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8.1 Introduction

CT is doubtlessly one of the most important technologies in medical imaging
and offers us views inside the human body that are as valuable to physicians
as they are fascinating (cf. Fig. 8.1).

8.1.1 Motivation

In the previous chapter, we have seen how X-rays can be used to acquire
2-D projection images. However, a single projection image does not retain all
spatial information, as it merely shows something akin to “shadows” of the
imaged objects. An example is given in Fig. 8.3(a), which shows an X-ray
projection image of a luggage bag. Two arrows indicate objects that cannot
easily be identified. Using multiple projection images from different angles, we
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148 8 Computed Tomography

Figure 8.2: The first clinical
CT scan, acquired October 1971
at Atkinson Morley’s Hospital in
London.

Figure 8.1: Volume rendering of
a CT head scan. Image courtesy of
Siemens Healthineers AG.

Figure 8.3: 2-D X-ray projection image of a luggage bag (a) and a corre-
sponding 3-D reconstruction, visualized with a volume rendering technique
and (b, c) and as orthogonal cross-sectional slices (c). 1) Indicates a hidden
text revealed in (b) and 2) an apple that is virtually sliced in (c). Images
courtesy of Chris Schwemmer.

are able to perform a 3-D reconstruction and obtain cross-sectional views of
the objects. Looking at the reconstructed volume, we can read the letters on
the bag (Fig. 8.3(b)) and recognize the bright object as an apple (Fig. 8.3(c)).

8.1.2 Brief History

In 1917, Johann Radon published an article about “the determination of
functions by their integrals along certain manifolds,” which would not find a
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practical application for the following 50 years. The main concepts introduced
in his article will be outlined in Sec. 8.2 and used in Sec. 8.3 to explain how
CT image reconstruction works.

Only in 1971, the first CT system was built by Sir Godfrey Newbold
Hounsfield and Allan McLeod Cormack!. Fig. 8.2 shows the result of the
first clinical scan of a patient’s head performed in the same year. For their
seminal invention, they received the Nobel prize in medicine in 1979.

A major advance in the field was the introduction of spiral (or, more
accurately, helical) CT by Willi Kalender et al. in 1990. Its name is derived
from the novel aspect of its acquisition trajectory describing a helix. Amongst
others, this geometry and its advantages will be described in Sec. 8.3.3.

In the early days of CT imaging, data acquisition was fairly slow, taking
approximately 4 minutes per rotation. The reconstruction of a single 2-D
slice with a low spatial resolution of 80 x 80 pixels and 3 bit quantization
took several hours. By 2002, rotation speed had improved drastically with
one rotation performed in only 0.4 seconds. Up to 16 slices in parallel could
be reconstructed on-the-fly, at a higher resolution of 512 x 512 pixels and a
quantization depth of 16 bit.

In recent years, this trend continued with temporal and spatial resolutions
constantly improving. In this context, the development of dual source CT
in 2005 was another significant milestone, featuring two X-ray sources and
detectors in a single scanner. In addition to offering additional information
when both employed X-ray tubes are operated at different voltages (dual
energy scan), it can also be used to speed up the acquisition significantly.
The amount of slices acquired in parallel had also increased further, covering
a field of view measuring up to 16 cm in axial direction at voxel sizes below
one millimeter. This allows imaging of complete organs such as the heart in
a single rotation, thus reducing motion artifacts.

In 2014, a modern CT system (cf. Fig. 8.4) was able to acquire up to 128
slices in parallel at a temporal resolution as low as 195 ms with a single X-ray
source.

8.2 Mathematical Principles

In this section, we will first introduce the Radon transform as the underly-
ing mathematical principle of the image formation process in CT imaging.
Inverting this transform is the fundamental problem solved by image recon-
struction methods. Subsequently, we will detail the Fourier slice theorem, a

! Both researchers were working for EMI at the time, a British music recording and
publishing company well known for housing the Beatles’ label. This has spawned a
widespread belief that the Beatles’ success contributed to financing the initial develop-
ment of CT.
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Figure 8.4: At the time of writing, a modern CT scanner can acquire up to
128 image slices in parallel. Image courtesy of Siemens Healthineers AG.

property related to the Radon transform that constitutes the core idea of an
important class of reconstruction algorithms.

8.2.1 Radon Transform

Radon’s key insight was that any integrable function f(x,y) can be uniquely
represented by — and therefore recovered from — all straight line integrals over
its domain,

+oo
b0 = [ e a0 e 8)
In order to write down all of these integrals without duplicates, a representa-
tion of the lines is needed that describes each one uniquely. For this purpose,
we can formulate Eq. (8.1) in terms of polar coordinates,

p(f,s) = //_+Oo flx,y)d(xcosf + ysinb — s) dady, (8.2)

with 6 the angle between the line’s normal vector and the z-axis and s the
orthogonal distance between line and origin (cf. Fig. 8.5). Implicitly, this line
is described by the equation xzcosf + ysinf = s. Only those points that
satisfy it, i. e., those that fall on the line, are selected by the Dirac function ¢
in Eq. (8.2), as it vanishes everywhere else (cf. Eq. (2.10)). In that way, the
integration of f(x,y) is only performed along the respective line.

The complete set of line integrals p(6,s) can now be obtained by going
through the angles 6 € [0°,180°] and distances s € [—o00, +00]. Apart from
orientation which has no influence on the integration, any other line would be
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zcosf+ysinh =s
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Figure 8.5: The blue line is uniquely described by its distance s to the
origin and the angle # which defines its normal vector (cos@,sinf)". This
representation immediately gives rise to the implicit line equation.
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Figure 8.6: f(z,y) has a constant non-zero value inside the blue circle and
vanishes everywhere else. We see a single projection on the left and where it
fits into the whole sinogram on the right.

equivalent to one of these. For a fixed angle 8, the 1-D function pg(s) = p(0, s)
is called a projection. It contains all line integrals over f(x,y) with a constant
angle 6 and variable distance s to the origin. Arranging all projections side-
by-side as a 2-D image yields the sinogram. It owes its name to the sinusoidal
curves emerging from the underlying geometry. We can see that every point
in 2-D except for the origin is found at different distances along the s-axis
depending on the angle . An example of a sinogram is given in Fig. 8.6.

Turning the function values f(z,y) into line integral values p(8, s) is known
as the Radon transform in 2-D. The aim of CT reconstruction is the com-
putation of the original function values from measured line integral values,
i.e., the inverse Radon transform.
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Figure 8.7: The Fourier slice theorem establishes an equivalence between
the Fourier transform P(&,0) of the projection pg(s) and a line in the Fourier
transform F'(u,v) of f(x,y) which runs through the origin and forms the angle
0 with the u-axis. Please note that in the frequency domain images on the
right, the magnitudes of the complex numbers were plotted on a logarithmic
scale for improved readability.

8.2.2 Fourier Slice Theorem

While it is not immediately clear how to invert the process of projection, we
can take a detour through frequency domain. Fig. 8.7 depicts the principle
behind the Fourier slice theorem by establishing relationships between the
relevant domains. We start by computing the 1-D Fourier transform P(¢,6)
of the projection py(s). The Fourier slice theorem establishes an equivalence
that exists between P(&,0) of the projection py(s) and a line in the Fourier
transform F'(u,v) of f(x,y) which runs through the origin and forms the angle
0 with the u-axis. A proof of this property can be found in Geek Box 8.1. An
intuitive visualization of this relation is displayed in Fig. 8.8. Computation of
one 2-D Fourier coefficient is equivalent to projecting the image first, followed
by a correlation with the respective 1-D frequency. This is possible as Fourier
transform and projection operate in orthogonal direction and are therefore
separable as shown in Fig. 8.9. With the complete set of projections, we get
many such lines and therefore obtain a good estimate of F'(u,v). An inverse
2-D Fourier transform then leads us back to the desired function f(z,y).



