
Two-Round Multiparty Secure
Computation Minimizing Public

Key Operations

Sanjam Garg, Peihan Miao, and Akshayaram Srinivasan(B)

University of California, Berkeley, Berkeley, USA
{sanjamg,peihan,akshayaram}@berkeley.edu

Abstract. We show new constructions of semi-honest and malicious
two-round multiparty secure computation protocols using only (a fixed)
poly(n, λ) invocations of a two-round oblivious transfer protocol (which
use expensive public-key operations) and poly(λ, |C|) cheaper one-way
function calls, where λ is the security parameter, n is the number of
parties, and C is the circuit being computed. All previously known
two-round multiparty secure computation protocols required poly(λ, |C|)
expensive public-key operations.

1 Introduction

Secure multiparty computation (MPC) allows a set of mutually distrusting par-
ties to compute a joint function on their private inputs with the guarantee that
only the output of the function is revealed and everything else about the private
inputs of the parties is hidden. This is a classic problem in cryptography and
was originally studied by Yao [Yao82] for the case of two parties. Later, Goldre-
ich, Micali and Wigderson [GMW87] considered the multiparty case and gave
protocols for securely computing any multiparty functionality.

A key metric in determining the efficiency of a secure computation protocol
is its round complexity or in other words, the number of sequential messages
exchanged between the parties. Starting with the first constant round proto-
col by Beaver, Micali and Rogaway [BMR90], there has been a tremendous
amount of research to reduce the round complexity to its absolute minimum.
It was shown in [HLP11] that two rounds are necessary to securely compute
certain functionalities and a sequence of works have tried to realize this goal.
The first two-round construction was obtained by Garg, Gentry, Halevi and
Raykova based on indistinguishability obfuscation [GGHR14,GGH+13]. Sub-
sequently, a sequence of works improved the needed assumptions, first to wit-
ness encryption [GLS15,GGSW13], and then to learning with errors assumption

Research supported in part from DARPA/ARL SAFEWARE Award
W911NF15C0210, AFOSR Award FA9550-15-1-0274, AFOSR YIP Award,
DARPA and SPAWAR under contract N66001-15-C-4065, a Hellman Award and
research grants by the Okawa Foundation, Visa Inc., and Center for Long-Term
Cybersecurity (CLTC, UC Berkeley). The views expressed are those of the author
and do not reflect the official policy or position of the funding agencies.

c© International Association for Cryptologic Research 2018
H. Shacham and A. Boldyreva (Eds.): CRYPTO 2018, LNCS 10993, pp. 273–301, 2018.
https://doi.org/10.1007/978-3-319-96878-0_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-96878-0_10&domain=pdf

274 S. Garg et al.

[MW16,BP16,PS16]. Improving these results, recent works obtained two-round
constructions based on the DDH assumption [BGI16,BGI17b] (for the case of
constant number of parties) or on bilinear maps [GS17] (in the general case).
Finally, very recent results have also yielded constructions based on the minimal
assumption of two-round oblivious transfer [BL18,GS18].

Apart from round complexity, another metric that is crucial for computa-
tional efficiency in MPC protocols is the number of public-key operations per-
formed by each party. Typically, public key operations are orders of magnitude
more expensive than symmetric key operations and minimizing them typically
leads to more efficient protocols. The question of minimizing public key oper-
ations in secure computation was first considered by Beaver [Bea96] for the
case of oblivious transfer. In particular, Beaver gave a construction for obtain-
ing a large number L � λ of oblivious transfers (OTs) using only a fixed
number λ public key operations along with the use of poly(L) cheaper one-
way function calls. This task of extending λ OTs to a larger L OTs using
only one-way functions is referred to as oblivious transfer extension. Follow-
ing Beaver’s result, a rich line of work [IKNP03,Nie07,HIKN08,KK13] gave
concretely efficient protocols for OT extension which have served as a crucial
ingredient in the design of several concretely efficient secure computation proto-
cols [HIK07,NNOB12,ALSZ17,KRS16].

In this work, we are interested in getting the best of both worlds, namely,
constructing two-round MPC protocols while minimizing the number of public-
key operations performed. Indeed, the number of public-key operations in the
prior two-round MPC protocols grows with the size of the circuit computed.
Given this state of affairs, we would like to address the following question.

Can we construct two-round, secure multiparty computation protocols where the
number of public key operations performed by each party is independent of the

size of the circuit being computed?

1.1 Our Results

We give a positive answer to the above question. We show new constructions of
semi-honest and malicious two-round, multiparty computation protocols where
the number of public key operations performed by each party is a fixed poly-
nomial (in the security parameter and the number of participants) and is inde-
pendent of the circuit size of the function being computed. Further, we prove
the security of these protocols under the minimal assumption that two-round
semi-honest/malicious oblivious transfer (OT) exists. More formally, our main
theorem is:

Theorem 1 (Informal). Let X ∈ {semi-honest in plain model, malicious in
common random/reference sting model}. Assuming the existence of a two-round
X secure OT protocol, there exists a two-round, X secure, n-party protocol com-
puting a function f (represented as a circuit Cf) where the number of public key
operations performed by each party is poly(n, λ). Here, poly(·) is a fixed polyno-
mial independent of |Cf | and λ is the security parameter.

Two-Round Multiparty Secure Computation 275

The focus of this work is theoretical feasibility rather than concrete opti-
mization of the polynomial. We leave the goal of obtaining concretely efficient
protocols for future work. Additionally, in the malicious case, this work focuses
on obtaining protocols in the common random/reference string model. Obtain-
ing round optimal MPC protocols in the plain model [GMPP16,ACJ17,BHP17,
COSV17,HHPV17,BGJ+17,BL18] has been a problem of significant interest and
we expect that our techniques will be useful in reducing the number of public-key
operations needed in these protocols. We leave this as an open problem.

2 Technical Overview

In this section, we give a high-level overview of the main challenges and the tech-
niques used to overcome them in our construction of two-round MPC protocols
minimizing the number of public key operations.

Starting Point. The starting point of our work is the recent results of Ben-
hamouda and Lin [BL18] and Garg and Srinivasan [GS18] that provide con-
structions of two-round, secure multiparty computation (MPC) protocol based
on two-round oblivious transfer. These works provide a method of squishing the
round complexity of an arbitrary round secure computation protocol to just two
rounds. The key idea behind this method is the concept of “talking garbled cir-
cuits,” i.e., garbled circuits that can interact with each other by sending and
receiving messages. Let us briefly explain how this primitive helps in squishing
the round complexity of a multi-round MPC protocol.

To squish the round complexity, each party generates “talking garbled cir-
cuits” that emulates its actions as per the specification of the multi-round MPC
protocol. The parties then broadcast these “talking garbled circuits” so that
every party has access to the “talking garbled circuits” of every other party.
Finally, all parties evaluate these “talking garbled circuits” that internally exe-
cutes the multi-round MPC protocol. This step does not involve any further
interactions between the parties. Thus, the only overhead in the round complex-
ity of this approach is the number of rounds needed for generating the “talking
garbled circuits.”

Let us give a very high level overview of how the “talking garbled circuits”
are generated. In these two works, the “talking garbled circuits” are generated
via a two-round protocol that makes use of (plain) garbled circuits and two-
round oblivious transfer (OT).1 At the end of the two rounds, every party has
access to every other party’s “talking garbled circuits” and can evaluate them
without any further interaction. The first round of this two-round protocol can
be visualized as setting up a channel for the garbled circuits to communicate.
Without going into the actual details on how this is achieved, we note that this
step involves generating several first round OT messages. Next, in the second

1 Recall that in a two-round oblivious transfer, the first message is generated by the
receiver and it encodes the receiver’s choice bit and the second message is generated
by the sender and it encodes its two messages.

276 S. Garg et al.

round, the actual garbled circuits are sent which interact with each other via
the channel set up in the first round. Again, without going into the details,
a message sent from one party (the sender) to another party (the receiver) is
communicated via the sender’s garbled circuit outputting the randomness used
in generating a subset of the first round OT messages and the receiver’s garbled
circuit outputting some second round OT messages.

Computational Overhead. One major source of inefficiency in the approaches
of [BL18,GS18] is the number of expensive OT instances needed. In particular,
these protocols use Ω(1) OTs in enabling the garbled circuits to communicate a
single bit. Hence, the number of OTs needed for compiling an arbitrary secure
computation protocol grows with the circuit size of the function being com-
puted.2 Our goal is to remove this dependency between the number of OTs
needed and the circuit size of the function being computed.

Can We Use OT Extension? A natural first attempt to minimize the number
of instances of oblivious transfer would to be use an OT extension protocol
[Bea96,IKNP03]. We need this OT extension protocol to run in two-rounds, as
otherwise the protocol for computing “talking garbled circuits” will run in more
rounds. Further, we need the OT extension protocol to satisfy the following three
properties for it to be useful in constructing “talking garbled circuits.” We also
explain why a general two-round OT satisfies each of these properties.

1. Delegatability. For every OT computed between a sender and a receiver,
the receiver should be able to delegate its decryption capabilities for that OT
to any party by revealing a decryption key. This key and the transcript could
then be used to compute the message that the receiver would have obtained in
the OT execution. A general two-round OT satisfies delegatability as revealing
the receiver’s random coins allows any party to obtain the receiver’s message.

2. Independence. We require independence between multiple parallel invoca-
tions of the underlying OT protocol. More specifically, revealing the receiver’s
delegation key for one of the instances of an OT execution does not affect the
receiver security for the other OTs. Again, a general two-round OT satisfies
independence as each OT instance is generated using an independent random
tape.

3. Availability of Delegation Keys. The keys for delegating the decryption
must be available at the end of the first round i.e., after the receiver sends
its message. This property is trivially satisfied by a two-round OT as the
delegation key is in fact the receiver’s random tape.

Let us first explain the intuition on why these three properties are required
for the construction of “talking garbled circuits.” The delegatability property is
required since the garbled circuits sent in the second round reveal the delegation
keys for a subset of the OT messages generated in the first round. Recall that
this is required for one garbled circuit to send a message to another. The key
2 In fact, the number of OTs grows with the computational complexity of the under-

lying multiparty protocol.

