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In the digital age, any medical image needs to be transformed from contin-
uous domain to discrete domain (i.e. 1’s and 0’s) in order to be represented
in a computer. To do so, we have to understand what a continuous and a
discrete signal is. Both of them are handled by systems which will also
be introduced in this chapter. Another fundamental concept is the Fourier
transform as it allows us to represent any time domain signal in frequency
space. In particular, we will find that both representations — time domain
and frequency domain — are equivalent and can be converted into each other.
Having found this important relationship, we can then determine conditions
which will guarantee that also conversion from continuous to discrete domain
and vice versa is possible without loss of information. On the way, we will
introduce several other important concepts that will also find repeated use
later in this book.
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14 2 System Theory

2.1 Signals and Systems

2.1.1 Signals

A signal is a function f (¢) that represents information. Often, the indepen-
dent variable ¢ is a physical dimension, like time or space. The output f of the
signal is also called the dependent variable. Signals are everywhere in every-
day life, although we are mostly not aware of them. A very prominent example
is the speech signal, where the independent variable is time. The dependent
variable is the electric signal that is created by measuring the changes of air
pressure using a microphone. The description of the speech generation pro-
cess enables to do efficient speech processing, e. g., radio transmission, speech
coding, denoising, speech recognition, and many more. In general, many do-
mains can be described using system theory, e. g., biology, society, economy.
For our application, we are mainly interested in medical signals.

Both the dependent and the independent variable can be multidimen-
sional. Multidimensional independent variables t are very common in images.
In normal camera images, space is described using two spatial coordinates.
However, medical images, e. g., CT volume scans, can also have three spatial
dimensions. It is not necessary that all dimensions have the same meaning.
Videos have two spatial coordinates and one time coordinate. In the medi-
cal domain, we can also find higher-dimensional examples like time-resolved
4-D MR and CT with three spatial dimensions and one time dimension. To
represent multidimensional values, i.e., vectors, we use bold-face letters ¢ or
multiple scalar values, e.g., ¢ = (x,y,2)T. The medical field also contains
examples of multidimensional dependent variables f. An example with many
dimensions is the Electroencephalography (EEG). Electrodes are attached to
the skull and measure electrical brain activity from multiple positions over
time. To represent multidimensional dependent variables, we also use bold-
face letters f.

The signals described above are all in continuous domain, e. g., time and
space change continuously. Also, the dependent variables vary continuously
in principle, like light intensity and electrical voltage. However, some sig-
nals exist naturally in discrete domains w.r.t. the independent variable or
the dependent variable. An example for a discrete signal in dependent and
independent variable is the number of first semester students in medical en-
gineering. The independent variable time is discrete in this case. The starting
semesters are WS 2009, WS 2010, WS 2011, and so on. Other points in time
are considered to be constant in this interval. The number of students is
restricted to natural numbers. In general, it is also possible that only the de-
pendent or the independent variable is discrete and the other one continuous.
In addition to signals that are discrete by nature, other signals must be rep-
resented discretely for processing with a digital computer, which means that
the independent variable must be discretized before processing with a com-
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Figure 2.1: A system H{.} with the input signal f(¢) and the output signal
g(t).

puter. Furthermore, data storage in computers has limited precision, which
means that the dependent variable must be discrete. Both are a direct conse-
quence of the finite memory and processing speed of computers. This is the
reason why discrete system theory is very important in practice.

Signals can be further categorized into deterministic and stochastic signals.
For a deterministic signal, the whole waveform is known and can be written
down as a function. In contrast, stochastic signals depend randomly on the
independent variable, e. g., if the signal is corrupted by noise. Therefore, for
practical applications, the stochastic properties of signals are very important.
Nevertheless, deterministic signals are important to analyze the behavior of
systems. A short introduction into stochastic signals and randomness will be
given in Sec. 2.4.3.

This chapter is presents basic knowledge on how to represent, analyze,
and process signals. The correct processing of signals requires some math
and theory. A more in-depth introduction into the concepts presented here
can be found in [3]. The application to medical data is treated in [2].

2.1.2 Systems

Signals are processed in processes or devices, which are abstracted as sys-
tems. This includes not only technical devices, but natural processes like
attenuation and reverberation of speech in transmission through air as well.
Systems have signals as input and as output. Inside the system, the properties
of the signal are changed or signals are related to each other. We describe the
processing of a signal using a system with the operator H{-} that is applied
to the function f. A graphical representation of a system is shown in Fig. 2.1.