8.2 Mathematical Principles 153

Geek Box 8.1: Fourier Slice Theorem

An essential relationship between the projections py(s) and the func-
tion f(z,y) can be established by looking at the frequency domain
representations

Flu,0) = F{f(z,9)}, (8.3)
P(§,0) = F{po(s)}, (8.4)

using the Fourier transform F (cf. Sec. 2.3 (p.22)). As illustrated in
Fig. 8.7, P(&,0) is equivalent to the part of F(u,v) that falls on a
radial line with angle 6. To see why this is the case, we start with the
1-D Fourier transform P(€, ) of ps(s),

+oo
P(E,0) = / po(s)e—2"€ ds, (8.5)

—00

Using the definition of the projection py(s) from the previous section,
we obtain

“+o0 “+o0
P(£,0) = / // f(z,y)6(x cos 4+ ysinf — s) dzdy e~ 27 ds.

(8.6)
Rearranging the order of the integrals yields

+oo +oo
P(£,0) = // f(;v,y)/ §(zcos @ + ysinh — s)e” 2 dsdady.

(8.7)
Eliminating the delta function reads as

+oo
PE) = [ Syt aay (85)

Variable substitution yields the definition of the 2-D Fourier trans-
form,

+oo
P(ga 9) = // f(CC, y)e—2n1(1u+yv)|u=§ cos @, v=E£sin O dxdya (89)
which finally results in the proposed theorem,
P(£,0) = F(£cosf,Esind) = Foolar (€, 6). (8.10)

In effect, we can get the complete Fourier transform Fjo1ar (€, 6) of the
unknown function f(z,y) in polar coordinates (&, 0) by varying 6.
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Figure 8.8: Graphical visualization of the Fourier slice theorem. In fact, com-
putation of the projection and correlation with a sinusoidal function (dashed
lines) is equivalent to a 2-D correlation with the respective Fourier base func-
tion (dotted lines, cf. Fig. 6.9).

Figure 8.9: A close look at the Fourier base functions reveals that they are
actually computing an integration along the wave front. As such projection
and convolution operate in orthogonal domains and can therefore be sepa-
rated into a projection and a 1-D correlation, i.e., a 1-D Fourier transform.
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Material / Tissue HU

Air —1000

Lung —600 to —400
Fat —100 to —60
Water 0

Muscle 10 to 40
Blood 30 to 45

Soft tissue 40 to 80
Bone 400 to 3000

Table 8.1: HUs observed in several materials and tissue classes found in the
human body. In general, denser structures exhibit larger HUs.

8.3 Image Reconstruction

As described in Sec. 7.3 (p. 125), X-ray projections can be converted to line
integrals using Beer’s law, which enables us to apply Radon’s ideas to CT
reconstruction. A single slice of our imaged object corresponds to the bivariate
function f(x,y). More precisely, the function values reconstructed in CT are
the linear attenuation coefficients of the imaged material. Typically, they are
linearly transformed to the Hounsfield scale, which is normalized such that
the absorption of water equals 0 HU,

W= ( P 1) -1000, (8.11)

HWater

where p and p* denote the coefficients before and after Hounsfield scaling,
respectively. Tab. 8.1 lists the HU ranges of several tissue classes found in
the human body.

Below, we will discuss the two main methods for 2-D image reconstruc-
tion from parallel-beam projections as they have been introduced above. In
conventional CT imaging, a 3-D image volume is then obtained simply by
acquiring and reconstructing multiple axial slices at slightly offset locations
such that they can be stacked on top of each other (Fig. 8.10).

8.3.1 Analytic Reconstruction

Using the Fourier slice theorem, we can derive an analytic reconstruction
method known as filtered back-projection.
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Figure 8.10: In conventional CT, a 3-D image of the body is formed by
acquiring, reconstructing, and subsequently stacking 2-D image slices in axial
direction. For each slice, all projection rays lie in a plane, which is why we
only deal with bivariate functions f(z,y). However, be aware that there are
other geometries where this assumption is no longer valid (cf. Sec. 8.3.3).

8.3.1.1 Filtered Back-Projection

It is possible to invert the process of projection directly, without explicitly
computing the computations in frequency space suggested by Fig. 8.7. In
Geek Box 8.2, it is shown that the required calculations reduce to

f(x,y) = /O pg(S) * h(5)|s=xc039+ysin6 do, (812)

where h(s) corresponds to the inverse Fourier transform of |£|. This amounts
to the back-projection of py(s) convolved with h(s). As a consequence, this
method is called filtered back-projection.

Unfiltered back-projection, i.e., just “smearing” line integrals in a projec-
tion py(s) back along their corresponding lines without filtering (cf. Fig. 8.12),
is equivalent to adding P(£,0) to F(u,v), as suggested by the Fourier slice
theorem, without considering the factor |¢|. In fact, this is not the inverse,
but the dual or adjoint of the Radon transform.

8.3.1.2 Filters

Due to the shape of |¢], the filter h(s) is typically called ramp filter. Sam-
pling in polar coordinates leads to an oversampling in the center of the Fourier
space (cf. Fig. 8.11). Using a ramp filter, this oversampling is corrected by en-
hancing the high frequency components while dampening the low frequencies
in the center of the Fourier space.

According to the sampling theorem, as described in Sec. 2.4.2 (p. 32), with
a detector spacing of As, the largest frequency that can be detected in py(s) is
Emax = ﬁ. Additionally, noise in the projections is amplified when using an
unlimited ramp filter |£|. Therefore, high frequencies should be limited in the
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Geek Box 8.2: Filtered Back-Projection

To derive the filtered back-projection algorithm, we start with the
inverse Fourier transform of F(u,v),

+oo +oo ‘
flz,y) = / / F(u,v)e? 499 qudy.

We can rewrite this equation in polar coordinates Fpolar (€, 6) by sub-
stituting u = £ cosf and v = £sin 6. A change in integration variables
requires an additional “correction” factor in the integral. This fac-
tor is the absolute value of the determinant of the transformation’s

Jacobian matrix J:
det ‘é—g é—% et Cf)s(G) —Esin(6) _
A€ db sin(f) & cos(d)

= [¢ cos?(0) + £sin*(0)] = [¢].

|det J| =

Therefore, performing the change in coordinates, we obtain

T —+oo
f(aj7y) = / / Fpolar(§,9)|§|€2m£(m cos 0+y sin 0) dede.
0 —o0

From the Fourier slice theorem, we know F(,6) = P(&,6), thus

™ +o00
faw = [ [ POt agao.
0 —oo

Replacing x cos 6 + ysin 6 with s, this reads as

T —+oo
F o) = /0 /_ P(&,6)[le?™i€* dedo,

which contains a product of P(&,0) and |¢|. A product in Fourier space
corresponds to a convolution in spatial domain (cf. Sec. 2.3.2 (p. 25)).
If we denote the inverse Fourier transform of |£| with h(s), we find the
following spatial domain representation:

f(x’y) = /0 pe(s) * h(5)|s=mcos9+ysin0 dé. (813)

This amounts to the back-projection of py(s) convolved with the filter
kernel h(s).