Two-Round Multiparty Secure Computation 277

availability property is needed since the delegation keys are to be hardwired in
the second round garbled circuits so that the appropriate delegation keys can
be output by these circuits during evaluation. The independence property is
needed since the second round garbled circuits reveal the delegation keys for
only a subset of the first round OT messages. We need the other OT messages
to still be secure.

We stress that even though the above three properties are trivially satisfied
by every two-round OT, a two-round OT extension protocol need not satisfy all
of them. To demonstrate this, let us first see why does the two-round version of
Beaver’s OT extension protocol [Bea96,GMMM17] not satisfy all the properties.

Why doesn’t beaver’s OT extension work? In order to understand why
this does not work, we first recall a two-round version [GMMM17] of the OT
extension protocol of Beaver that expands λ two-round, base OTs to L = poly(λ)
OTs. In the first round of the OT extension protocol, the receiver (having input
c ∈ {0, 1}L) samples a “short” seed s of a PRG : {0, 1}λ → {0, 1}L and computes
e = c ⊕ PRG(s). Additionally, it computes λ first round OT messages using s
as its choice bits. It sends these OT messages along with e to the sender. The
sender garbles a circuit C that has its messages {msgi,0,msgi,1}i∈[L] hardwired
along with the string e received in the first round. The circuit C takes as input
the λ-bit string s, expands it to L bits using the PRG and uses it to unmask e to
obtain c. Specifically, it computes c := e ⊕ PRG(s), and outputs {msgi,c[i]}i∈[L].
The sender sends this garbled circuit and uses the λ second round OT messages
to communicate the labels of the garbled circuit to the receiver. The receiver
decrypts the labels corresponding to the bits of its seed s and uses it to evaluate
the garbled circuit to obtain {msgi,c[i]}i∈[L].

The above OT extension protocol of Beaver is delegatable as revealing all
the randomness used by the receiver allows any party to decrypt all the mes-
sages. However, the protocol does not satisfy the independence requirement as
the randomness used for generating L different OTs is highly correlated. In fact,
revealing all the random coins for generating the first round OT messages com-
promises the security of all the L OTs.

Delegatable and Independent Two-Round OT Extension. Towards con-
structing an OT extension that satisfies all the properties, we first construct
a protocol that is both delegatable and independent. In the new protocol, the
receiver’s first round message is the same as before. However, the sender’s mes-
sage is generated differently. In particular, the sender samples a set of masks
M = {mi,0,mi,1}i∈[L] where each mask mi,b is a random string with the same
length as msgi,b. It constructs the circuit C (described above) with the set of
masks hardwired in place of the messages. It garbles this circuit. It additionally
computes cti,b = msgi,b ⊕ mi,b for each i ∈ [L] and b ∈ {0, 1} and sends the
garbled circuit, the set {cti,b}i∈[L],b∈{0,1} and λ second round OT messages to
communicate the labels of the garbled circuit to the receiver. The receiver then
recovers the labels corresponding to its seed s, evaluates the garbled circuit to
obtain {mi,c[i]}i∈[L], and computes msgi,c[i] = cti,c[i] ⊕ mi,c[i] for every i ∈ [L].

278 S. Garg et al.

This scheme is delegatable as the receiver can use mi,c[i] as the delegation
key. It is also independent, as revealing mi,c[i] does not leak any information of
c[k] for k �= i. However, this construction does not satisfy the third property,
namely key availability. This is because mi,c[i] can be computed by the receiver
only at the end of the second round and is not available at the end of the first
round.

Weakening the Key Availability Property. We first observe that we can
in fact, weaken the key availability property. Recall that the key availability
property requires the delegation keys to be available at the end of the first
round so that they can be hardwired inside the garbled circuits that performs
the communication. However, for the construction to work, we just need the
delegation keys to be given as inputs to these garbled circuits and need not be
hardwired. We will now construct a two-round, OT extension that satisfies the
weakened key availability property. For the ease of exposition, let us overload the
notation and call the these communicating garbled circuits (sent in the second
round) as “talking garbled circuits.”

Satisfying All Properties. Recall that the problem with the previous approach
was because the receiver could evaluate the sender’s garbled circuit only at the
end of the second round. Our solution to the key availability problem is in
having the receiver “offload” its evaluation of this garbled circuit. This solution
makes use of the fact that in the MPC setting the sender and the receiver
are connected via a simultaneous message exchange model. At a high level, we
require the sender to send its garbled circuit in the first round. The receiver now
garbles a wrap-circuit, which has the sender’s garbled circuit hardwired in it.
This wrap-circuit evaluates the sender’s circuit inside and translates its output to
the labels of the “talking garbled circuits.” In particular, the receiver “offloads”
the evaluation of the sender’s garbled circuit via the wrap-circuit which helps
in achieving the weakened key availability property. Let us explain our idea in
more detail.

Key Idea: “Offloading” Garbled Circuit Evaluation. We first give the
description of the protocol and then explain why it satisfies all the three prop-
erties. The key steps in the protocol are depicted in Fig. 1.

In the new protocol, the receiver’s first round message is unchanged. Addi-
tionally, in the first round, the sender samples the random set M as before and
constructs a circuit CB that has the set M hardwired in it. This circuit takes
as input a seed s, expands it using the PRG and outputs {mi,PRG(s)[i]}i∈[L]. The
sender garbles CB to obtain a garbled circuit ˜CB and sends this to the receiver.

In the second round, the sender computes cti,0 = msgi,0 ⊕ mi,e[i] and cti,1 =
msgi,1 ⊕ mi,1−e[i] (where e is obtained from the receiver’s first round message)
and sends {cti,b}i∈[L],b∈{0,1} to the receiver. The receiver constructs a wrap-
circuit Cwrap that has ˜CB and the input labels for the “talking garbled circuits”
hardwired in it. Cwrap takes as input the labels for evaluating ˜CB, evaluates
it using these labels to obtain {mi,PRG(s)[i]}i∈[L], and outputs a set of labels
corresponding to {mi,PRG(s)[i]}i∈[L]. The output will later be treated as the input

Two-Round Multiparty Secure Computation 279

Sender Receiver

Round-1: C̃B

Round-1: e

Round-2: {cti,0, cti,1}i∈[L]

2-Step Translation
C̃B labels s, C̃wrap labels

Round-2: C̃wrap[C̃B]

Input labels

Talking GC

Input labels

Fig. 1. Semi-honest OT extension satisfying delegatability, independence and weakened
key availability

labels for evaluating the “talking garbled circuits.” The receiver garbles Cwrap

and sends the garbled circuit ˜Cwrap to the sender.
Notice that mi,PRG(s)[i] can serve as the delegation keys as it can be used to

unmask cti,c[i] to obtain msgi,c[i], and the other message msgi,1−c[i] is hidden.
This approach inherits the delegatability and independence from the previous
approach. Now, this scheme also satisfies the weakened key availability property!
In particular, the delegation keys are passed to the “talking garbled circuits” via
the wrap circuit.

How to obtain labels for evaluating ˜Cwrap? However, there is one question
that we have not answered yet. In particular, how to obtain the labels for eval-
uating the garbled wrap-circuit ˜Cwrap? Recall that the warp-circuit Cwrap takes
as input the labels for evaluating ˜CB. Hence, to evaluate ˜Cwrap we need its input
labels that correspond to the labels for evaluating ˜CB. We therefore need a two-
step translation mechanism: one from the seed s to the labels for evaluating ˜CB

and then from these labels to the labels for evaluating ˜Cwrap.
For this purpose, we use the two-round MPC protocol from [BL18,GS18] to

securely compute the two-step translation functionality. This functionality takes
as input the seed s and the set of labels for ˜Cwrap from the receiver and the set of
labels for ˜CB from the sender. It first chooses the labels of ˜CB that correspond to
the string s. It then outputs the labels of ˜Cwrap that correspond to those chosen
labels of ˜CB. Given such a two-round MPC protocol, we can run this protocol
in parallel of the aforementioned protocol to obtain the labels for evaluating
˜Cwrap. We then evaluate ˜Cwrap to obtain the labels for evaluating the “talking
garbled circuits.” Note that the circuit size computing this two-step translation

280 S. Garg et al.

functionality is polynomially dependent on λ and is independent of L and hence
we can use these two-round MPC results to securely compute this functionality.
This helps in minimizing the number of public key operations.

Tackling Malicious Adversaries. Plugging the above OT extension protocol
into the compilers of [BL18,GS18] gives us the desired result in the semi-honest
setting. However, a couple of major challenges arise in the malicious setting.

1. Adaptive Security. The first issue arises because a malicious receiver might
wait until it receives the garbled circuit ˜CB before choosing its seed s. This
leads to adaptive security issues [BHR12] in garbling CB.

2. Input Dependent Abort. The second issue arises because a malicious
sender might generate an ill-formed ˜CB that may lead to an honest receiver to
abort on specific choices of the receiver’s input. This leaks information about
the receiver’s input to the sender. To give a concrete example, a corrupted
sender might generate ˜CB such that it outputs ⊥ if the first bit of PRG(s)
is 1 instead of outputting the valid mask. Thus, if the honest receiver aborts
then the sender can recover c[1] from e[1].

Solving these two issues requires development of new tools and techniques which
we now elaborate.

Solving Adaptive Security Issue. A tempting approach to solving this issue
is use the recent constructions of adaptively secure garbling [HJO+16,JW16,
JKK+17] to generate ˜CB. However, this does not work! Recall that the length
of the garbled input of an adaptively secure garbling scheme must at least grow
with the output length of the circuit [AIKW13]. In our case, the output length
of CB is L, hence the garbled input of ˜CB grows with L. Therefore, the circuit
size of the two-step translation functionality that first translates the seed s to
the garbled input of ˜CB must grow with L. This implies that the number of
public key operations in the two-round protocol that securely computes this
functionality grows with L. This kills the efficiency of the overall protocol.

On the one hand, we need our garbling scheme to satisfy the stronger notion
of adaptive security and on the other hand, we need to minimize the number of
public key operations. These two requirements seem contradictory to each other
and it seems that we need to trade one requirement in order to achieve the other.
We resolve this deadlock by observing that full blown adaptive security is not
needed in garbling CB. We note that it is sufficient for this garbling scheme to
be somewhere adaptive. Let us explain this in more detail.

