) and a constant α > 0 such that
there exists a (1 − 1/p(n))-approximately correct (2(1−α)n, 2(1−α)n)-compressing
obfuscator with perfect security for the class of monotone n-input Boolean func-
tions.

We show that the class of bounded-depth circuits above can also be obfus-
cated with perfect correctness, while still resulting with a compressing obfusca-
tor. However, the resulting compression is very weak (in particular, such com-
pression, even for compressing obfuscation for all circuits is not known to imply
full-fledged obfuscation).

Theorem 5.7 [Restatement of Theorem1.3]. There exists a perfectly correct
(poly(2n), 2n−n/O(log s)d−1

)-obfuscator with perfect security for the class of size s
depth d, n-input Boolean circuits.

All of the obfuscators above treat their input circuit as a black box and run
a classical learning or compression algorithm on it. We introduce these tasks
next.

Preliminaries on PAC learning. We begin by introducing the concept of
PAC learning. The Probably Approximately Correct (PAC) learning model,
introduced by Valiant [71], is one of the most central definitions in the learning
community and in computer science in general. We focus on PAC learning over
the uniform distribution with membership queries. In this setting the learner
may query the oracle at any point x and get back the value of the oracle at that
point.

Definition 5.8 (PAC learning over the uniform distribution with membership
queries). Let F be a class of Boolean functions over n inputs. The class F is
(ε, δ)-PAC learnable if there exists an algorithm A that gets as input two param-
eters ε, δ > 0, has membership query access to a function f ∈ F , and outputs
with probability 1− δ (over its internal randomness) a circuit C that agrees with
f on all but an ε-fraction of the inputs. That is,

Pr
A

[

C ← Af (ε, δ); Pr
x←{0,1}n

[C(x) �= f(x)] ≤ ε

]

≥ 1 − δ.

The running time of A is measures as a function of n, 1/ε, 1/δ, and the circuit
size of f .

There has been a tremendous amount of work on obtaining efficient algo-
rithms for PAC learning various classes of functions. It is known that no poly(n)-
time algorithm can learn arbitrary Boolean functions f : {0, 1}n → {0, 1} to
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accuracy non-negligibly better than 1/2, but many positive results are known
for restricted classes of functions. We fix δ = 2/3, and note that this choice is
somewhat arbitrary and enough for all of our applications. We thus say that a
class is ε-PAC learnable if it is (ε, 2/3)-PAC learnable.

One well known example is the quasi-polynomial time algorithm of Linial,
Mansour, and Nisan [60] for the class of functions computed by AC0 circuits
(constant depth circuits with AND, OR, and NOT gates of unbounded fan-in
and fan-out).

Theorem 5.9 (Learning bounded-depth circuits [60]). The class of size-s depth-
d circuits is ε-PAC learnable within nO(logd−1(s/ε)) queries.8

Another notable example that is relevant for us is the algorithm of Bshouty
and Tamon [28] for learning arbitrary monotone functions.

Theorem 5.10 (Learning monotone functions [28]). The class of monotone
functions is ε-PAC learnable within nO(

√
n/ε) queries.

A more recent result of Carmosino et al. [29] showed a (quasi-polynomial-
time) learner for AC0[p], the class of Boolean constant depth circuits with
unbounded fan-in and fan-out with AND, OR, NOT, and MOD-p gates.9 Their
result follows by a generic implication from natural properties to (randomized)
algorithms for learning. More elaborately, [29] showed that any circuit lower
bound proved through the very general natural proofs paradigm of Razborov
and Rudich [69] yields algorithms for learning and compression. They then apply
this result with the natural lower bound of Razborovand Smolenskyfor the class
AC0[p]. Informally, a “natural” lower bound for a circuit class C consists of an
efficient algorithm that recognized some property that distinguishes between the
truth tables functions in C and those of random Boolean functions.

Theorem 5.11 (Learning bounded-depth circuits with mod gates [29]). For
every prime p > 1, the class of AC0[p] circuits of size s is ε-PAC learnable
within 2poly log(ns/ε) queries.

Tightness of the Approach. The approach of constructing obfuscators via
learning algorithms is inherently limited. As observed by Valiant [71], any class
that contains a pseudorandom function cannot be learned with nontrivial sav-
ings. Moreover, this approach, as shown above, gives the very strong notion of
perfect security, which does not exist for all functions (even the computational
version, known as virtual black-box, does not exist for circuits that contain a
PRF [14]). Thus, to get an obfuscator (that satisfies only indistinguishability
obfuscation) for a larger class of functions, one has to use the fact that the
obfuscator has access to a circuit rather than treating it as a black-box.
8 In Theorems 5.9 and 5.10 it is enough that the labels are for uniformly random inputs

(i.e., random examples).
9 We note that recently Carmosino et al. [30] generalized their result to get an impli-

cation from “tolerant” natural proofs to agnostic learning [52]. In agnostic learning,
is the same as in PAC learning except that the learner is only guaranteed that f is
close to the concept class C (rather than assuming it belongs to it).
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Preliminaries on Circuit Compression. In the problem of circuit compres-
sion, studied by Chen et al. [31], one is given the truth table of a Boolean function
f computable by some unknown circuit from a known class of circuits, and the
goal is to find in time poly(2n) a circuit C (not necessarily from the aforemen-
tioned family) computing f so that the size of C is less than the trivial circuit
size ≈2n. For general functions this is impossible as there are functions that
require this size, so the focus is on restricted classes.

Definition 5.12 (C-compression). Given the truth table of an n-variate Boolean
function f ∈ C, find a Boolean circuit of size < 2n/n that is functionally equiv-
alent to f .

As mentioned in [31], compression of Boolean functions is related to the
setting of exact learning with membership and equivalence queries [6]. In this
learning setting, the size of the hypothesis produced by the learning algorithm is
upper-bounded by the running time of the algorithm. In the circuit compression
setting, the hypothesis (compressed image) size and the running time of the
learning (compression) algorithm are decoupled: we allow more running time,
but ask for a small-size compression. This may enable improvements in the class
of circuits that we can handle. Concretely, exact learning is strictly stronger as
any result in exact learning yields a compression algorithm for the corresponding
class of functions, but the opposite direction is not known.

We notice that in general good enough compression implies compressing
obfuscation where the output size is nontrivial but the running time can be
large enough to read the truth table of the function (i.e., as in XiO). However,
the other direction is not known since in XO one is given a witness (i.e., a circuit
rather than the truth table). The most relevant circuit compression result that
is relevant for us is stated next.

Theorem 5.13 ([31]). If a Boolean n-variate function is computed by an AC0

circuit of size s and depth d, then it is compressible to a circuit of size at most
2n−n/O(log s)d−1

.

As in the case of learning algorithms, the above compression algorithms
directly imply perfectly correct compressing obfuscators satisfying perfect secu-
rity.

We note that, as in the case of learning, it is impossible to compress a class of
circuits that contains a PRF. For this, consider a PRF with key size n2 and input
size n which is exponentially secure (namely, secure for adversaries running in
time 2Ω(n2)).10 In this case, the PRF-or-Random adversary is allowed to query
the oracle at all 2n inputs and yet it still cannot distinguish PRF from random.
The impossibility of compression for such a family of circuits now follows from
the fact that random functions cannot be compressed.

Acknowledgments. We thank Zvika Brakerski for discussions about the possibility
of SXiO and XiO with statistical security.

10 The argument works even with sub-exponential security by increasing the size of the
key.
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