157
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F(u,v)

Figure 8.11: Sampling in polar
coordinates causes the density of
samples to increase with proximity
to the origin, whereas the more dis-
tant areas are under-represented.
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bb‘ (1'7 Z/) = Po (5) ‘s:m cos f+y sin 6

Y

&

Figure 8.12: The back-projection
bg(x,y) of a single projection py(s)
hardly gives us an idea of the
original function f(z,y). However,
we can reconstruct it by back-

projecting a sufficient set of appro-
priately filtered projections.

filtered projections pg(s). For this purpose, we can generalize the following
equation

+o0 )
pols) = [ Pl (8.14)
by replacing |¢| with an arbitrary filter H(&):
+oo )
pols) = [ PleoHEE de, (8.15)

In practice, various ramp-like filters are used depending on the desired im-
age characteristics, typically involving a trade-off between a smoother image
appearance and a higher spatial resolution.

One of the most widely known filters was described by Ramachandran and
Lakshminarayanan, in short known as the “Ram-Lak” filter. It corresponds
to €] cut off at &max on both sides. In the spatial domain, this results in a
filter kernel that reads

sinc (Ais) B sinc? (223) (8.16)

") = S 4(As)?

a discretized version of which can be convolved with the discrete projection.
A derivation of the Ram-Lak filter is given in Geek Box 8.3.
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Geek Box 8.3: Ram-Lak Filter

In order to derive the Ram-Lak filter, we need to start with the inverse
Fourier transform of [€|

“+o0 )
h(s) = /_ |€|e2™® de.

Now, we introduce a band limitation that only allows frequencies |£| <

B:
B . +m .
) = [ leleries e = [l see (%) ae

Note the we use the rectangular function (cf. Tab. 2.2) to express the
band limitation above. Furthermore, we can also use this function to
express || as the convolution of two rectangular functions yields a
triangular function (cf. Tab. 2.2):

|€] = B — rect (%) * rect (%)

Now the band-limited inverse Fourier transform of |£| takes the fol-
lowing form:

h(s) =F* (B — rect (%) * rect <%)) rect (%)]

s ()] - () o (5) o )
| ()

support on [—B,B] =1 on [—B,B]

51 [B rect ()] = 7 [ (vet (§)] - 7 [rect (£))]

=2B? sinc(2Bs) — B? sinc?(Bs)

With B = £ax = ﬁ, we arrive exactly at Eq. (8.16). In the discrete
case, s needs to be an integer number. Thus, we can simplify above
equation even further to:

1
2AsZ ST 0
hs = 0 s even
1
T2 S odd
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Figure 8.13: The responses in frequency domain (top row) as well as the
discretized spatial domain kernels (bottom row) of the Ram-Lak and Shepp-
Logan filters.

To suppress noise, a windowing function can be multiplied with the filter
in frequency domain which lowers its response for frequencies close to &pax-
In the case of the commonly used filter proposed by Shepp and Logan, this

windowing function is
sinc (2;%)() ‘ . (8.17)

This leads to a slightly different function h(s) which can be discretized in the
same manner. Fig. 8.13 shows plots of the Ram-Lak and Shepp-Logan filters.

8.3.1.3 Discretization

Through discretization, the convolution
—+o0
Po(s) = / po(s) - h(s—s") ds (8.18)

becomes

ﬁ@,s = Zp@,s “he_gr As. (819)



8.3 Image Reconstruction 161

b3
P2
P Ty o X3
T4 ZTs Te
T xs L9

Y2 b5 DPe

Figure 8.14: Example for an image grid and some projection rays.

An example for a discrete filter hg is given in Geek Box 8.3.
With an angle increment of df = £, where IV is the number of acquired
projections, the final back-projection step in Eq. (8.13) can be written as

™ ~
f(fﬂ, y) = N ZP& (S)|s:a:cos€7¢+ysin01; (820)

where 0; denotes the i*" angle. Note that the value f, (s) will generally have
to be interpolated from the py, s since s is not necessarily an integer number.
For each position (z,y), we can find f(z,y) by summing over corresponding
(interpolated) values of each filtered projection py,. As a rule of thumb, it is
recommended to avoid interpolation in the output space, i.e., in our case, we
should sample f directly. This comes naturally with the formulation given in
Eq. (8.20). In contrast, back-projecting one pp, at a time to the whole volume
would require interpolation on grid points in the domain of f in each step.

8.3.2 Algebraic Reconstruction

A second approach to CT image reconstruction defines the problem as a sys-
tem of linear equations. Each projection ray corresponds to a linear equation
that sums up the image pixels the ray passes through, i.e., computes its dis-
crete line integral, and demands it to equal the measured line integral value.
Fig. 8.14 shows an exemplary image grid and a set of projections rays.
Accordingly, we can define the image reconstruction problem as

Az =p, (8.21)
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where

x = (1,29, ..., TN) " (8.22)

D= (plap2a"'apM)T (823)

are the sequentially numbered unknown pixels and measured line integrals,
respectively. Each element a;; of the system matrix A describes the contri-
bution of a particular pixel to a particular ray. There are many possibilities
to model A. In the simplest case, a;; is a binary value that is 1 when the ray
passed through the pixel and 0 otherwise. The length of intersection can also
be used, or even the area of intersection in case we assume the rays to have
a non-zero thickness.

Solving this system of linear equations for the solution x directly using
matrix inversion (Gaussian elimination, singular value decomposition, etc.)
is not feasible in practice as the problems are typically large, ill-conditioned
and over-determined. Instead, an iterative solution to this system of linear
equations is sought.?

The algebraic reconstruction technique (ART) aims to find such an itera-
tive solution using the Kaczmarz method. The basic idea behind this method
is that each linear equation defines a line (2-D) or, generally speaking, a hy-
per plane (higher dimensions) in the solution space, the dimensionality of
which equals the number of unknowns. All points on a hyper plane fulfill its
corresponding equation. Consequently, the point of intersection of all hyper
planes forms the correct solution to the problem. Thus, by repeatedly pro-
jecting the current estimate orthogonally onto a different equation’s plane, we
iteratively improve the solution (Fig. 8.15). A simple mathematical intuition
for the ART algorithm is given in Geek Box 8.4.

Using Kaczmarz’ method, we can now find an iterative solution for
Eq. (8.21). For each line integral measurement p; and each row a; of the
system matrix A we perform the following update step,
k1 ko, Pi— a;z" T

=z +——=—a;, (8.29)
a;a

i

T

and repeat until convergence.