To understand our approach, the first step is to break the circuit CB down to
L individual circuits C1, . . . , CL where Ci has {mi,0,mi,1} hardwired and outputs
mi,PRG(s)[i] on input s. The garbled circuit ˜CB comprises of garbled versions of
each Ci, i.e., ˜C1, . . . , ˜CL. The key trick we employ in garbling C1, . . . , CL is
that we use the same set of input labels in generating each ˜Ci. Notice that even
though we break CB down to L circuits, the garbled input for ˜CB only grows
with the input length of CB and is independent of L. To simulate ˜CB, we design
a sequence of carefully chosen hybrids where in each hybrid, it is sufficient to

Two-Round Multiparty Secure Computation 281

simulate a single ˜Ci. But things get complicated as the simulation of this ˜Ci

requires knowledge of the adaptively chosen s. It seems that we again run into
the adaptive security issue. However, notice that the output length of the circuit
Ci is independent of L and thus the length of the garbled input for ˜Ci (and hence
all other ˜Cj , j �= i) need not grow with L! Thus, we can now use the standard
tricks in the adaptive garbling circuits literature to “adaptively garble” Ci. We
now explain how this is done.

Instead of sending the garbled circuits { ˜Ci}i∈[L] in the clear, we encrypt
them using a somewhere equivocal encryption scheme [HJO+16] and send the
ciphertext as the garbled circuit ˜CB. The key for decrypting this ciphertext
is revealed in the garbled input along with the labels for evaluating each ˜Ci.
Recall that we use the same set of labels for evaluating each ˜Ci. Intuitively, a
somewhere equivocal encryption allows to equivocate a bunch of positions of a
ciphertext with arbitrary message values. What makes a somewhere equivocal
encryption different from a fully equivocal encryption is that the size of the
key only grows with the number of positions that are to be equivocated and
is otherwise independent of the message size. Somewhere equivocal encryption
allows us to solve the above adaptivity issue as we can equivocate the positions
that correspond to ˜Ci in the ciphertext to a simulated circuit (that can depend
on the adaptively chosen s) by deriving a suitable key. Further, the size of the
garbled input (that also includes the key) only grows with the size of ˜Ci and is
independent of L. This helps us in ensuring that the circuit size of the two-step
translation functionality is independent of L.

Solving Input Dependent Aborts. Suppose the sender sends a proof that
˜CB is correctly generated, then the problem of input dependent aborts does not
arise. We additionally require this proof to be zero-knowledge so that it does
not leak any information about the sender’s secrets to the receiver. A natural
approach would be to give a Non-Interactive Zero-Knowledge proof (NIZK).
However, we only know constructions of NIZK based on public key assumptions
such as trapdoor permutations or factoring. Furthermore, the number of public
key operations in computing a NIZK proof grows with the instance size. Here,
the instance size grows with the size of CB which is at least L. This again kills
the efficiency.

Our approach to solving this issue is to design a two-round, special purpose
zero-knowledge proof (in the CRS model) where the number of public key oper-
ations is independent of the instance size. Indeed, given such a zero-knowledge
proof, we can solve the problem of input dependent aborts and also ensure that
the number of public key operations is independent of L. We now explain the
main ideas behind this construction.

Let us first consider the simpler task of constructing a two-round, zero-
knowledge proof with constant soundness error where the number of public key
operations is independent of the instance size. We first observe that if we allow
one more round of interaction then we know constructions (e.g., Blum’s Hamil-
tonicity protocol) that completely avoid any public key operations. The main
idea behind our construction is a method of compressing the round complexity

282 S. Garg et al.

of these protocols (in the simultaneous message exchange model) using a small
number of public key operations (that is independent of the instance size). To
explain the idea, let us take the example of compressing the Blum’s Hamiltonicity
protocol to two rounds using a two-round oblivious transfer (used in the recent
works of [JKKR17,BGI+17a]). The Blum’s protocol can be abstractly described
using three messages: zk1 sent by the prover in the first round, a random bit b
sent by the verifier in the second round and zk3,b sent by the prover in the third
round.

To compress the protocol to two rounds, we require the verifier to send a
receiver OT message with b as its choice bit in the first round. In addition to
sending zk1 in the first round, the prover also sends commitment (c0, c1) to
zk3,0 and zk3,1 respectively. In the second round, the sender sends a sender OT
message with the randomness used to compute c0 and c1 as its messages.3 The
receiver obtains the randomness used in generating cb and then uses it to check
if (zk1, b, zk3,b) is a valid proof. Note that to minimize the number of public key
operations, the length of the random string used to generate the commitment
should be independent of the size of the message. This is indeed true when we
use a pseudorandom generator to expand the length of the randomness to any
desired length.

The above idea helps us in achieving constant soundness error but to be
useful in solving the problem of input dependent aborts, we need the protocol to
have negligible soundness error. One approach to achieve negligible soundness
is to do a parallel repetition of the constant soundness protocol but it is well-
known that parallel repetition is not guaranteed to preserve the zero-knowledge
property. Fiege and Shamir [FS90] showed that parallel repetition preserves the
weaker property of witness indistinguishability and we make use of this fact to
to achieve the stronger property of zero-knowledge. In our actual construction,
we incorporate a trapdoor (such as pre-image of a one-way function) in the CRS
and the simulator uses this trapdoor while generating the zero-knowledge proof.
Witness indistinguishability guarantees that no verifier can distinguish between
the prover’s messages that uses the real witness and the simulator’s messages
that uses the trapdoor witness. This helps us achieve zero-knowledge against
malicious verifiers and parallel repetition helps us achieve negligible soundness
error against cheating provers. Additionally, the number of public key operations
is a fixed polynomial in the security parameter and is independent of the instance
size. We believe that this primitive may be of independent interest.

3 Preliminaries

We recall some standard cryptographic definitions in this section. Let λ denote
the security parameter. A function μ(·) : N → R

+ is said to be negligible if
for any polynomial poly(·) there exists λ0 such that for all λ > λ0 we have
μ(λ) < 1

poly(λ) . We will use negl(·) to denote an unspecified negligible function
and poly(·) to denote an unspecified polynomial function.
3 We assume that given the randomness, we can obtain the message that is committed.

Two-Round Multiparty Secure Computation 283

For a probabilistic algorithm A, we denote A(x; r) to be the output of A on
input x with the content of the random tape being r. When r is omitted, A(x)
denotes a distribution. For a finite set S, we denote x ← S as the process of
sampling x uniformly from the set S. We will use PPT to denote Probabilistic
Polynomial Time algorithm.

For a binary string x ∈ {0, 1}n, we denote the ith bit of x by x[i]. Similarly,
we denote the substring of x from the ith to jth position for any i ≤ j by x[i, j].
For any lab := {labi,0, labi,1}i∈[L] where labi,b ∈ {0, 1}∗ and a string c ∈ {0, 1}L,
we define Projection(c, lab) = {labi,c[i]}i∈[L]. We treat the output of Projection as
a string. That is, we treat the output as ‖i∈[L](labi,c[i]).

3.1 Selective Garbled Circuits

We recall the definition of selectively secure garbled circuits [Yao82] (see Lin-
dell and Pinkas [LP09] and Bellare et al. [BHR12] for a detailed proof and
further discussion). A garbling scheme for circuits is a tuple of PPT algorithms
(Garble,Eval). Very roughly, Garble is the circuit garbling procedure and Eval the
corresponding evaluation procedure. We use a formulation where input labels
for a garbled circuit are provided as input to the garbling procedure rather
than generated as output. This simplifies the presentation of our construction.
We additionally model security wherein the simulator is provided with a set of
labels corresponding to the input. This helps in simplifying the security proofs.
More formally:

– ˜C ← Garble
(

1λ,C, {labw,b}w∈inp(C),b∈{0,1}
)

: Garble takes as input a security
parameter λ, a circuit C, and input labels labw,b where w ∈ inp(C) (inp(C) is
the set of input wires to the circuit C) and b ∈ {0, 1}. This procedure outputs
a garbled circuit ˜C. We assume that for each w, b, labw,b is chosen uniformly
from {0, 1}λ.

– y ← Eval
(

˜C, {labw,xw
}w∈inp(C)

)

: Given a garbled circuit ˜C and a sequence of
input labels {labw,xw

}w∈inp(C) (referred to as the garbled input), Eval outputs
a string y.

Correctness. For correctness, we require that for any circuit C, input x ∈
{0, 1}|inp(C)| and input labels {labw,b}w∈inp(C),b∈{0,1} we have that:

Pr
[

C(x) = Eval
(

˜C, {labw,xw
}w∈inp(C)

)]

= 1

where ˜C ← Garble
(

1λ,C, {labw,b}w∈inp(C),b∈{0,1}
)

.

Selective Security. For security, we require that there exists a PPT sim-
ulator Simckt such that for any circuit C, an input x ∈ {0, 1}|inp(C)| and
{labw,xw

}w∈inp(C), we have that
{
C̃, {labw,xw}w∈inp(C)

}
c≈

{
Simckt

(
1λ, 1|C|,C(x), {labw,xw}w∈inp(C)

)
, {labw,xw}w∈inp(C)

}

284 S. Garg et al.

where ˜C ← Garble
(

1λ,C, {labw,b}w∈inp(C),b∈{0,1}
)

and for each w ∈ inp(C) we

have labw,1−xw
← {0, 1}λ. Here

c≈ denotes that the two distributions are com-
putationally indistinguishable.

3.2 Somewhere Adaptive Garbled Circuits

In this section, we define and construct somewhere adaptive garbled circuits.
Intuitively, somewhere adaptive garbled circuits satisfy the stronger notion of
adaptive security in the computation of a particular block of the output. Before
we define this primitive, we give a notation to denote circuits.

Circuit Notation. We model a circuit C : {0, 1}n → {0, 1}mλ as a sequence
of m circuits C1, C2, . . . , Cm where Ci(x) = C(x)[(i − 1)λ + 1, iλ] for every
x ∈ {0, 1}n and i ∈ [m].

We now give the definition of somewhere adaptive garbled circuits.