An important subtype is the linear shift-invariant system. Linear shift-
invariant systems are characterized by the two important properties of lin-
earity and shift-invariance (cf. Geek Box 2.1 and 2.2).

Another property important for the practical realization of linear shift-
invariant systems is causality. A causal system does not react to the input
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Geek Box 2.1: Linear Systems

The linearity property of a system means that linear combinations
of inputs can be represented as the same linear combination of the
processed inputs

Hiaf(t)} = aH{f(t)}
H{F() + 9} = H{f ()} +H{g(D)},

with constant a and arbitrary signals f and g. The linearity property
greatly simplifies the mathematical and practical treatment, as the
behavior of the system can be studied on basic signals. The behav-
ior on more complex signals can be inferred directly if they can be
represented as a superposition of the basic signals.

\

Geek Box 2.2: Shift-Invariant Systems

Shift-invariance denotes the characteristic of a system that its re-
sponse is independent of shifts of the independent variable of the
signal. Mathematically, this is described as

\.

g1(t) =H{f()} (2.3)
ga(t) = H{f(t — 1)} (2.4)
g1(t —7) = ga(t), (2.5)

for the shift 7. This means that shifting the signal by 7 followed by
processing with the system is identical to processing the signal with
the system followed by a shift with 7.

before the input actually arrives in the system. This is especially important
for signals with time as the independent parameter. However, non-causal
systems do not pose a problem for the independent parameter space, e.g.,
image filters that use information from the left and right of a pixel. Geek
Box 2.3 presents examples for the combination of different system properties.

Linear shift-invariant systems are important in practice and have conve-
nient properties and a rich theory. For linear shift-invariant systems, the ab-
stract operator H{-} can be described completely using the impulse response
h(t) (cf. Sec. 2.2.2) or transfer function H (§) (cf. Sec. 2.3.2). The impulse
response is combined with the signal by the operation of convolution. This is
sufficient to describe all linear shift-invariant systems.
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Geek Box 2.3: System Examples

Here are some examples of different systems analyzed w.r. t. linearity,
shift-invariance, and causality. f(t) represents the input and g(¢) the
output signal.

o g(t) = 10f(t): linear, shift-invariant, causal
g(t) = sin(f(t)): non-linear, shift-invariant, causal

(t) =
e g(t) = 3f(t+ 2): linear, shift-invariant, non-causal
e g(t) = f(t) — 2f(t — 1): linear, shift-invariant, causal
o g(t) = f(t) - (=05 linear, not shift-invariant, causal

2.2 Convolution and Correlation

This section describes the combination of signals in linear-shift-invariant sys-
tems, i.e., convolution or correlation. Before discussing signal processing in
detail, we will first start by revisiting important mathematical concepts that
will be needed in the following chapters.

2.2.1 Complex Numbers

Complex numbers are an extension to real numbers. They are defined as
z = a + bi. a is called the real part of z and b the imaginary part. Both
act as coordinates in a 2-D space. i is the imaginary unit that spans the
second dimension of this space. The special meaning of i is that i = —1.
This makes complex numbers important for many areas in mathematics, but
also in many applied fields like physics and electrical engineering. To extract
the coordinates of the complex number, we use the following definitions

a =Re(z) (2.6)
b=1Im/(z). (2.7)

We can directly write z = Re (z) 4+ Im (z) 4. Another important definition is
the complex conjugate z, which is the same number as z except with the
opposite sign for the imaginary part z = a — bi.

Real numbers are the subset of the complex numbers for which b = 0, i.e.,
no imaginary part. Geometrically, this means that real numbers are defined
on a one-dimensional axis, whereas the complex numbers are defined on a
2-D plane. The geometric interpretation of complex numbers is also helpful
to see the equivalence of the Cartesian coordinate notation z = a + bi and
the polar coordinate notation z = A (cos ¢ + i sin ¢) of complex numbers. The



2 System Theory

18
Geek Box 2.4: Complex Numbers and Geometric Interpretation
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If a point on the 2-D plane is seen as a position vector, A is the
length of the vector and ¢ the angle relative to the real axis. The two
notations can be converted to each other using the following formulas:

A=+a%+b?