It has been shown by Tanabe in 1971 that if a unique solution exists, this
iterative scheme converges to the solution. However, in over-determined sys-
tems and in presence of noise, no unique solution might be found and the
method might oscillate around the ideal solution. The rate of convergence
depends on the angle between the lines. If two lines are orthogonal to each
other, the method converges very quickly as the orthogonal projection imme-
diately finds the intersection. Thus, orthogonalization methods can be applied

2 It is worthwhile to note that while A~ p corresponds to the ideal solution, which in
the previous section we would obtain by filtered back-projection, A" p amounts to an
unfiltered back-projection.
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Geek Box 8.4: 2-D Algebraic Reconstruction Technique Example

In the 2-D case, consider a point  and a line n' ¢ = d, where n is the

normal vector, ¢ a point on the line and d the distance to the origin.
Note that n' ¢ describes the scalar vector product. The orthogonal
projection &’ of & on this line must be in the direction of the normal

vector n:
' =z+\n (8.24)

The projected point x’ is part of the line and therefore fulfills
n'z' =d. (8.25)
Plugging Eq. (8.24) into this equation we get
n' (z+ An) =d, (8.26)

which can be rewritten as

A=—— . (8.27)

-~ “n. (8.28)

a1 =p1

A2 = P2

» L1

Figure 8.15: Kaczmarz iterations in 2-D space.
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in advance in order to improve convergence. However, using such methods is
computationally demanding and amplifies noise in the measurements.

Several extensions of this algorithm aim to improve convergence speed.
Instead of orthogonalization, for instance, one can also use ordered subsets
of the equations to select a better order of the performed projections. An-
other extension, Simultaneous ART (SART), achieves a speed-up by doing
multiple updates at the same time and then combining the results. In each
step, the current estimate is orthogonally projected on all lines. The centroid
of all projected points is then used for the next iteration. This results in the
following update rule:

k
x =x"+ A E Up j———=—Q,; , 8.30
k - ki a;a; v ( )

with

D upi=1, (8.31)

where ;. controls the step size in each iteration.

Other than the presented method by Kaczmarz, there are a multitude
of optimization approaches to solve this problem that are not covered here,
e. g., Gradient Descent, Maximum-Likelihood Expectation-Maximization, or
regularized reconstruction methods. There is also an immediate relation to
analytical methods as described in Geek Box 8.5.

8.3.3 Acquisition Geometries

Fig. 8.16 illustrates several important acquisition geometries in CT imaging.
Different types of CT scanners have been categorized into generations. CT
scanners of the first generation practically realized the parallel beam geome-
try as introduced above and shown in Fig. 8.16(a) (left). By introducing an
array of detectors, the second generation could measure beams from several
directions simultaneously. Only by the third generation, however, was this fan
of directions (cf. Fig. 8.16(a), right) wide enough to remove the need for a
translational motion during acquisition. The projections acquired using a fan
beam geometry can be transformed (“rebinned”) such that the reconstruction
methods described earlier can still be applied. Alternatively, corresponding
fan beam versions of the algorithms can be derived in a similar fashion to the
ones presented.

Another essential development is the addition of multiple detector rows
(Fig. 8.16(b), left), leading to a dramatically increased imaging speed as many
slices can be acquired in parallel (multi-slice CT). Another, newer kind of CT
systems expands on this notion: by acquiring full 2-D projection images with
an image intensifier or — more recently — a flat panel detector, cone beam
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(a) For a parallel beam geometry as introduced in the previous sections (shown
on the left), the X-ray source needs to be shifted perpendicularly (dotted line) to
the direction of projection, casting pencil beams through the object. If all beams
instead emanate from a single position for each angle, we obtain a fan of no
longer parallel rays (fan beam geometry; on the right), increasing acquisition
efficiency at the cost of a slightly more complicated reconstruction problem.
Apart from the flat shape shown here, there also exist curved detectors with an
equiangular spacing.

(b) Multiple detector arrays allow for simultaneous acquisition of multiple im-
age slices from one X-ray source position (multi-slice CT; shown on the left).
However, in this setup, the beams no longer all lie within the rotation plane.
This issue becomes much more important in the case of cone beam CT (shown
on the right): Here, the small stack of detector rows gives way to a larger de-
tector matrix, with the beams now forming a cone in 3-D.

165

Figure 8.16: Basic acquisition geometries in CT imaging. Blue arrows in-
dicate the trajectory of the X-ray source. The detector is depicted by thick

black lines.
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Geek Box 8.5: ART and its Relation to Filtered Back-Projection

ART formulates the reconstruction problem as a system of linear equa-
tions.
Az =p

For a typical 3-D reconstruction problem with 512 projections with
5122 pixels each, p € R512° while the corresponding volume z € R512°,
Consequently, the operator is huge with A € R512°%512° T order to
store such a matrix in floating point precision about 65,000 TB of
memory would be required. However, A is very sparse as most entries
are equal to 0. In computer implementations, it is typically computed
on the fly using ray-casting. Thus, general inversion of A is infeasible,
even when using the pseudo inverse with

z=ATp=AT(AAT) !p.

However, there are certain geometries for which (AA")~! can be de-
termined analytically. For the case of parallel-beam geometries, we
know that (AA")~! takes the form of a convolution with the ramp
filter. AT is the adjoint operation of the projection operator. In con-
tinuous form, we introduced this operation already as back-projection
(cf. Geek Box 8.2). Thus, filtered back-projection is a direct solution
for the above system of linear equations.

Figure 8.17: A C-arm system for interventional X-ray imaging. Image cour-
tesy of Siemens Healthineers AG.
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Figure 8.18: In spiral CT, although the X-ray source still conveniently ro-
tates in the z-y plane, the trajectory it describes in relation to the imaged
object is a helix due to the patient table being slowly moved through the
gantry. This enables the acquisition of a large object region while rotating
continuously. Projections for an ideal circular trajectory can be interpolated
along z from neighboring helical segments.

CT is able to capture a large field of view containing all of the object in
a single rotation (Fig. 8.16(b), right). One of the main fields of use for this
technology lies in interventional imaging where the X-ray source and detector
are mounted on a C-arm device (Fig. 8.17). It has to be noted, though, that
for arbitrary objects, an exact reconstruction is only possible in the plane of
rotation. The more the beam diverges from this plane, the more artifacts are
likely to appear: due to the incomplete data obtained from oblique rays, the
reconstruction problem is underdetermined.

For imaging larger parts of the body with few detector rows, it used to
be necessary to perform a rotation, then halt and move the table such that
the next slice to be acquired is lined up with the detector before starting
anew. With the invention of helical CT, a continuous motion of both the
rotating gantry and the table became possible. From the point of view of
the imaged object, the X-ray source rotates in the z-y plane and moves
in the axial direction at the same time, thus following a helix (Fig. 8.18).
From the helical rotation, projections for all angles in an axial plane can be
interpolated, enabling the use of standard reconstruction methods.

8.4 Practical Considerations

So far, we have described the theoretical background and principles for CT
image reconstruction. However, in practice there are several aspects that have
to be considered.
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Figure 8.19: The effective sizes br of the focus and bp of the detector in the
isocenter can be calculated from the distances to the isocenter rr and rp.

8.4.1 Spatial Resolution

In many medical applications, we are not only interested in visualizing large
organs, but also smaller structures, such as small blood vessels or calcifica-
tions. Visualization of these small structures requires a high spatial resolution.
In the following subsection, we will discuss what affects resolution in the x-
y scan plane. Resolution in the z-direction typically needs to be considered
separately as it depends on different factors.

In the scan plane, resolution depends on several geometrical properties.
Focus size, scan geometry, detector element spacing and aperture, and move-
ment of the focus during image acquisition all influence the resolution.