Definition 1. A somewhere adaptive garbling scheme for circuits is a tuple of
PPT algorithms (SAdpGarbleCkt,SAdpGarbleInp,SAdpEvalCkt) such that:

– (˜C, state) ← SAdpGarbleCkt(1λ, C) : It is a PPT algorithm that takes as input
the security parameter 1λ (encoded in unary) and a circuit C : {0, 1}n →
{0, 1}mλ as input and outputs a garbled circuit ˜C and state information state.

– x̃ ← SAdpGarbleInp(state, x) : It is a PPT algorithm that takes as input the
state information state and an input x ∈ {0, 1}n and outputs the garbled input
x̃.

– y = SAdpEvalCkt(˜C, x̃) : Given a garbled circuit ˜C and a garbled input x̃, it
outputs a value y ∈ {0, 1}mλ.

Correctness. For every λ ∈ N, C : {0, 1}n → {0, 1}m and x ∈ {0, 1}n it holds
that:

Pr
[
(C̃, state) ← SAdpGarbleCkt(1λ

, C); x̃ ← SAdpGarbleInp(state, x) : C(x) = SAdpEvalCkt(C̃, x̃)
]
= 1.

Security. There exists a PPT simulator Sim such that for all non-uniform PPT
adversary A:

∣

∣ Pr[ExpAdpA (1λ, 0) = 1] − Pr[ExpAdpA (1λ, 1) = 1]
∣

∣ ≤ negl(λ)

where the experiment ExpAdpA (1λ, b) is defined as follows:

1. (C, j) ← A(1λ) where C : {0, 1}n → {0, 1}mλ and j ∈ [m]. We assume that
C is given as a sequence of m circuits C1, C2, . . . , Cm.

2. The adversary obtains ˜C where ˜C is created as follows:
– If b = 0: (˜C, state) ← SAdpGarbleCkt(1λ, C).
– If b = 1: (˜C, state) ← Sim(1λ, C1, . . . , Cj−1, 1|Cj |, Cj+1, . . . , Cm).

3. The adversary A specifies the input x and gets x̃ created as follows:
– If b = 0 : x̃ ← SAdpGarbleInp(state, x).
– If b = 1 : x̃ ← Sim(state, x, Cj(x)).

Two-Round Multiparty Secure Computation 285

4. Finally, the adversary outputs a bit b′, which is the output of the experiment.

Efficiency. We require that the running time of SAdpGarbleInp to be maxi |Ci| ·
poly(|x|, λ).

We give a construction of somewhere adaptive garbled circuits assuming the
existence of one-way functions.

Lemma 1. Assuming the existence of one-way functions, there exists a con-
struction of somewhere adaptive garbled circuits.

We give the proof of Lemma 1 in the full version [GMS18].

3.3 Universal Composability Framework

We work in the the Universal Composition (UC) framework [Can01] to formalize
and analyze the security of our protocols. (Our protocols can also be analyzed
in the stand-alone setting, using the composability framework of [Can00a]). We
provide a brief overview of the framework in the full version of our paper [GMS18]
and refer the reader to [Can00b] for details.

3.4 Prior MPC Results

We will use the two-round secure multiparty computation protocol from the
work of [GS18] computing special functionalities that have small circuit size in
our constructions. We could also use the protocol from [BL18] but their pro-
tocol against malicious adversaries additionally relies on non-interactive zero-
knowledge proofs. Below we restate the result from [GS18]. The ideal function-
ality Ff for the MPC is defined in Fig. 2.

Theorem 2 ([GS18]). For any polynomial-time function f computed by n
parties, there exists a two-round UC-secure semi-honest/malicious multiparty
computation protocol Πf that realizes the ideal functionality Ff , assuming the
existence of semi-honest/malicious, two-round oblivious transfer. The number of
total public key operations is bounded by poly(λ, |f |), where |f | is the size of the
Boolean circuit that computes f .

Ff parameterized by a function f , running with n parties P1, P2, . . . , Pn (of which
some may be corrupted) and an adversary S, proceeds as follows:
– Every party Pi sends (sid, i, xi) to the functionality.
– Upon receiving the inputs from all the parties, compute y := f(x1, . . . , xn),

and output (sid, y) to every party and S.

Fig. 2. Ideal functionality Ff

286 S. Garg et al.

4 Semi-Honest Protocol

In this section, we give a construction of two-round multiparty computation
protocol with security against semi-honest adversaries that performs poly(n, λ)
public key operations which is independent of the circuit size being computed.
We start with the definition of conforming protocols which was a notion intro-
duced in [GS18] in Subsect. 4.1 and then give our construction in Subsect. 4.2.

4.1 Conforming Protocols

This subsection is taken verbatim from [GS18]. Consider an n party determinis-
tic4 MPC protocol Φ between parties P1, . . . , Pn with inputs x1, . . . , xn, respec-
tively. For each i ∈ [n], we let xi ∈ {0, 1}m denote the input of party Pi. A
conforming protocol Φ is defined by functions pre, post, and computation steps
or what we call actions φ1, · · · φT . The protocol Φ proceeds in three stages: the
pre-processing stage, the computation stage and the output stage.

– Pre-processing phase: For each i ∈ [n], party Pi computes

(zi, vi) ← pre(1λ, i, xi)

where pre is a randomized algorithm. The algorithm pre takes as input the
index i of the party, its input xi and outputs zi ∈ {0, 1}�/n and vi ∈ {0, 1}�

(where � is a parameter of the protocol). Finally, Pi retains vi as the secret
information and broadcasts zi to every other party. We require that vi[k] = 0
for all k ∈ [�]\ {(i − 1)�/n + 1, . . . , i�/n}.

– Computation phase: For each i ∈ [n], party Pi sets

sti := (z1‖ · · · ‖zn) ⊕ vi.

Next, for each t ∈ {1 · · · T} parties proceed as follows:
1. Parse action φt as (i, f, g, h) where i ∈ [n] and f, g, h ∈ [�].
2. Party Pi computes one NAND gate as

sti[h] = NAND(sti[f], sti[g])

and broadcasts sti[h] ⊕ vi[h] to every other party.
3. Every party Pj for j �= i updates stj [h] to the bit value received from Pi.

We require that for all t, t′ ∈ [T] such that t �= t′, we have that if φt = (·, ·, ·, h)
and φt′ = (·, ·, ·, h′) then h �= h′. Also, we denote Ai ⊂ [T] to be the set of
rounds in which party Pi sends a bit. Namely, Ai = {t ∈ T | φt = (i, ·, ·, ·)} .

– Output phase: For each i ∈ [n], party Pi outputs post(i, sti).

The following lemma was shown in [GS18]

Lemma 2 ([GS18]). Any MPC protocol Π can be written as a conforming pro-
tocol Φ while inheriting the correctness and the security of the original protocol.
4 Randomized protocols can be handled by including the randomness used by a party

as part of its input.

Two-Round Multiparty Secure Computation 287

4.2 Construction

In this subsection, we describe our construction of two-round, n-party compu-
tation protocol computing a function f . Our construction uses the following
primitives.

1. An n-party semi-honest secure conforming protocol Φ computing the function
f .

2. (Garble,Eval) be a garbling scheme for circuits.
3. A pseudorandom generator PRG : {0, 1}λ → {0, 1}4T .
4. A UC-secure two-round MPC protocol computing the function g described

in Fig. 3.

Notations. For a bit string c, we use c[i] to denote the i-th bit of it. For
each t ∈ [T] and α, β ∈ {0, 1}, we use (t, α, β) to succinctly denote the integer
4t + 2α + β − 3. In particular, we use c[(t, α, β)] to denote c[4t + 2α + β − 3] for
any c ∈ {0, 1}4T . We use lab to denote the set of both labels per input wire of
a garbled circuit, and ˜lab denotes the set of one label per input wire. Recall the
definition of Projection from Sect. 3.

We give an overview of the construction below and describe the formal con-
struction later.

Parties: P1, P2, . . . , Pn.
Inputs:

– P1 (also called as the receiver) inputs s ∈ {0, 1}λ and rlab2, . . . , rlabn where
each rlabi is a collection of labels {rlabi→1

j,0 , rlabi→1
j,1 }j∈[λ2] with each label of

length λ.
– For each i ∈ [2, n], Pi (also called as the sender) inputs slabi, where slabi is a

collection of labels {slabi→1
j,0 , slabi→1

j,1 }j∈[λ] with each label having length λ.

Output: {Projection(Projection(s, slabi), rlabi)}i∈[2,n].

Fig. 3. The function g computed by the internal MPC where P1 acts as the receiver

Overview. As explained in Sect. 2, our construction combines a special purpose
OT extension protocol (which is delegatable, fine-grained secure and satisfies
key availability) along with the two-round MPC protocols of [BL18,GS18] to
obtain a protocol that minimizes the number of public key operations. Recall
that the protocols of [BL18,GS18] used the concept of “talking garbled circuits”
to squish the round complexity of a conforming protocol to two rounds. At a high
level, in the first round, every pair of parties sets up a channel to enable their
garbled circuits to interact, and then in the second round, they send “talking
garbled circuits” that emulate the interactions in the conforming protocol. The
interaction between the “talking garbled circuits” is done via oblivious transfer.
In our new construction, we use a special purpose OT extension protocol that

288 S. Garg et al.

allows the parties to set-up the channel for interaction while minimizing the
number of public key operations.

A major modification from the description given in Sect. 2 is in modeling the
special oblivious transfer as a protocol between a single receiver and n−1 senders.
We do this to ensure that the receiver uses the same choice bits in interactions
with every sender. Even though this is not an issue in the semi-honest case,
it causes issues in the malicious setting if the corrupted receiver uses different
choice bits in two different interactions. For uniformity of treatment, we adopt
an approach where the special oblivious transfer is a protocol between a single
receiver and n − 1 senders.

Description of the Protocol. We give a formal description of our protocol
below in the Fg-hybrid model.