'arctan%, ifa>0

arctang—i—w, ifa<Oand b>0
_ arctang—w, ifa<0and b<0
= z, ifa=0andb>0
= ifa=0and b<0

undefined, ifa=0and b=0

a = Acos ¢
b= Asin¢

polar coordinates consists of magnitude A and angle ¢ (cf. Geek Box 2.4). For
system theory, an important property of complex numbers is Euler’s formula

exp (i¢) = €'? = cos(¢) + i sin(¢). (2.8)
Using this relation, a complex sum of sine and cosine can be expressed con-
veniently using a single exponential function. This leads directly to the ex-
ponential notation of complex numbers z = Ae*®. We will use the complex

numbers and different notations in Sec. 2.3.
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Description Equation

Linearity g(t) x (a- f(t) +b-h(t)) = a((g * £)(#) +b((g * h)(?))
Shift-invariance g+ ft=7) = (g% f)(t =)
Commutativity g(t) = f(t) = f(t) = g(t)

Associativity g(t) * ((f = h) (1)) = ((f * 9)()) * h(t)
Distributivity @)+ (g(t) + h(®) = (f x 9)(t) + (f x h)(?)

Table 2.1: Some mathematical properties of convolution. a, b are constants.

2.2.2 Convolution

As mentioned above, convolution is the operation that is necessary to describe
the processing of any signal with a linear shift-invariant system. Convolution
in the continuous case is defined as

(1) = (s )0 = [ T R f(t - 7 dr. (2.9)

In order for the convolution to be well-defined, some requirements for the
functions h and f must be fulfilled. For the infinite integral to exist, h and
f must decay fast enough towards infinity. This is the case if one of the
functions has compact support, i.e., it is 0 everywhere except for a limited
region. As an example, the convolution of a square input function f(¢) with an
Gaussian function h(¢) is investigated in Geek Box 2.5. Further mathematical
properties of convolution are listed in Table 2.1.

A common basic signal is the Dirac function which is also called delta
function or impulse function. It is a infinitely short, infinitely high impulse.

5(t) = {O"’ ift=0 (2.10)

0, otherwise

It is impossible to describe the Dirac function using classical functions.
It requires the use of generalized functions or distributions, which is out
of the scope of this introduction. The Dirac function is usually represented
graphically as an arrow of length 1, see Fig. 2.2.

Sequences of Dirac pulses are useful to select only certain points of a
function like a sifter (cf. Figure 2.3). The sifting property of the Dirac function
is given by integrating the product of a function and a time-delayed Dirac
function
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Geek Box 2.5: Convolution Example

Lar — Input signal f(r)

1.2 — Impulse response h(t) |
1O — Output signal g(r)
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For the definition of the square function, the Heaviside step function
is useful to shorten the notation

H(t) = 0, ift<O
B 1, otherwise

Then, the square function and the Gaussian are defined as

f(t)=k1+k2 i H(t—nT)—H(t—nT—kg)

n—=—oo

with the offset k;, the amplitude ko, the duty-cycle k3, and the period
T of the square function and the standard deviation o of the Gaussian.
The convolution with a Gaussian results in a smoothing of the edges
of the square function.

/ " pns - Tydt = £(T).

With the sifting property, the element at ¢ = T can be selected from the
function, which is equivalent to sampling the function at that time point.

The sift property is useful for convolution of an arbitrary function and the
Dirac function.

F(t) =6t —T) = /_Oo F)S(t —T — 7)dr = f(t—T) (2.11)

Consequently, the Dirac function is the identity element of convolution.



2.2 Convolution and Correlation 21

1.4+ —— Dirac impulse 6(t)
1.2 A
10 A
0.8 1
0.6
0.4 4

0.2

0.0 T T T T T T
-20 -15 -1.0 -05 0.0 0.5 1.0 15 2.0

Figure 2.2: Graphical representation of the Dirac function 6(¢). The arrow
symbolizes infinity.

Figure 2.3: Laboratory sifters are used to remove undesired parts from
discrete signals. Sequences of Dirac pulses can be applied in a similar way.
Image courtesy of BMK Wikimedia.