The focus size sp as well as the detector aperture sp contribute to image
blurring, which can be modeled by

D

bp= ——— . d 8.32

F rr+ 7D Sp an ( )
TF

bp = ———- 8.33

D e +7’D SD, ( )

where rr represents the distance of the isocenter, i. e., the center of rotation,
to the X-ray focus and rp the distance of the isocenter to the detector center.
Effectively, bp and bp are the sizes of the focus and detector in the isocenter
(cf. Fig. 8.19). Furthermore, the continuous movement of focus and detector
during the image acquisition results in additional image blur, which we denote
as bys. The blur that occurs during image acquisition is then described by

baca = 1/ V% + b3 + 2. (8.34)

However, sampling and image reconstruction also introduce additional blur,
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Figure 8.20: A bar phantom can be used to evaluate the spatial resolu-
tion of an imaging system. At sufficiently high spatial frequencies, individual
lines can no longer be separated after imaging, i.e., we have determined the
system’s resolution limit.

by = CA - AS, (8.35)

with As the sampling distance and c4 a constant factor which represents the
reconstruction algorithm characteristics®. Finally, the total blur is modeled
by

btotal = \/ b3, + 0%, + b3, + b4, (8.36)

whereas b,cq represents the maximum spatial resolution given by the geomet-
ric setup, which could be achieved if we were to use a very fine sampling and
a reconstruction algorithm with a sharp kernel. It becomes obvious that as
a user, we only have limited influence on spatial resolution. We can decide
which convolution kernel we want to use, but the geometrical parameters are
defined by the system’s scan modes.

Spatial resolution can be measured directly and indirectly. For direct mea-
surement, a bar phantom can be used. Such phantoms consist of alternating
black and white bars of varying thickness. The resolution is determined by
evaluating whether bars of a certain thickness are still distinguishable after
acquisition and reconstruction (cf. Fig. 8.20). A more reliable and objective
evaluation is the indirect approach. For this purpose, we scan a thin wire
phantom®, thereby obtaining the system’s so called point spread function
(PSF). The Fourier transform of the PSF yields the modulation transfer
function (MTF) (cf. Fig. 8.21). Frequency is typically measured in line pairs
per cm (lp/cm), a unit that can be intuitively understood if we recall the bar
phantoms of the direct approach mentioned before. The spatial resolution of
a system is often given by the 10% value of the MTF, which represents the

3 E.g., in filtered back-projection, a smooth convolution kernel reduces noise but also
spatial resolution, whereas a sharp kernel leads to more noise but yields a high spatial
resolution (cf. Sec. 8.3.1).

4 Essentially, this mimics a point object for each 2-D slice.
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Figure 8.21: If we could scan an ideal point object, the resulting recon-
structed image would be the PSF of the system. The Fourier transform of
the PSF is the MTF, which shows the relative contrasts achievable for vary-
ing object frequencies. In practice, this measurement is typically performed
using thin wire phantoms.

Figure 8.22: The left image shows the reconstruction of a water cylinder
phantom. The noise is stronger in the center than in the peripheral regions.
On the right side, an elliptic phantom with two high intensity insets is de-
picted. In its center, streak noise emerges that is caused by the strongly
attenuating structures. For both phantom simulations, 90,000 photons per
pixel with an energy of 75 keV were used.

frequency at which the contrast has dropped to 10% of the maximum value
at 0lp/cm.

8.4.2 Noise

From the considerations regarding noise in X-ray projections (cf. Sec. 7.4.3
(p-136)), we know that the number of photons ns measured by our detector
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can be modeled by a Poisson distribution with an expected value of E[ns] =
Nopa, where Ny is the expected value of the number of photons generated
by the X-ray tube, and p, is the probability of a photon passing through
the imaged object unaffected. The Poisson process can be approximated by
a Gaussian distribution with mean value p = E[ng] and standard deviation
o = y/E[ng], if we are dealing with a high number of events, i. e., photons.
For reconstruction, we convert the measured projection images to line
integral images by taking the negative logarithm (cf. Sec. 7.3.1 (p. 126)),

1
/,u(s)ds =—In—, (8.37)
Iy
where % = N](\),f:“ = Dq.
Using the first order Taylor expansion, it can be shown that this transform
leads to a new approximate Gaussian distribution with 4 = —Inp, and

1

\V Nopa

During reconstruction, the back-projection step computes a weighted sum
of the (filtered) projection values. Hence, the object dependence of the noise
statistics is propagated into 3-D. This can be seen in Fig. 8.22, where most
of the noise is found in the center of the objects. Additionally, in a non-
circular object, streak structures appear in the noise. Therefore, denoising in
the reconstructed domain needs to take the directional nature of the noise
generation into account.

o= . Note that the noise variance increases with object thickness.

8.4.3 Image Artifacts

An ideal image reconstruction is only possible in theory. In reality we have
to deal with different physical phenomena which are detrimental to image
quality and can result in image artifacts. In the following paragraphs, the
most common types of image artifacts and ways to reduce their influence will
be discussed.

8.4.3.1 Beam Hardening

In practice, CT uses polychromatic X-ray sources, which leads to the attenu-
ation of a homogeneous object being not proportional to the thickness of the
object along the ray. A polychromatic X-ray source produces a wide, continu-
ous spectrum of energies and X-ray attenuation coefficients are dependent on
the energy. A detailed mathematical description of the spectrum is provided
in Sec. 8.5.

When an X-ray passes through an object, lower energy photons are more
easily absorbed than higher energy photons. This effect is called “beam hard-
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Figure 8.23: Anti-scatter grids can be placed in front of the detector to
reject scattered radiation.

ening”. Beam hardening results in streak and cupping artifacts. A common
approach to deal with beam hardening is to physically pre-filter the X-rays
using thin metallic plates, which absorb the low energy photons. An in-detail
discussion of beam hardening, including examples, is provided in Sec. 8.5.3.

8.4.3.2 Scatter Artifacts

Scatter, or more specifically Compton scatter, causes X-ray photons to change
direction and energy. A scattered photon can therefore be measured in a dif-
ferent detector element than intended. This has an especially large effect
when the scattered photon is measured in a detector element that normally
would have only few photons, e.g., if a high density object like a metal im-
plant blocks all incoming photons, the corresponding detector element only
detects scattered photons. Scatter artifacts are noticeable as cupping and
streak artifacts especially between high density structures. Most scanners
use anti-scatter grids in front of the detector to reduce scatter. This grid con-
sists of thin lead strips, separated by a X-ray transparent spacer material. It
is placed on the detector and aligned towards the focal spot. Thus, a pho-
ton that was not scattered can pass through the grid, while most scattered
photons will be absorbed by the lead, cf. Fig. 8.23.

8.4.3.3 Partial Volume Effect

Partial volume artifacts appear mostly in low resolution images, especially in
thick slice images. With low resolution, it is possible that one pixel consists
of two regions with different absorption coefficients p1 and pus, cf. Fig. 8.24,
which leads to streak artifacts in the reconstruction. Geek Box 8.6 describes
the problem in more detail. This type of artifact is not often seen with state-
of-the-art CT systems as the image resolution and especially slice resolution
has improved drastically.
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Figure 8.24: Two regions within a pixel with different absorption coeflicients
result in different measured intensities I for different projection angles.