Round-1: Each party Pi does the following:
1. Compute (zi, vi) ← pre(1λ, i, xi).
2. For each t ∈ [T] and for each α, β ∈ {0, 1}

ci[(t, α, β)] := vi[h] ⊕ NAND(vi[f] ⊕ α, vi[g] ⊕ β)

where φt = (
, f, g, h).
3. Sample si ← {0, 1}λ and compute ei := PRG(si) ⊕ ci.
4. For each j ∈ [n] \ {i}, sample

rlabj→i
k,b ← {0, 1}λ for all k ∈ [λ2], b ∈ {0, 1}

slabi→j
k,b ← {0, 1}λ for all k ∈ [λ], b ∈ {0, 1}

mi→j
k,b ← {0, 1}λ for all k ∈ [4T], b ∈ {0, 1}

5. For each j ∈ [n] \ {i}, compute

C̃i→j
B ← Garble

(
CB

[{
mi→j

k,0 ,mi→j
k,1

}
k∈[4T],b∈{0,1}

]
,
{
slabi→j

k,b

}
k∈[λ],b∈{0,1}

)

where CB is described in Fig. 4.
6. Send (ssid = i, si, {rlabj→i

k,b }j∈[n]\{i}) to Fg acting as the receiver.
7. For each j ∈ [n]\{i}, send (ssid = j, {slabi→j

k,b }) to Fg acting as the sender.

8. Send
(

zi, {˜Ci→j
B }j∈[n]\{i}, ei

)

to every other party.

CB

[
{mk,0,mk,1}k∈[4T]

]

Input: s ∈ {0, 1}λ.
1. d := PRG(s) where d ∈ {0, 1}4T .
2. Output

{
mk,d[k]

}
k∈[4T]

.

Fig. 4. Circuit CB

Two-Round Multiparty Secure Computation 289

Round-2: Each party Pi does the following:
1. Set sti := (z1‖ . . . ‖zn) ⊕ vi.
2. Set N = � + 4Tλ(n − 1).
3. Set lab

i,T+1
:= {labi,T+1

k,0 , labi,T+1
k,1 }k∈[N] where labi,T+1

k,b := 0λ for each
k ∈ [N], b ∈ {0, 1}.

4. for each t from T down to 1 do:
(a) Parse φt as (i∗, f, g, h).
(b) If i = i∗ then compute (where P is described in Fig. 6)

(

˜Pi,t, lab
i,t) ← Garble(1λ,P[i, φt, vi,⊥, lab

i,t+1
]).

(c) If i �= i∗ then for every α, β ∈ {0, 1}, set m′
α,β,0 = mi→i∗

(t,α,β),ei∗ [(t,α,β)]

and m′
α,β,1 = mi→i∗

(t,α,β),1⊕ei∗ [(t,α,β)].

Compute ctiα,β := (m′
α,β,0 ⊕ labi,t+1

h,0 ,m′
α,β,1 ⊕ labi,t+1

h,1) and compute

(

˜Pi,t, lab
i,t) ← Garble(1λ,P[i, φt, vi, {ctiα,β}, lab

i,t+1
]).

5. Compute

˜Ci
wrap ← Garble

(

Cwrap

[

{˜Cj→i
B }j∈[n]\{i}, sti, lab

i,1
]

, {rlabj→i
k,b }j∈[n]\{i},k∈[λ2],b∈{0,1}

)

where Cwrap is described in Fig. 5.

6. Send
(

{˜Pi,t}t∈[T], ˜C
i
wrap

)

to every other party.

Cwrap

[
{C̃j→i

B }j∈[n]\{i}, sti, lab
i,1

]

Input: {s̃labj→i}j∈[n]\{i}

1. For each j ∈ [n] \ {i}, compute
{
mj→i

k

}
k∈[4T]

← Eval
(
C̃j→i
B , s̃lab

j→i
)

.

2. Let m := ‖
j∈[n]\{i},k∈[4T]

(mj→i
k).

3. Output Projection(sti‖m, lab
i,1

).

Fig. 5. Circuit Cwrap

Evaluation: Every party Pi does the following:
1. For each j ∈ [n],

(a) Obtain (ssid = j, ˜rlab
j
) from Fg where party Pj acts as the receiver.

(b) ˜lab
j,1 ← Eval(˜Cj

wrap,
˜rlab

j
)

2. for each t from 1 to T do:
(a) Parse φt as (i∗, f, g, h).

290 S. Garg et al.

(b) Compute ((α, β, γ), {ωj}j∈[n]\{i∗}, ˜lab
i∗,t+1

) := Eval(˜Pi∗,t, ˜lab
i∗,t

).
(c) Set sti[h] := γ ⊕ vi[h].
(d) for each j �= i∗ do:

i. Compute (ct = (δ0, δ1), {labj,t+1
k }k∈[N]\{h}) := Eval(˜Pj,t, ˜lab

j,t
).

ii. Recover labj,t+1
h := δγ ⊕ ωj .

iii. Set ˜lab
j,t+1

:= {labj,t+1
k }k∈[N].

3. Compute the output as post(i, sti).

Correctness. In order to prove correctness, it is sufficient to show that the label
labj,t+1

h computed in Step 2(d)ii of the evaluation procedure corresponds to the
bit NAND(sti∗ [f], sti∗ [g])⊕vi∗ [h]. Notice that by the structure of vi∗ we have for
every j �= i∗, stj [f] = sti∗ [f] ⊕ vi∗ [f].

First, ωj is computed in Step 2b. Let k := (t, α, β), and we have ωj =
mj→i∗

k = mj→i∗

k,PRG(si∗)[k].

P
[
i, φt, vi, {ctα,β}α,β∈{0,1}, lab

]

Input. Z = sti, {mj→i
k }j∈[n]\{i},k∈[4T]

)
.

Hardcoded. The index i of the party, the action φt = (i∗, f, g, h), the secret value
vi, the strings {ctα,β}α,β∈{0,1}, and a set of labels lab = {labk,0, labk,1}k∈[N].
1. if i = i∗ then:

(a) Compute sti[h] := NAND(sti[f], sti[g]), and update Z[h] accordingly.
(b) α := sti[f] ⊕ vi[f], β := sti[g] ⊕ vi[g] and γ := sti[h] ⊕ vi[h].
(c) Output

(
(α, β, γ), {mj→i

(t,α,β)}j∈[n]\{i},Projection(Z, lab)
)
.

2. else:
(a) Output (ctsti[f],sti[g], {labk,Z[k]}k∈[N]\{h}).

Fig. 6. The program P

Second, ct = (δ0, δ1) is computed in Step 2(d)i. Note that α = sti∗ [f] ⊕
vi∗ [f] = stj [f], β = sti∗ [g] ⊕ vi∗ [g] = stj [g]. From the functionality of Pj,t we
know that ct = ctstj [f],stj [g] = ctjα,β = (m′

α,β,0 ⊕ labj,t+1
h,0 ,m′

α,β,1 ⊕ labj,t+1
h,1) =

(mj→i∗

k,ei∗ [k] ⊕ labj,t+1
h,0 ,mj→i∗

k,ei∗ [k]⊕1 ⊕ labj,t+1
h,1).

Therefore, δγ ⊕ωj = mj→i∗

k,ei∗ [k]⊕γ ⊕ labj,t+1
h,γ ⊕mj→i∗

k,PRG(si∗)[k]. Recall that ci∗ [k] =
NAND(sti∗ [f], sti∗ [g])⊕vi∗ [h] = γ, thus ei∗ [k]⊕γ = ei∗ [k]⊕ci∗ [k] = PRG(si∗)[k].
Hence δγ ⊕ ωj = labj,t+1

h,γ . This concludes the proof.
It is useful to keep in mind that for every i, j ∈ [n] and k ∈ [�], we have that

sti[k] ⊕ vi[k] = stj [k] ⊕ vj [k]. Let us denote this shared value by st∗. Also, we
denote the transcript of the interaction in the computation phase by Z.

Efficiency. Let the number of OT invocations in Φ be npkΦ and in one exe-
cution of Fg be npkg. Since we make non-black box use of the underlying con-
forming protocol Φ (but make black-box use of Fg), we augment the circuit

Two-Round Multiparty Secure Computation 291

computing Π and Fg to have OT gates (this is similar in spirit to the works
of [GMM17a,GMM17b]) to count the number of public-key operations. An OT
gate enables one execution of one of the algorithms provided by the OT protocol.
We choose the conforming protocol that performs OT extension between every
pair of parties so that npkΦ is bounded by O(n2λ). Thus, the total number of
public-key operations (including the non-black-box public-key operations) in our
two-round construction is O(npkΦ + n · npkg). It follows from Theorem 2 that
this number is bounded by poly(n, λ).

Security. The proof of security is given in the full version [GMS18].

5 Special Zero-Knowledge Protocol

In this section, we define and construct a special zero-knowledge protocol which
will later be used in our construction against malicious adversaries. We give the
formal definition below.

FZK parameterized by an NP relation R, running with n parties P1, P2, . . . , Pn (of
which some may be corrupted) and an adversary S, proceeds as follows:
– P1 sends (prover, sid, x, w) to the functionality. The functionality sends

(request, x, R(x, w)) to S. If S has corrupted P2, then S sends (response, μ) to
the ideal functionality, and the ideal functionality broadcasts (R(x, w), x, μ)
to every other party and goes offline. Else, P2 sends (verifier, sid, μ0, μ1) to the
functionality, where μb ∈ {0, 1}λ.

– Upon receiving the inputs from both P1 and P2, functionality checks if
R(x, w) = 1. If yes, it sends (1, x, μ1) to every party. Otherwise, it sends
(0, x, μ0) to all parties.

Fig. 7. Special zero-knowledge functionality FZK

Definition 2. A special zero-knowledge protocol is a two-round protocol that
securely realizes the FZK functionality given in Fig. 7. Further, we require the
number of pubic key operations performed in the protocol to be bounded by
poly(n, λ) independent of the size of x and w.

We give a proof of the following theorem.

Theorem 3. Assuming the existence of two-round UC secure oblivious transfer,
there exists a construction of special zero-knowledge protocol.

5.1 Construction

We first describe the tools used in the construction.

1. Special Non-interactive Statistically Binding Commitment. We
use a special non-interactive, statistically binding commitment scheme

292 S. Garg et al.

(com, decom) where the length of the randomness used to commit to arbi-
trary length messages is λ. We note that any standard commitment can be
made to satisfy this property by using a pseudorandom generator to expand
the random string to required length.

2. Blum’s Hamiltonicity Protocol. We use the three-round, constant sound-
ness zero-knowledge (zk1, zk2, zk3) protocol of Blum. We note that in Blum’s
protocol zk2 ∈ {0, 1} and we let zk3,b be the response when zk2 = b. We also
assume without loss of generality that zk1 includes the instance.