The response of a system to a Dirac function on the input is called the
impulse response of the system h(t) = H{o(¢)}. Using the superposition
principle, every other signal can be represented as a linear combination of
infinitely many Dirac functions. Therefore, the output of a system to any
input signal is computed by convolution of the input signal f(¢) with the
impulse response h(t).

g(t) = F(t) * h(t) (2.12)

For medical applications, an important example of a linear shift-invariant
system is an imaging system. The output of an imaging system is often mod-
eled as a linear shift-invariant system. The impulse response of an imaging
system is called point spread function. It describes how a single point, i.e., a
Dirac impulse, is spread on the sensor plane by the specific imaging system.
The point spread function is a description of the behavior of the system.
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2.2.3 Correlation
Another basic operation to combine a signal and a system is correlation

g(t) = (hx f)(t / W (1) f(t 4 1) dT, (2.13)

where h* is the complex conjugate of h. The main difference to convolution
is that the input signal f is not mirrored before combination with A, i.e.,
f(t+7) instead of f(t — 7). Correlation is a way to measure the similarity of
two signals.

An application of correlation is the matched filter. The matched filter is
specifically designed to have a high response for a specific deterministic signal
or waveform f(t). It is matched to that signal. The matched filter is directly
computed by correlation with the desired signal. Alternatively, convolution
with an impulse response of the mirrored, complex conjugate of the desired
deterministic signal h(t) = f*(—t) can be used.

Technical uses for correlation can be found in signal transmission and
signal detection. For a medical example, the heartbeats of a person can be
detected in an Electrocardiogram (ECG) using correlation with a template
QRS complex (QRS complex denotes the combination of three of the graphi-
cal deflections seen on an ECG). In image processing, a certain deterministic
signal is searched for across the whole image. In this case, the deterministic
signal is often called template and the process of searching is called tem-
plate matching. This can be used for the detection of specific structures and
tracking of structures over time. Geek Box 2.6 puts the correlation in signal
processing in relation to the statistical correlation coefficient.

2.3 Fourier Transform

Up to this point, all operations and mathematical definitions were performed
in continuous domain. Also, we have not discussed the relation between dis-
crete and continuous representations which are important to understand the
concept of sampling. In the following, we will introduce the Fourier transform
and related concepts which will allow us to deal with exactly such problems.

2.3.1 Types of Fourier Transforms

A cosine wave f of time ¢ with amplitude A, frequency &, and phase shift ¢
can be described by the following three equivalent parametrizations.
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Geek Box 2.6: Relation to the Statistical Correlation Coefficient
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In statistics, the so-called Pearson correlation coefficient r [5] is a mea-
sure of agreement between two sets of observations x and y. Coeffi-
cient r is defined in the interval [—1,1] and if |r| = 1, a perfect linear
relationship between the two variables is present. It is computed in
the following way:

> (@0 — Z)(Yn — V)

00y

r(z,y) =

Here, we use z, ¥, 0, and o, to denote the respective mean values and
standard deviations. If we assume the standard deviations to be equal
to 1 and the means equal to 0, we arrive at the following equation:

T‘(:I}, y) = an *Yn

This is identical to the discrete version of correlation for real inputs
for ¢ = 0. Also note that this can be considered simply as an inner
product = ' y.

The image at the top of the page shows a scatter plot between two
variables word recognition rate and expert rater. Each point (2, y,)
denotes one patient for whom both of the two variables were measured.
The closer the two are to the dotted line, the better their agreement.
Here, their dependency is negative as if one variable is high, the other
is low and vice versa. r &~ —0.9 in this example. Please refer to [4] for
more details.
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(a) Fourier coefficients, weights of trigono- (b) Periodic signal and approximations us-
metric functions approximating the signal ing different numbers of Fourier coefficients

f)

Figure 2.4: Approximation of a periodic signal using a weighted sum of
trigonometric functions

ft) = A-cos(2mét + ) ApeR
= a-cos(2m&t) + b - sin(2wEt) a,beR
=c- et 4 ¢. g 2mitt ceC

In Geek Box 2.7, we show how the parameters a, b, and c are related to A
and .

A Fourier series (cf. Geek Box 2.8) is used to represent a continuous
signal using only discrete frequencies. As such a Fourier series is able to ap-
proximate any signal as a superposition of sine and cosine waves. Fig. 2.4(b)
shows a rectangular signal of time. The absolute values of its Fourier coeffi-
cients are depicted in Fig. 2.4(a). As can be seen in Fig. 2.4(a), the Fourier
coefficients decrease as the frequency increases. It is therefore possible to ap-
proximate the signal by setting the coefficients to 0 for all high frequencies.
Fig. 2.4(b) includes the approximations for three different choices of sets of
frequencies.