Geek Box 8.6: Partial Volume Effect

In the first case, we observe two separate regions with the correspond-
ing absorption equations

I, - e~114e, (8.38)
I, - e~H24T, (8.39)

where I1 + Iy = Iy. Thus, the total measured intensity in this pixel is
I, =1 -eM4% | [, . g H24T, (8.40)
which is not equivalent to the average absorption we would expect,

I =1y e 3lmtm)de _ (8.41)
= [ - e 3mtm)Ae | [, o=tz L [ (8.49)

However, in the case of the orthogonal direction, we do arrive at the
average absorption,

I=1- e mAF—p2Ay | Ty - et A —p2AY (8.43)
= (Il + I2) . efiu’lA%illQA% = (8.44)
—1I,- e~ 3 (m+p2)Ay I, (8.45)

which is not equivalent to Eq. (8.40).
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Figure 8.25: Reconstructions of an electron density phantom acquired at
tube voltages of 50kV (left), 80 kV (middle) and 125kV (right). Photon star-
vation caused by the titanium rod at around 4 o’clock leads to pronounced
streak artifacts. This effect decreases at higher tube voltages as more photons
are produced and comparatively fewer of them are absorbed. Images courtesy
of Jang-Hwan Choi.

8.4.3.4 Metal Artifacts

Metal artifacts are among the most common image artifacts in CT imag-
ing. This term covers many different types of artifacts that we already dis-
cussed. There are various reasons why metal artifacts can occur. Metal causes
beam hardening and scatter, which results in dark streaks between the metal
objects. Additionally, its very large attenuation coefficient leads to photon
starvation behind the metal object; as most photons are absorbed, only an
insufficient number of them can be measured, leading to noisy projections.
The noise is amplified in the reconstruction and will lead to streak artifacts
in these regions, cf. Fig. 8.25.

Metal artifacts can be reduced by increasing the X-ray tube current or with
automatic tube current modulation. Alternatively, there are metal artifact
reduction algorithms that try to solve this problem without additional dose.
Some algorithms aim to remove the metal objects in the reconstructed image
and iteratively interpolate the holes in the forward-projected images.

8.4.3.5 Motion Artifacts

If motion, e.g., cardiac, respiratory, or patient motion, is present during an
image acquisition, we end up with an inconsistent set of projection images.
This can lead to blurring or streak artifacts in the reconstructed images.
This type of artifact is especially prevalent with C-arm cone beam CT sys-
tems. Due to the slow rotation speed of the C-arm, a typical abdominal or
heart scan takes approximately 4 — 5s, during which significant respiratory
or cardiac motion can occur. These artifacts can be reduced by estimating
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Figure 8.26: An image of human legs reconstructed from motion-corrupted
projections using regular filtered back-projection (left) and with an addi-
tonal marker-based correction (right). By compensating for motion during
reconstruction, structures that were originally blurred due to the movement
become visible and streak artifacts caused by misalignments are reduced con-
siderably.

Figure 8.27: Illustration of truncation artifacts in the reconstructed slices.

the motion field and correcting it during image reconstruction. An example
is shown in Fig. 8.26.

8.4.3.6 Truncation Artifacts

Truncation occurs when a scanned object is larger than the detector area or
X-ray beams are intentionally collimated to a diagnostic region of interest
for saving dose. Both cases will result in laterally truncated data. Due to the
non-local property of the ramp filter, filtered back-projection reconstruction
requires information of the whole projections for each point in the object. This
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requirement, however, is not satisfied anymore if projection data are laterally
truncated. Thus, a noticeable degradation of image quality manifesting as a
cupping-like low-frequency artifact as well as incorrect absorption values will
be observed in the reconstruction, as illustrated in Fig. 8.27.

A popular truncation correction is based on estimating the missing data
using a heuristic extrapolation procedure. For instance, a symmetric mirror-
ing extrapolation scheme could be used to reduce the truncation artifacts
from objects extending outside the measured field of view. Also, the missing
measurements can be approximated by integrals along rays through a 2-D
water cylinder since it is able to approximately describe a human body.

8.5 X-ray Attenuation
with Polychromatic Attenuation

Traditional CT measures the spatial distribution of the X-ray attenuation of
an object. The X-ray attenuation of a material is energy dependent, at spe-
cific energies it is governed by the composition of the material, more precisely
on its mass density and the atomic number and composition of its elements.
As described in Sec. 8.3, the common measure for X-ray attenuation in med-
ical CT is the HU. However, for a material other than water and air, the HU
value depends on the system design and settings of the CT device as well
as the characteristics of the complete scanned object. Fig. 8.28 exemplar-
ily shows the energy dependent X-ray attenuation for bone and soft tissue.
This dependency is caused by the non-linear attenuation characteristics of
polychromatic radiation.

8.5.1 Mono- vs. Polychromatic Attenuation

When a monochromatic X-ray beam at energy FEj passes through an object,
the measured intensity Iyono follows Lambert-Beer’s law:

Tvono (Eo) = Io (Ep) - e~ J #(s:Eo)ds, (8.46)

where Iy (Ep) refers to the intensity of the incident X-ray at energy Fy, s
denotes the path of the X-ray traversing the object, (s, Ey) denotes the
spatial distribution of energy-dependent linear attenuation coefficients.

The attenuation could be obtained by rewriting Equation (8.46) as:

Imono (EO )

mon Ep) = -1
q oo( 0) n IO(EO)

= /,u(s,EO) ds. (8.47)
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Figure 8.28: Illustration of energy dependent X-ray attenuation for bone
and soft tissue.

Thus, for the monochromatic case, there is a linear relationship between the
monochromatic attenuation gmeno (Ep) and the intersection length of X-ray
and the object.

However, the X-ray sources in typical clinical scanners are polychromatic
sources. In addition, monochromatic measurements cannot provide real quan-
titative information as HUs are energy-dependent, i. e., different spectra and
filters will result in different HUs. Although there exist physical ways to cre-
ate monochromatic X-rays at sufficient intensity to perform X-ray CT, e.g.,
using a monochromator or inserting thick absorption filters to narrow the
spectrum, these methods are very expensive and the usage is restricted to
research experiments at few institutions. As detailed in Geek Box 8.7, in con-
trast to the monochromatic X-ray situation, there is no linear relationship
between the polychromatic attenuation gpo, and the intersection length of
X-ray and the object.

Fig. 8.30 depicts the relationship between the intersection length p and
the attenuation ¢ when a polychromatic X-ray beam, which is emitted at a
tube voltage of 110 kV, penetrates a homogenous aluminium object, and the
relationship between the intersection length p and the attenuation ¢ when a
monochromatic X-ray beam, which is emitted at the effective energy 45.56
keV of the aforementioned polychromatic X-ray beam, traverses the same
object.
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Geek Box 8.7: Polychromatic Line Integrals

As aforementioned, in practical setups, rather than a monochromatic
X-ray beam, only a polychromatic X-ray beam is available. By sum-
ming the monochromatic contributions for each energy bin F in the
X-ray spectrum gives (E € [0, Fyax]):

Emax
Loty (E) = /0 S(B)D(E)- e J #eB1sgp, (8.48)

where Ip,o1y (E) denotes the measured detector signal of a polychro-
matic X-ray, S (E) denotes the spectral energy distribution and D (E)
denotes the detector energy sensitivity. Fig. 8.29 shows an example of
spectrum and the integral under it for the explanation of Equation
(8.48).

Consequently, adapting Equation (8.47) to polychromatic situation
yields

Emax
dpoly = —1nIP°1;—(E) = —In / N(E) e J#=Paqp  (8.49)
0 0
where S(EVD(E
N (E) = % (8.50)
0

refers to the normalized energy spectrum with the effective detected
intensity (system weighting function) Iy defined by

Io = / " S (5 D () aE (8.51)
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Figure 8.29: A spectrum and the integral under it.