3. Two-Round Secure Computation Protocol. We make use of the two-
round secure computation protocol of [GS18] (that can be based on any two-
round UC secure oblivious transfer) computing the ideal functionality Ff

described in Fig. 10.
4. Length Doubling Pseudorandom Generator: We use a pseudorandom

generator PRG : {0, 1}λ → {0, 1}2λ.

Common Random String: Sample σ ← {0, 1}2λ and set σ as the CRS.
Message from P1: On input an instance x and a witness w, P1 does the follow-

ing:
1. If R(x, w) = 0, broadcast (NotInL, x, R(x, w)) to every other party.
2. Else, for each i ∈ [λ] do:

(a) Prepare zki
1 for the language L using the witness w where L is defined

below.

L := {(x, σ) : ∃ (w, s) s.t. R(x, w) = 1 ∨ PRG(s) = σ}
(b) Let zki

3,b be the third round message when zki
2 = b. Sample ri

b ←
{0, 1}λ for each b ∈ {0, 1} and compute ci

b := com(zki
3,b; r

i
b).

(c) Broadcast zki
1, c

i
0, c

i
1 to every other party.

Message from P2: On input the message from P1 :
1. If P1 has sent (NotInL, x, 0), broadcast μ0 to every other party and every

party outputs (0, x, μ0). Else, do:
(a) Sample ch ← {0, 1}λ.
(b) Sample labi

w,b ← {0, 1}λ for each i, w ∈ [λ] and b ∈ {0, 1}.
(c) Compute C̃ ← Garble(C[ch, {zki

1, c
i
0, c

i
1}i∈[λ], {μb}b∈{0,1}], {labi

w,b})
where the C is described in Figure 9.

(d) Broadcast C̃ to every party.
Internal MPC: The parties in parallel call Ff to jointly compute the function

f shown in Figure 10. More specifically, P1 sends {ri
0, r

i
1}i∈[λ] to Ff ; P2 sends

ch, {labi
w,b}i,w∈[λ],b∈{0,1} to Ff ; and P3, P4, . . . , Pn send nothing. Every party

then gets {labi
w}i,w∈[λ] back from Ff .

Evaluation: Every party does the following:
1. Compute (b, x, μ) ← Eval

(
C̃, {labi

w}i,w∈[λ]

)
2. Output (b, x, μ).

Fig. 8. Special zero-knowledge protocol ΠZK

Two-Round Multiparty Secure Computation 293

C
[
ch, {zki

1, c
i
0, c

i
1}i∈[λ], {μb}b∈{0,1}

]
Input: r1, r2, . . . , rλ.
Hardcoded parameters: ch, {zki

1, c
i
0, c

i
1}i∈[λ], {μb}b∈{0,1}

1. Use the randomness ri to obtain the message zki
3 committed in ci

ch[i] for each
i ∈ [λ].

2. For each i ∈ [λ], check if (zki
1, ch[i], zki

3) is a valid proof for the membership
in language L.

3. If any of the checks fails, output (0, x, μ0). Else, output (1, x, μ1).

Fig. 9. Circuit C

Parties: P1, P2, . . . , Pn.
Inputs:

– P1 inputs {ri
0, r

i
1}i∈[λ], where rb

i ∈ {0, 1}λ.
– P2 inputs ch, {labi

w,b}i,w∈[λ],b∈{0,1}, where labi
w,b ∈ {0, 1}λ.

– P3, P4, . . . , Pn input nothing.
Output: {labi

w,ri
ch[i][w]

}i,w∈[λ] (same for every party).

Fig. 10. The function f computed by the internal MPC

Overview. We present the formal construction in the Ff hybrid model in Fig. 8.

Correctness. To argue the correctness of the protocol, we only need to prove
that in the evaluation step, μ is either μ0 or μ1 based on whether R(x,w) = 0
or R(x,w) = 1. We know that the output of Ff is

{

labi
w

}

i,w∈[λ]
, where labi

w =

labi
w,ri

ch[i][w]. Notice that labi
w,b’s are the input keys of ˜C, hence labi

w is the label

corresponding to the w-th bit of ri
ch[i]. Using these input labels to evaluate ˜C

gives us Eval
(

˜C,
{

labi
w

}

i,w∈[λ]

)

= C

(

{

ri
ch[i]

}

i∈[λ]

)

.

In the circuit evaluation of C, ri
ch[i] is used to obtain zki

3,ch[i] from ci
ch[i]. It

now follows from the completeness of (zki
1, ch[i], zki

3,ch[i]) that μ is either μ0 or
μ1 based on R(x,w) = 0 or R(x,w) = 1.

Efficiency. The number of public key operations performed in the protocol is
poly(n, λ) which follows from Theorem 2 when applied to function f .

Security. We give the security proof in the full version [GMS18].

6 Malicious Secure Protocol

In this section, we give a construction of two-round, multiparty computation
that is secure against malicious adversaries and minimizes the number of public
key operations.

294 S. Garg et al.

6.1 Construction

Our two-round protocol computing a function f uses the following primitives.

1. An n-party malicious secure conforming protocol Φ computing the function
f .

2. A selective garbling scheme for circuits (Garble,Eval).
3. A pseudorandom generator PRGmal : {0, 1}λ → {0, 1}4T where each output

bit can be computed by a circuit of size poly(λ, log T).5
4. A somewhere adaptive garbling scheme for circuits (SAdpGarbleCkt,

SAdpGarbleInp,SAdpEvalCkt) (defined in Sect. 3.2). We assume that the length
of the garbled input when SAdpGarbleCkt is used to garbled CB (described in
Fig. 11) is M .

5. A maliciously secure two-round MPC protocol computing the function g
described in Fig. 12.

6. A non-interactive statistically binding commitment scheme (Com,Decom).
7. The special ZK protocol parameterized by an NP relation R described below.

R :=

{

(

x =
(

˜CB, cm
)

, w = (Ω,CB, state, ω)
)

:

(Decom(cm, state, ω) = 1) ∧
(

(˜CB, state) = SAdpGarbleCkt (CB;Ω)
)

}

.

Description of the Protocol. We now give a formal description of our con-
struction in below in the Fg and Fzk hybrid model.

Round-1: Each party Pi does the following:
1. Compute (zi, vi) ← pre(1λ, i, xi).
2. For each t ∈ [T] and for each α, β ∈ {0, 1}

ci[(t, α, β)] := vi[h] ⊕ NAND(vi[f] ⊕ α, vi[g] ⊕ β)

where φt = (
, f, g, h).
3. Sample si ← {0, 1}λ and compute ei := PRGmal(si) ⊕ ci.
4. For each j ∈ [n] \ {i}, sample

μj→i
0 , μj→i

1 ← {0, 1}λ

rlabj→i
k,b ← {0, 1}λ for all k ∈ [M], b ∈ {0, 1}

mi→j
k,b ← {0, 1}λ for all k ∈ [4T], b ∈ {0, 1}

5. Garbling CB: For each j ∈ [n] \ {i}, compute

(C̃i→j
B , statei→j) := SAdpGarbleCkt

(
CB

[{
mi→j

k,0 ,mi→j
k,1

}
k∈[4T],b∈{0,1}

]
; Ω

)

cmi→j := Com(statei→j ; ωi→j)

where CB is described in Fig. 11 and Ω,ωi→j are sampled randomly.
5 The GGM PRF [GGM86] can be easily modified to give such a PRG based on

one-way functions.

Two-Round Multiparty Secure Computation 295

6. Messages to Fg: Send (ssid = i, si, {rlabj→i
k,b }j∈[n]\{i},k∈[M],b∈{0,1}) to Fg

acting as the receiver and for each j ∈ [n] \ {i}, send (ssid = j, {cmi→j ,
statei→j , ωi→j}) to Fg acting as the sender.

7. Messages to Fzk: For each j ∈ [n]\{i}, send (ssid = (j → i), μj→i
0 , μj→i

1)
to Fzk acting as the verifier, and send (ssid = (i → j),Xi→j ,W i→j) to
Fzk acting as the prover where Xi→j =

(

˜Ci→j
B , cmi→j

)

and W i→j =
(

Ω,CB

[

{

mi→j
k,0 ,mi→j

k,1

}

k∈[4T],b∈{0,1}

]

, statei→j , ωi→j
)

.

8. Send
(

zi, {˜Ci→j
B }j∈[n]\{i}, ei, {cmi→j}j∈[n]\{i}

)

to every other party.

CB

[
{mk,0,mk,1}k∈[4T]

]

Input: s ∈ {0, 1}λ.
1. d := PRGmal(s) where d ∈ {0, 1}4T .
2. Output

{
mk,d[k]

}
k∈[4T]

.

Fig. 11. Circuit CB

Round-2: Each party Pi does the following:
1. Set sti := (z1‖ . . . ‖zn) ⊕ vi.
2. Set N = � + 4Tλ(n − 1).
3. Set lab

i,T+1
:= {labi,T+1

k,0 , labi,T+1
k,1 }k∈[N] where labi,T+1

k,b := 0λ for each
k ∈ [N], b ∈ {0, 1}.

4. for each t from T down to 1 do:
(a) Parse φt as (i∗, f, g, h).
(b) If i = i∗ then compute (where P is described in Fig. 6)

(

˜Pi,t, lab
i,t) ← Garble(1λ,P[i, φt, vi,⊥, lab

i,t+1
]).

(c) If i �= i∗ then for every α, β ∈ {0, 1}, set m′
α,β,0 = mi→i∗

(t,α,β),ei∗ [(t,α,β)]

and m′
α,β,1 = mi→i∗

(t,α,β),1⊕ei∗ [(t,α,β)].

Compute ctit,α,β := (m′
α,β,0 ⊕ labi,t+1

h,0 ,m′
α,β,1 ⊕ labi,t+1

h,1) and compute

(

˜Pi,t, lab
i,t) ← Garble(1λ,P[i, φt, vi, {ctit,α,β}, lab

i,t+1
]).