The Fourier series, which works on periodic signals, can be extended to
aperiodic signals by increasing the period length to infinity. The resulting
transform is called continuous Fourier transform (or simply Fourier trans-
form, cf. Geek Box 2.9). Fig. 2.5(b) shows the Fourier transform of a rectan-
gular function, which is identical to the Fourier coefficients at the respective
frequencies up to scaling (see Fig. 2.5(a)).

The counter part to the Fourier series for cases in which time domain is
discrete and the frequency domain is continuous is called the discrete time
Fourier transform (cf. Geek Box 2.10). It forms a step towards the dis-
crete Fourier transform (cf. Geek Box 2.11) which allows us to perform
all previous operations also in a digital signal processing system. In discrete
space, we can interpret the Fourier transform simply as a matrix multiplica-
tion with a complex matrix F
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Name Function Fourier transform
0 if |at| > %
Rectangular rect(at) = ¢ 5 if |at| = & F [rect(t)] (&) = \TIL\ sinc(%)
1 iffat| < 3
1—|t| if |t 1
Triangular tri(t) = {0 g ;f H ; 1 F [tri(t)] (€) = sinc?(€)
Gaussian  gauss(t) = et F [gauss(t)] (&) = \/567”252/“

Table 2.2: Fourier transforms of popular functions. Here we use the defini-
tion sinc(z) = sin(rz) Note that a convolution of two rectangular functions

yields a triangular function as F [rect(t)  rect(t)] = sinc?(€).

k=Fn (2.14)

where the signal n and the discrete spectrum k are vectors of complex values.
The inverse operation is then readily found as

n=F'k (2.15)

where F is the Hermitian, i. e., transposed and element-wise conjugated, of
F. Geek Box 2.12 shows some more details on how to find these relations.
Fig. 2.5 shows all types of Fourier transforms introduced in this section in
comparison. Tab. 2.2 shows the Fourier transforms of popular functions.

In computer programs, discrete Fourier transforms are implemented very
efficiently using fast Fourier transform (FFT). This approach reduces the
number of computations from the order of N? to the order of Nlog N, if N
is the length of the signal. In the next section, we will see why convolution
and correlation also benefit from this efficiency.

2.3.2 Convolution Theorem & Properties

The convolution of two functions f and g is defined as in Sec. 2.2.2, and -
denotes point-wise multiplication. The convolution theorem states that a con-
volution of two signals in space is identical to a point-wise multiplication of their
spectra (see Equation 2.24). The opposite also holds true (see Equation 2.25).

F{fxgt=F G (2.24)
F{f- g} =F«G (2.25)
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Geek Box 2.7: Equivalent Cosine Representations

Im ~

Oscillations of the same frequency can be represented in several equiv-
alent ways. In the following, we make use of the complex numbers
introduced in Sec. 2.2.1 and the correspondence between a sum of
complex exponentials and the real part z+Z = 2Re(2) to convert the
different representations into the same expression.

Amplitude and phase shift, where we define ¢ = %Aei“’:

f(t) = A-cos(2mét + @) = Re (A - eQﬂi{t-}-in)
= Re (A- ¢ - €2™€) = Re (2 €2™i€").

Sum of cosine and sine functions, where we define ¢ = 3(a — ib):
f(t) = a-cos(2m&t) + b - sin(2w&t)

= a-cos(2m&t) + b - cos(2mét — 7/2)

— Re (a e27rz§t + Re (b - e27rz§t 7r/2)

— Re (a- eZ‘mEt + Re (b Q2mikt . e—iﬂ'/?)

(
=Re(a- ez’”gt) + Re (—ib - e*™")
— Re ((U, 27Tz§t) (20 eZﬂ'iEt).

Sum of complex exponentials:

Ft) =c- ™ 4§ o7
— Re (C X 627ri§t) +iIm ( 27r1§t) + Re (C . 6277i5t) —iIm (C . ez-m'ft)
=Re (2c- e27”5t).
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Geek Box 2.8: Fourier Series

The Fourier series (Equation 2.17) represents a periodic signal of pe-
riod T" by an infinite weighted sum of shifted cosine functions of differ-
ent frequencies. The Fourier coefficients ¢ are calculated using Equa-
tion 2.16.