8.5 X-ray Attenuation with Polychromatic Attenuation 179

25H==Monochromatic

= =Polychromatic /

20
s //
T 15
g v )
Z10 d e
/ I
5 / -
92 "4
P
0 5 10 15 20

Intersection length [mm]

Figure 8.30: Relationship between intersection length and attenuation.

8.5.2 Single, Dual, and Spectral CT

As mentioned in the previous section, standard single energy CT reconstruc-
tion assumes mono-energetic radiation, however, common X-ray sources for
medical CT are polychromatic. The fact is that in single energy CT, the
energy information of the spectral attenuation coeflicient is lost due to the
measurement process. Therefore, the polychromatic characteristics of the in-
put spectrum are neglected in single energy CT. Instead of an input spectrum
S (E) and a detection sensitivity D (F), an effective detected intensity Iy is
measured in a calibration step, to recover the corresponding effective atten-
uation. In this manner, single energy CT is unable to provide quantitative
information on tissue composition.

On the other hand, if spectral input data is acquired, i. e., multiple mea-
surements with different spectral characteristics are made for each projection
ray, real quantitative information on scanned anatomy becomes possible. For
instance, dual energy CT measures two image sets at different energy weight-
ings, e. g., by performing two scans with tube voltages set to 80 kVp ° and 140
kVp, respectively. Fig. 8.31 shows an example of such dual energy CT scanner
— Siemens Definition Flash (Siemens Healthineers AG, Forchheim, Germany).
It employs two tube-detector pairs and produces two measurements simul-
taneously at different tube voltages. For spectral CT applications with dual
source data, it is desirable to use two spectra with as little overlap as possible
in order to ensure the maximal spectral separation between the two acquired
datasets. For this task, usually the two tubes are operated at two different
kVp settings. Additionally, a special filter can be used to attenuate the lower
energy components in the high energy tube spectrum.

Although most spectral CT scanners require two spectral measurements,
for some certain scenarios, more measurements are needed. The output quan-

5 The peak acceleration voltage of X-ray tubes is usually given in kVp (kilovolt peak).
An acceleration voltage of 120 kVp results in a X-ray spectrum where the individual
photon energies are distributed in the range from 0 to 120 keV.
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Figure 8.31: A dual energy CT scanner — Siemens Definition Flash. Image
courtesy of Siemens Healthineers AG.

tities of these algorithms differ with respect to the diagnostic demands: they
range from energy-normalized attenuation values over physically motivated
quantities like density and effective atomic number to spatial distributions of
whole attenuation spectra. The most popular current diagnostic applications
are bone removal, PET/SPECT attenuation correction, lung perfusion diag-
nosis, or quantification of contrast agent concentrations, for instance in the
myocardium.

8.5.3 Beam Hardening

When a polychromatic X-ray beam penetrates an object, photons with lower
energies are easier absorbed by the object than photons with higher energies.
Consequently, the average energy of an X-ray spectrum shifts toward higher
energies while traversing the object, namely, the spectrum of the X-ray beam
“hardens”. The spectrum becomes harder with increasing intersection length
of the X-ray with the object. This effect is called beam hardening.

Now we use an example to illustrate this effect in Fig. 8.32. We assume an
X-ray beam is emitted at 120 kVp acceleration voltage and the material of
the anode is tungsten. Now, we add additional layers of aluminum filtration
to the spectrum. We can see that the corresponding effective energies Feg
shifts from 56.57 keV to 74.18 keV with increasing thickness of the aluminum
wedge filter.

If beam hardening is not taken into consideration while doing reconstruc-
tion, the reconstructed image will be contaminated by beam hardening ar-
tifacts, which typically manifest as cupping and streak artifacts. As afore-
mentioned, a spectrum is becoming harder when the intersection length is
increasing. Hence, in reconstructed images, the inner part of the object is
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Figure 8.32: Tube spectra with different amount of filtration.

(a) (b)

Figure 8.33: Beam hardening example: (a) A simple phantom set-up con-
sisting of water (gray), bone (white) and air (black). (b) Reconstruction of
the phantom with visible beam hardening artifacts.

darker than the outer part, and a corresponding cupping appears in the
reconstruction. Streak artifacts appear as dark bands or streaks in the recon-
structed image. The occurrence of such artifacts is due to the fact that X-rays,
which pass through only one dense object, are less hardened than those pass-
ing through both dense objects. Fig. 8.33 shows a simulated example of an
elliptical water phantom with two dense bone insets.

Various beam hardening correction algorithms exist. For a soft-tissue cal-
ibration, projection measurements through soft-tissue like materials of vari-
able known thicknesses are performed. For these, the equivalent water thick-
nesses are known. A simple function is fit through the pairs of measured and
expected values. This function is inverted and then used as a look-up table:
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for each measured attenuation, the equivalent water thickness is looked up,
which then replaces the measured attenuation. If bone-induced beam hard-
ening is also corrected, a separation into bone and water components can be
performed. For dual energy CT, special quantitative correction methods exist.
These take advantage of the two measurements at different energy weightings
and special properties of the attenuation functions of body tissues.

8.6 Spectral CT

8.6.1 Different Spectral CT Measurements

Spectral CT detection refers to producing multiple measurements of the same
object with different spectral weightings. The spectral weighting is defined
by the tube spectrum and the spectral sensitivity of the detector. In spectral
detection techniques, one of these or both are changed between measure-
ments. The spectral weightings should have as little overlap as possible. This
enhances the discrimination between the spectral measurements which is ben-
eficial for spectral CT algorithms. Usually, only two spectral measurements
are created due to dose limitations and the fact that most spectral CT algo-
rithms do not benefit from additional spectral measurements. This fact can
be attributed to the specific attenuation properties of body materials in the
CT energy range.

8.6.1.1 Dual KVp

The easiest method for producing spectral measurements is called Dual kVp.
For this method, two subsequent CT scans are performed at different tube
voltages, e.g., 80 kVp and 140 kVp; see Fig. 8.34(a) for spectra of these two
voltages. As mentioned before, it is desirable to use two spectra with as
little overlap as possible in order to ensure the maximal spectral separation
between the two acquired datasets. To this end, usually a special filter can
be used to attenuate the lower energy components in the high energy tube
spectrum (140 kVp); see Fig. 8.34(b).

The main advantage is that no special equipment is needed for this method.
In medical CT, this method is prone to motion artifacts as the alignment of
the two datasets cannot be ensured due to patient motion in between the two
scans. However, this is a valid method for evaluating spectral CT algorithms
on phantom data.
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Figure 8.34: (a) Spectral measurements with different tube voltages, e. g.
80 kVp and 140 kVp. (b) A special filter was applied to high energy tube
spectrum to ensure two spectra with as little overlap as possible.
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Figure 8.35: Concept of dual source CT.

8.6.1.2 KVp-switching

KVp-switching is another tube-based approach that switches the tube voltage
between two readings. As read-out times are typically in the range of hundreds
of micro-seconds, a special tube capable of changing the tube voltage very
quickly is required. Due to dose efficiency, the tube current should also be
adjusted for different kVp-settings as the attenuation properties of human
body tissue are very different for different X-ray energies. The projections
acquired with this approach are not perfectly aligned as the projections are
interleaved. Missing projections may have to be interpolated.
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Figure 8.36: Concept of dual layer detector.