296 S. Garg et al.

Parties: P1, P2, . . . , Pn.
Inputs:

– P1 (also called as the receiver) inputs s ∈ {0, 1}λ and rlab2, . . . , rlabn where
each rlabi is a collection of labels {rlabi→1

j,0 , rlabi→1
j,1 }j∈[M] with each label of

length λ.
– For each i ∈ [2, n], Pi (also called as the sender) inputs

(cmi→1, statei→1, ωi→1), where cmi→1 is a commitment and is a public
input, statei→1 is the secret state of the somewhere adaptive garbling scheme,
and ωi→1 is a string.

Output: Check if for each i ∈ [2, n], Decom(cmi→1, statei→1, ωi→1) = 1. If all the
checks pass, output {Projection(SAdpGarbleInp(statei→1, s), rlabi)}i∈[2,n] to every
party.

Fig. 12. The function g computed by the internal MPC where P1 acts as the receiver

5. Garbling Cwrap: Compute

˜Ci
wrap ← Garble

(

Cwrap

[

{˜Cj→i
B }j∈[n]\{i}, sti, lab

i,1
]

,
{

{μj→i
b }j∈[n]\{i}, {rlabj→i

k,b }j∈[n]\{i},k∈[M],b∈{0,1}
})

where Cwrap is described in Fig. 13.

6. Send
(

{˜Pi,t}t∈[T], ˜C
i
wrap

)

to every other party.

Cwrap

[
{C̃j→i

B }j∈[n]\{i}, sti, lab
i,1

]

Input: {bj→i}j∈[n]\{i}, {s̃j→i}j∈[n]\{i}
1. If bj→i = 1 for all j ∈ [n] \ {i} do:

(a) For each j ∈ [n] \ {i}, compute
{
mj→i

k

}
k∈[4T]

←
SAdpEvalCkt

(
C̃j→i
B , s̃j→i

)
.

(b) Let m := ‖
j∈[n]\{i},k∈[4T]

(mj→i
k)

(c) Output Projection(sti‖m, lab
i,1

).
2. Else, output ⊥.

Fig. 13. Circuit Cwrap

Evaluation: Every party Pi does the following:
1. For each j ∈ [n],

(a) Obtain (ssid = j, {˜rlab
j}) from Fg where party Pj acts as the receiver.

Two-Round Multiparty Secure Computation 297

(b) For each k ∈ [n] \ {j}, obtain (ssid = (k → j), bk→j ,Xk→j , μk→j)
from Fzk. Set μ̃j = {μk→j}k∈[n]\{j}.

(c) ˜lab
j,1 ← Eval(˜Cj

wrap, μ̃
j‖˜rlab

j
).

2. for each t from 1 to T do:
(a) Parse φt as (i∗, f, g, h).

(b) Compute ((α, β, γ), {ωj}j∈[n]\{i}, ˜lab
i∗,t+1

) := Eval(˜Pi∗,t, ˜lab
i∗,t

).
(c) Set sti[h] := γ ⊕ vi[h].
(d) for each j �= i∗ do:

i. Compute (ct = (δ0, δ1), {labj,t+1
k }k∈[N]\{h}) := Eval(˜Pj,t, ˜lab

j,t
).

ii. Recover labj,t+1
h := δγ ⊕ ωj .

iii. Set ˜lab
j,t+1

:= {labj,t+1
k }k∈[N].

3. Compute the output as post(i, sti).

Correctness. The correctness follows via a similar argument to the semi-honest
case.

Efficiency. Let the number of public key operations in Φ be npkΦ, in one exe-
cution of Fzk be npkzk, and in one execution of Fg be npkg. We choose the
conforming protocol that performs OT extension between every pair of parties
so that npkΦ is bounded by O(n2λ). The total number of public key operations
in our two-round construction is O(npkΦ + n2 · npkzk + n · npkg). It follows from
Theorems 3, 2 that this number is bounded by poly(n, λ).

Security. The security proof will be given in the full version [GMS18].

References

[ACJ17] Ananth, P., Choudhuri, A.R., Jain, A.: A new approach to round-optimal
secure multiparty computation. In: Katz, J., Shacham, H. (eds.) CRYPTO
2017, Part I. LNCS, vol. 10401, pp. 468–499. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-63688-7 16

[AIKW13] Applebaum, B., Ishai, Y., Kushilevitz, E., Waters, B.: Encoding functions
with constant online rate or how to compress garbled circuits keys. In:
Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part II. LNCS, vol. 8043,
pp. 166–184. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-
642-40084-1 10

[ALSZ17] Asharov, G., Lindell, Y., Schneider, T., Zohner, M.: More efficient oblivi-
ous transfer extensions. J. Cryptol. 30(3), 805–858 (2017)

[Bea96] Beaver, D.: Correlated pseudorandomness and the complexity of private
computations. In: Proceedings of the Twenty-Eighth Annual ACM Sym-
posium on the Theory of Computing, Philadelphia, Pennsylvania, 22–24
May 1996, pp. 479–488 (1996)

[BGI16] Boyle, E., Gilboa, N., Ishai, Y.: Breaking the circuit size barrier for secure
computation under DDH. In: Robshaw, M., Katz, J. (eds.) CRYPTO
2016, Part I. LNCS, vol. 9814, pp. 509–539. Springer, Heidelberg (2016).
https://doi.org/10.1007/978-3-662-53018-4 19

https://doi.org/10.1007/978-3-319-63688-7_16
https://doi.org/10.1007/978-3-642-40084-1_10
https://doi.org/10.1007/978-3-642-40084-1_10
https://doi.org/10.1007/978-3-662-53018-4_19

298 S. Garg et al.

[BGI+17a] Badrinarayanan, S., Garg, S., Ishai, Y., Sahai, A., Wadia, A.: Two-
message witness indistinguishability and secure computation in the plain
model from new assumptions. In: Takagi, T., Peyrin, T. (eds.) ASI-
ACRYPT 2017, Part III. LNCS, vol. 10626, pp. 275–303. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-70700-6 10

[BGI17b] Boyle, E., Gilboa, N., Ishai, Y.: Group-based secure computation: optimiz-
ing rounds, communication, and computation. In: Coron, J.-S., Nielsen,
J.B. (eds.) EUROCRYPT 2017, Part II. LNCS, vol. 10211, pp. 163–193.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-56614-6 6

[BGJ+17] Badrinarayanan, S., Goyal, V., Jain, A., Kalai, Y.T., Khurana, D., Sahai,
A.: Promise zero knowledge and its applications to round optimal MPC.
Cryptology ePrint Archive, Report 2017/1088 (2017). https://eprint.iacr.
org/2017/1088

[BHP17] Brakerski, Z., Halevi, S., Polychroniadou, A.: Four round secure compu-
tation without setup. In: Kalai, Y., Reyzin, L. (eds.) TCC 2017, Part I.
LNCS, vol. 10677, pp. 645–677. Springer, Cham (2017). https://doi.org/
10.1007/978-3-319-70500-2 22

[BHR12] Bellare, M., Hoang, V.T., Rogaway, P.: Foundations of garbled circuits.
In: Yu, T., Danezis, G., Gligor, V.D., (eds.) ACM CCS 2012, pp. 784–796.
ACM Press, October 2012

[BL18] Benhamouda, F., Lin, H.: k-round MPC from k-round OT via garbled
interactive circuits. In: EUROCRYPT (2018, to appear). https://eprint.
iacr.org/2017/1125

[BMR90] Beaver, D., Micali, S., Rogaway, P.: The round complexity of secure proto-
cols (extended abstract). In: 22nd ACM STOC, pp. 503–513. ACM Press,
May 1990

[BP16] Brakerski, Z., Perlman, R.: Lattice-based fully dynamic multi-key FHE
with short ciphertexts. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016,
Part I. LNCS, vol. 9814, pp. 190–213. Springer, Heidelberg (2016).
https://doi.org/10.1007/978-3-662-53018-4 8

[Can00a] Canetti, R.: Security and composition of multiparty cryptographic proto-
cols. J. Cryptol. 13(1), 143–202 (2000)

[Can00b] Canetti, R.: Universally composable security: a new paradigm for cryp-
tographic protocols. Cryptology ePrint Archive, Report 2000/067 (2000).
http://eprint.iacr.org/2000/067

[Can01] Canetti, R.: Universally composable security: a new paradigm for crypto-
graphic protocols. In: 42nd FOCS, pp. 136–145. IEEE Computer Society
Press, October 2001

[COSV17] Ciampi, M., Ostrovsky, R., Siniscalchi, L., Visconti, I.: Round-optimal
secure two-party computation from trapdoor permutations. In: Kalai,
Y., Reyzin, L. (eds.) TCC 2017, Part I. LNCS, vol. 10677, pp. 678–710.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70500-2 23

[FS90] Feige, U., Shamir, A.: Witness indistinguishable and witness hiding pro-
tocols. In: 22nd ACM STOC, pp. 416–426. ACM Press, May 1990

[GGH+13] Garg, S., Gentry, C., Halevi, S., Raykova, M., Sahai, A., Waters, B.: Can-
didate indistinguishability obfuscation and functional encryption for all
circuits. In: 54th FOCS, pp. 40–49. IEEE Computer Society Press, Octo-
ber 2013

https://doi.org/10.1007/978-3-319-70700-6_10
https://doi.org/10.1007/978-3-319-56614-6_6
https://eprint.iacr.org/2017/1088
https://eprint.iacr.org/2017/1088
https://doi.org/10.1007/978-3-319-70500-2_22
https://doi.org/10.1007/978-3-319-70500-2_22
https://eprint.iacr.org/2017/1125
https://eprint.iacr.org/2017/1125
https://doi.org/10.1007/978-3-662-53018-4_8
http://eprint.iacr.org/2000/067
https://doi.org/10.1007/978-3-319-70500-2_23

Two-Round Multiparty Secure Computation 299

[GGHR14] Garg, S., Gentry, C., Halevi, S., Raykova, M.: Two-round secure MPC
from indistinguishability obfuscation. In: Lindell, Y. (ed.) TCC 2014.
LNCS, vol. 8349, pp. 74–94. Springer, Heidelberg (2014). https://doi.org/
10.1007/978-3-642-54242-8 4

[GGM86] Goldreich, O., Goldwasser, S., Micali, S.: How to construct random func-
tions. J. ACM 33(4), 792–807 (1986)