1 [AtT .
clk] = 7 / f(t) e 2mith/T gt keZ (2.16)
d
ft) = i clk] e*mith/T teR (2.17)
k=—o00

The coefficients c[k] and c[—k] together form a shifted cosine wave with
frequency & = I—;l (see Geek Box 2.7). It follows that c¢[—k] = c[k]:

[] o2mith/T _i_m o—2mitk/T

o

C[k}] eZm‘tk/T —i—C[—kZ] e—27ritk/T _

C[—k] e—27rz’tk/T — C[k] e—2m‘tk/T

= c[—k] = c[k]

\. J

Geek Box 2.9: Continuous Fourier Transform

Given a time-dependent signal f, its Fourier transform F at frequency
¢ is defined by Eq. (2.18). The inverse Fourier transform is defined by
Eq. (2.19).

F(¢) = / h f(t) e 2 dt EER (2.18)
ft) = / h F(€) e¥™i8 g teR (2.19)

In general, f(t) can be a complex signal. We will, however, only con-
sider the case where f(t) is real-valued. The continuous Fourier trans-
form is symbolized by the operator F.
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Geek Box 2.10: Discrete-time Fourier Transform

The spectrum (i. e., continuous Fourier transform) of a band-limited
signal that is sampled equidistantly and sufficiently dense with dis-
tance T can be calculated using the discrete-time Fourier transform
(DTFT) defined by Equation 2.20. The inverse transform is given by
Equation 2.21. For details about the required sampling distance see
Sec. 2.4.2.

Fp)= > fln] e2mienT eR (220
e |
fln)=T / Fy(¢) ™t dg nez (2.21)
d

Fig. 2.5(c) shows the DTFT of a band-limited function and the Fourier
transform. The DTFT is identical to the Fourier transform up to
scaling except that it is periodic with period 1/T.

\ J

Geek Box 2.11: Discrete Fourier Transform

The spectrum of a periodic and band-limited signal can be calcu-
lated with the discrete Fourier transform (DFT) as defined by Equa-
tion 2.22. The signal can be reconstructed with the inverse DFT as
defined by Equation 2.23.

N-1
Flk] = fln] e7?mnk/N kEZ (2.22)
v
i = > Flk] mink/N nez (2.23)
k=0

Fig. 2.5(d) shows the DFT and the Fourier series of a band-limited
signal. The DFT is identical to the Fourier series up to scaling except
that it is periodic with period 1/N.
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Geek Box 2.12: Discrete Fourier Transform as Matrix

A discrete Fourier transform can be rewritten as a complex matrix
product. To demonstrate this, we start with the definition of the dis-
crete Fourier transform:

z
I

F[k] _ f[n] e—27rink/N

P
[y

_ 6727'rink/N f[

n]

3
Il
o

Now, we replace the summation with an inner product of two vectors
&, and n (cf. Geek Box 2.6):

F[k] — (eo’ e—27rnk/N’ o ’e—27ri(N—1)k/N) f[g] _ £;Crn

FIN = 1]

We see that &, is a discretely sampled wave at frequency k. This
equation can now be interpreted as the k-th row of a matrix vector
product. Thus, we can rewrite the entire discrete Fourier transform of
all K frequencies to

F[0] 6(1
Fl1
FIK-1) \ek_,

As such, each row of the above matrix multiplication computes a
correlation between a wave of frequency k for all K frequencies under
consideration. Furthermore the relation F = F™' holds if F¥ is
scaled with 1%; Hence, F forms an orthonormal basis. If we con-
tinue this line of thought, we can also interpret a Fourier transform
as a basis rotation. In our case, we do not rotate by a certain angle,
but we project our time-dependent signal into a frequency resolved
time-independent space.
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Figure 2.5: Different types

of Fourier transforms.

A similar theorem exists for the DFT. Let C}, denote the matrix that per-
forms the convolution with discrete impulse response h, and f be a discrete
input signal. Then system output g is obtained as

g=hxf=Cnf = F'HFf.

where H is a diagonal matrix that contains the Fourier transformed coefhi-
cients of h. Note that F and F¥ can be implemented efficiently by means
of FFT. In addition to the convolution theorem, the Fourier transform has
other notable properties. Some of those properties are listed in Table 2.3.
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Description Time Frequency
Linearity a-f(t)+b-g(t) a-FE)+b-G&)
Shift ft—a) e 2 p(g)
Scali t 1p(s
caling f(at) |a\F(a>
Derivative " f(t) (2mi€)" F(€)
dtm

Convolution theorem (see Sec. 2.3.2) (f*9)(®) F&)- -G
Dual of the convolution theorem ft)-g(t) (F*G)(&)

Table 2.3: Effects of modifications of a signal in time on the Fourier trans-
form.
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(a) Sampling as convolution with an im- (b) Quantization of a continuous signal to
pulse train. discrete values.