8.6.1.3 Dual Source

Dual Source CT is similar to dual kVp with the two CT scans being performed
simultaneously by a special CT system. In this system, the gantry houses
two tube-detector pairs A and B with a fixed angular offset (see Fig. 8.35).
The two X-ray tubes are operated at different tube voltages. More recent
systems offer an optional tin filter on one tube to increase spectral separation
whereas the two detectors are usually identical in terms of spectral sensitivity.
Most available systems, however, use differently sized detectors due to space
restrictions within the gantry. So the measurements of the smaller detector
offer a limited field of view (FOV). The data from the larger detector can be
used to compensate for truncation artifacts in the reconstruction but Dual
Energy data is only available for the smaller FOV. Since the two tube-detector
pairs are operated simultaneously, scatter radiation from tube A impairs
the signal of detector B and vice versa. This is a major drawback of this
technology, as this property decreases signal quality and leads to an increased
patient dose.

8.6.1.4 Dual Layer Detectors

This technology uses a variation of the detector spectral sensitivity to produce
measurements at different energy weightings. Two scintillation detector layers
are stacked upon each other and the top detector layer is a pre-filter for the
lower one. This technology is also referred to as sandwich detector. Fig. 8.36
shows a possible realization of this concept. The detector efficiency is lowered,
as the top layer photodiodes and wiring absorb parts of the X-rays and escape
photons may enter the other layer and impair the energy separation of the
layers.
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Figure 8.37: Spectral sensitivity example for a counting semiconductor de-
tector with thresholds set to 5 keV and 60 keV. Due to several effects like cross
talk, escape photons and signal pile-up, the spectral separation is reduced by
a considerable overlap of the sensitivity curves.

8.6.1.5 Counting Detectors

Spectral measurements can be conducted with counting detectors by using
multiple energy-thresholded photon counts. Theoretically, X-ray counting for
medical CT can be performed with scintillators and semiconductor detectors.
As semiconductor detectors have the advantage of being very fast and hav-
ing very limited cross-talk between channels, a lot of effort has been put in
evaluating the suitability of these detectors for medical CT. However, still
some issues have to be resolved before this technology becomes commercially
available in medical CT scanners. Counting detectors perform especially good
at low X-ray flux. At high flux levels, which typically appear in medical CT,
several problems arise: Signal saturation prevents distinction of individual
detection events and polarization of the semiconductor material affects the
signal quality. Due to physical effects, material defects, and technical lim-
itations, the discrimination of X-ray quanta cannot be perfect. This leads
to a limited spectral separation between the spectral sensitivities for each
threshold signal which is dependent of the incoming X-ray flux. Fig. 8.37
shows spectral sensitivities for thresholds producing photons counts below
and above 60 keV at low X-ray flux and their overlap for a 140 kVp tube
spectrum.
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8.6.2 Basis Material Decomposition

Fully Spectral CT approaches generally yield measures that are directly re-
lated to physical properties of the imaged object or tissue. Unlike HUs, these
measures should not be system-dependent or be influenced by the surround-
ing object. The following section introduces basis material decomposition,
which yields two or more effective basis material densities to characterize
underlying material compositions.

In general, the spectral attenuation coefficient of a material can be ex-
pressed as a linear combination of M energy-dependent basis functions f;(E):

M
p(r,E)=> c(r)f;(E), (8.52)
j=1

where ¢; (r) denotes the spatially-dependent coefficients, in which r = (z,y, 2)
refers to the spatial location information.

The principle of material decomposition is based on the fact that the spec-
tral attenuation coefficients of body materials are dominated by two effects in
the energy range of medical CT: photoelectric absorption and Compton scat-
tering, as described in Sec. 7.3 (p. 125). Since two basis materials are sufficient
to express p (r, E) for body materials with very small errors, a separation of
the the energy-dependent basis functions f; (E) from the spatially-dependent
coefficients ¢; (r) is possible. The typical choice for basis functions in medical
CT is a set of water and bone mass attenuation functions. We denote the
basis functions fw (F) and fg (F), with fw (E)-component corresponding
to the mass attenuation coefficient of water and fg (E) to femur bone. The
corresponding basis material coefficients are denoted cw (r) and cg (r). For
this basis material set, Equation (8.52) reads:

p(r,E)=cw(r)  fw(E)+cs(r) fa(E). (8.53)

Two methods to recover cw (r) and cg (r) are presented in Geek Boxes 8.8
and 8.9.
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Geek Box 8.8: Projection-Based Basis Material Decomposition

Inserting Equation (8.53) into the line integral of the spectral atten-
uation law yields:

/,u(r, E)ds = fw (E)/cw (r)ds+ fs (E)/CB (r)ds. (8.54)

We denote the line integral over the water coefficients Aw =
J ew (r) ds. The integral Ap over the bone coefficients is defined along
the same line.

Conducting a dual energy measurement at two energy weightings
S1(E) Dy (E) and Sy (E) D2 (E) gives the following system of non-
linear equations:

I = / Sy (E) Dy (E) e~ fwBAw-fa(B)Aegp (8.55)
0

I = / Sy (E) Dy (E) e~ fwB)Aw—fa(E)4sq B (8.56)
0

This system has to be solved for Aw and Apg, which is the scope
of current research. Then, the basis material coefficients cw (r) and
cg (r) can be recovered from Aw and Ap with a plain inverse Radon
transform as used for standard CT reconstruction.
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Geek Box 8.9: Image-Based Basis Material Decomposition

Image-based basis material decomposition avoids the matched projec-
tion problem by performing the decomposition in the reconstruction
domain. For this purpose, the reconstructed attenuation values need
to correspond to a constant, known energy weighting throughout the
CT volume. For data measured with a polychromatic source, this can
be achieved by a quantitative beam hardening correction. It homoge-
nizes the energy weighting throughout the reconstructed CT volume.
The homogenized energy weighting is denoted w; (F). Here, i num-
bers the N; spectral measurements. As for projection data-based basis
material decomposition, multiple measurements at different energy
weightings are required. The relation between spectral attenuation
coefficient and measured attenuation coefficient after beam hardening
correction fi; (r) is defined by the energy weighting:

ii@) = [0 (B) . B)dE (5:57)
0
With two basis material decomposition of p (E,r) (8.53), we get

fii (r) =/OOo Wi (E) (ew (r) fw (E) + e (r) fa (E))dE (8.58)

Here, we can exchange summation and integration,

i 1) = o (5) [ " 84 (E) fw (E) dE + ca (x) / ~ & (E) f (B) dE.
(8.59)

The complete basis material decomposition with all measurements
then leads to the following linear system of equations:

a(r)=K-c(r) (8.60)
with fi(r) = (i (v),fiz (x) , s fin, (1)), €(x) = (ew (r), e (r)"

and
K = [ ;1 (B) fuw (B)dE [ @1 (E) f5 (E)dE]

The quantitative accuracy of the image-based basis material decom-
position approach depends on the accuracy of the beam-hardening
correction and the image quality of the resulting basis-material im-
ages is reduced since the solution of Equation (8.60) is very sensitive
to noise in the input data. So far, more advanced image-based mate-
rial decomposition methods have been developed to overcome these
drawbacks.
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