[GGSW13] Garg, S., Gentry, C., Sahai, A., Waters, B.: Witness encryption and its
applications. In: Boneh, D., Roughgarden, T., Feigenbaum, J. (eds.) 45th
ACM STOC, pp. 467–476. ACM Press, June 2013

[GLS15] Dov Gordon, S., Liu, F.-H., Shi, E.: Constant-round MPC with fairness
and guarantee of output delivery. In: Gennaro, R., Robshaw, M. (eds.)
CRYPTO 2015, Part II. LNCS, vol. 9216, pp. 63–82. Springer, Heidelberg
(2015). https://doi.org/10.1007/978-3-662-48000-7 4

[GMM17a] Garg, S., Mahmoody, M., Mohammed, A.: Lower bounds on obfuscation
from all-or-nothing encryption primitives. In: Katz, J., Shacham, H. (eds.)
CRYPTO 2017, Part I. LNCS, vol. 10401, pp. 661–695. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-63688-7 22

[GMM17b] Garg, S., Mahmoody, M., Mohammed, A.: When does functional encryp-
tion imply obfuscation? In: Kalai, Y., Reyzin, L. (eds.) TCC 2017, Part
I. LNCS, vol. 10677, pp. 82–115. Springer, Cham (2017). https://doi.org/
10.1007/978-3-319-70500-2 4

[GMMM17] Garg, S., Mahmoody, M., Masny, D., Meckler, I.: On the round complexity
of OT extension. Cryptology ePrint Archive, Report 2017/1187 (2017).
https://eprint.iacr.org/2017/1187

[GMPP16] Garg, S., Mukherjee, P., Pandey, O., Polychroniadou, A.: The exact round
complexity of secure computation. In: Fischlin, M., Coron, J.-S. (eds.)
EUROCRYPT 2016, Part II. LNCS, vol. 9666, pp. 448–476. Springer,
Heidelberg (2016). https://doi.org/10.1007/978-3-662-49896-5 16

[GMS18] Garg, S., Miao, P., Srinivasan, A.: Two-round multiparty secure computa-
tion minimizing public key operations. Cryptology ePrint Archive, Report
2018/180 (2018). https://eprint.iacr.org/2018/180

[GMW87] Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game
or a completeness theorem for protocols with honest majority. In: Aho,
A. (ed.) 19th ACM STOC, pp. 218–229. ACM Press, May 1987

[GS17] Garg, S., Srinivasan, A.: Garbled protocols and two-round MPC from
bilinear maps. In: 58th FOCS, pp. 588–599. IEEE Computer Society Press
(2017)

[GS18] Garg, S., Srinivasan, A.: Two-round multiparty secure computation from
minimal assumptions. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT
2018. LNCS, vol. 10821, pp. 468–499. Springer, Cham (2018). https://doi.
org/10.1007/978-3-319-78375-8 16. https://eprint.iacr.org/2017/1156

[HHPV17] Halevi, S., Hazay, C., Polychroniadou, A., Venkitasubramaniam, M.:
Round-optimal secure multi-party computation. Cryptology ePrint
Archive, Report 2017/1056 (2017). http://eprint.iacr.org/2017/1056

[HIK07] Harnik, D., Ishai, Y., Kushilevitz, E.: How many oblivious transfers
are needed for secure multiparty computation? In: Menezes, A. (ed.)
CRYPTO 2007. LNCS, vol. 4622, pp. 284–302. Springer, Heidelberg
(2007). https://doi.org/10.1007/978-3-540-74143-5 16

https://doi.org/10.1007/978-3-642-54242-8_4
https://doi.org/10.1007/978-3-642-54242-8_4
https://doi.org/10.1007/978-3-662-48000-7_4
https://doi.org/10.1007/978-3-319-63688-7_22
https://doi.org/10.1007/978-3-319-70500-2_4
https://doi.org/10.1007/978-3-319-70500-2_4
https://eprint.iacr.org/2017/1187
https://doi.org/10.1007/978-3-662-49896-5_16
https://eprint.iacr.org/2018/180
https://doi.org/10.1007/978-3-319-78375-8_16
https://doi.org/10.1007/978-3-319-78375-8_16
https://eprint.iacr.org/2017/1156
http://eprint.iacr.org/2017/1056
https://doi.org/10.1007/978-3-540-74143-5_16

300 S. Garg et al.

[HIKN08] Harnik, D., Ishai, Y., Kushilevitz, E., Nielsen, J.B.: OT-combiners via
secure computation. In: Canetti, R. (ed.) TCC 2008. LNCS, vol. 4948,
pp. 393–411. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-
540-78524-8 22

[HJO+16] Hemenway, B., Jafargholi, Z., Ostrovsky, R., Scafuro, A., Wichs, D.: Adap-
tively secure garbled circuits from one-way functions. In: Robshaw, M.,
Katz, J. (eds.) CRYPTO 2016, Part III. LNCS, vol. 9816, pp. 149–178.
Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53015-
3 6

[HLP11] Halevi, S., Lindell, Y., Pinkas, B.: Secure computation on the web: com-
puting without simultaneous interaction. In: Rogaway, P. (ed.) CRYPTO
2011. LNCS, vol. 6841, pp. 132–150. Springer, Heidelberg (2011). https://
doi.org/10.1007/978-3-642-22792-9 8

[IKNP03] Ishai, Y., Kilian, J., Nissim, K., Petrank, E.: Extending oblivious trans-
fers efficiently. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp.
145–161. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-
45146-4 9

[JKK+17] Jafargholi, Z., Kamath, C., Klein, K., Komargodski, I., Pietrzak, K.,
Wichs, D.: Be adaptive, avoid overcommitting. In: Katz, J., Shacham, H.
(eds.) CRYPTO 2017, Part I. LNCS, vol. 10401, pp. 133–163. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-63688-7 5

[JKKR17] Jain, A., Kalai, Y.T., Khurana, D., Rothblum, R.: Distinguisher-
dependent simulation in two rounds and its applications. In: Katz, J.,
Shacham, H. (eds.) CRYPTO 2017, Part II. LNCS, vol. 10402, pp. 158–
189. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63715-
0 6

[JW16] Jafargholi, Z., Wichs, D.: Adaptive security of Yao’s garbled circuits.
In: Hirt, M., Smith, A. (eds.) TCC 2016, Part I. LNCS, vol. 9985, pp.
433–458. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-
53641-4 17

[KK13] Kolesnikov, V., Kumaresan, R.: Improved OT extension for transferring
short secrets. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part II.
LNCS, vol. 8043, pp. 54–70. Springer, Heidelberg (2013). https://doi.org/
10.1007/978-3-642-40084-1 4

[KRS16] Kumaresan, R., Raghuraman, S., Sealfon, A.: Network oblivious transfer.
In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016, Part II. LNCS, vol. 9815,
pp. 366–396. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-
662-53008-5 13

[LP09] Lindell, Y., Pinkas, B.: A proof of security of Yao’s protocol for two-party
computation. J. Cryptol. 22(2), 161–188 (2009)

[MW16] Mukherjee, P., Wichs, D.: Two round multiparty computation via multi-
key FHE. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016, Part
II. LNCS, vol. 9666, pp. 735–763. Springer, Heidelberg (2016). https://
doi.org/10.1007/978-3-662-49896-5 26

[Nie07] Nielsen, J.B.: Extending oblivious transfers efficiently - how to get robust-
ness almost for free. Cryptology ePrint Archive, Report 2007/215 (2007).
http://eprint.iacr.org/2007/215

[NNOB12] Nielsen, J.B., Nordholt, P.S., Orlandi, C., Burra, S.S.: A new approach
to practical active-secure two-party computation. In: Safavi-Naini, R.,
Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 681–700. Springer,
Heidelberg (2012). https://doi.org/10.1007/978-3-642-32009-5 40

https://doi.org/10.1007/978-3-540-78524-8_22
https://doi.org/10.1007/978-3-540-78524-8_22
https://doi.org/10.1007/978-3-662-53015-3_6
https://doi.org/10.1007/978-3-662-53015-3_6
https://doi.org/10.1007/978-3-642-22792-9_8
https://doi.org/10.1007/978-3-642-22792-9_8
https://doi.org/10.1007/978-3-540-45146-4_9
https://doi.org/10.1007/978-3-540-45146-4_9
https://doi.org/10.1007/978-3-319-63688-7_5
https://doi.org/10.1007/978-3-319-63715-0_6
https://doi.org/10.1007/978-3-319-63715-0_6
https://doi.org/10.1007/978-3-662-53641-4_17
https://doi.org/10.1007/978-3-662-53641-4_17
https://doi.org/10.1007/978-3-642-40084-1_4
https://doi.org/10.1007/978-3-642-40084-1_4
https://doi.org/10.1007/978-3-662-53008-5_13
https://doi.org/10.1007/978-3-662-53008-5_13
https://doi.org/10.1007/978-3-662-49896-5_26
https://doi.org/10.1007/978-3-662-49896-5_26
http://eprint.iacr.org/2007/215
https://doi.org/10.1007/978-3-642-32009-5_40

Two-Round Multiparty Secure Computation 301

[PS16] Peikert, C., Shiehian, S.: Multi-key FHE from LWE, revisited. In: Hirt,
M., Smith, A. (eds.) TCC 2016, Part II. LNCS, vol. 9986, pp. 217–238.
Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53644-
5 9

[Yao82] Yao, A.C.-C.: Protocols for secure computations (extended abstract). In:
23rd FOCS, pp. 160–164. IEEE Computer Society Press, November 1982

https://doi.org/10.1007/978-3-662-53644-5_9
https://doi.org/10.1007/978-3-662-53644-5_9

	Two-Round Multiparty Secure Computation Minimizing Public Key Operations
	1 Introduction
	1.1 Our Results

	2 Technical Overview
	3 Preliminaries
	3.1 Selective Garbled Circuits
	3.2 Somewhere Adaptive Garbled Circuits
	3.3 Universal Composability Framework
	3.4 Prior MPC Results

	4 Semi-Honest Protocol
	4.1 Conforming Protocols
	4.2 Construction

	5 Special Zero-Knowledge Protocol
	5.1 Construction

	6 Malicious Secure Protocol
	6.1 Construction

	References