Figure 2.6: Discrete system theory

2.4 Discrete System Theory

2.4.1 Motivation

As already indicated in the introduction, discrete signals and systems are very
important in practice. All signals can only be stored and processed at fixed
discrete time instances in a digital computer. The process of transforming
a continuous time signal to a discrete time signal is called sampling. In
the simplest and most common case, the continuous signal is sampled at
regular intervals, which is called uniform sampling. The current value of the
continuous signal is stored exactly at the time instance where the discrete
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time signal is defined. This can be modeled by a convolution with an impulse
train, see Fig. 2.6(a). At first glance, it looks like a lot of information is
discarded in the process of sampling. However, under certain requirements,
the continuous time signal can be reconstructed exactly. Further details are
given in Sec. 2.4.2.

As we have already seen with the discrete Fourier transform, most meth-
ods introduced in this Chapter can be equally applied to discrete signals.
We denote discrete signals using brackets [] instead of parentheses (), as we
already did in the Geek Boxes. Integrals must be replaced by infinite sums,
for example for the discrete convolution

glnl = (= flln) = > hlklf[n— ). (2.26)

k=—o0

In the discrete case, the Dirac function takes on a simple form.

1, ifn=0
=4 " (2.27)
0, otherwise

Note that in contrast to the continuous Dirac function, it is possible to exactly
represent and implement the discrete Dirac function.

In addition to the discrete independent variable, the dependent variable
can also be discrete. This means that the signal value f(¢) or f[n] can only
take values of certain levels. Apart from naturally discrete signals, all signals
must be converted to a fixed discrete value for representation and processing
in digital computers. For example, image intensities are often represented
in the computer using 8 bit, i.e., 256 different intensities, or 12 bit which
corresponds to 4096 different levels. The process of transforming a continuous-
valued signal to a discrete-valued signal is called quantization. In most
cases, a uniform quantization is sufficient, which means that the discrete
levels have equal distance from each other. The continuous-valued signal is
rounded to the nearest discrete level available, see Fig. 2.6(b). The error
arising during this process is called quantization noise. Some more details on
noise and noise models are given in Sec. 2.4.3.

2.4.2 Sampling Theorem

The Nyquist-Shannon sampling theorem (or just sampling theorem) states
that a band-limited signal, i.e., a signal where all frequencies above £ and
below —¢p are zero, can be fully reconstructed using samples 1/(2£p) apart.
If we consider a sine wave of frequency g, we have to sample it at least with
a frequency of 2£p, i.e. twice per wavelength.
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Figure 2.7: Sampling a sine signal with a frequency below 2 ¢p will cause
aliasing. The reconstructed sine wave shown with blue dashes does not match
the original frequency shown in red.

Formally, the theorem can be derived using the periodicity of the DTFT
(see Fig. 2.5(c)). The DTFT spectrum is a periodic summation of the original
spectrum, and the periodic spectra do not overlap as long as the sampling
theorem is fulfilled. It is therefore possible to obtain the original spectrum
by setting the DTFT spectrum to zero for frequencies larger than B. The
signal can then be reconstructed by applying the inverse Fourier transform.
We refer to [3] for a more detailed description of this topic.

So far, we have not discussed how the actual sampling frequency 2 £p is de-
termined. Luckily such a band limitation can be found for most applications.
For example, even the most sensitive ears cannot perceive frequencies above
22kHz. As a result, the sampling frequency of the compact disc (CD) was
determined at 44.1 kHz. For the eye, typically 300 dots per inch in printing
or 300 pixels per inch for displays are considered as sufficient to prevent any
visible distortions. In videos and films, a frame rate of 50 Hz is often used to
diminish flicker. High fidelity devices may support up to 100 Hz.

If the sampling theorem is not respected, aliasing occurs. Frequencies
above the Nyquist frequency are wrapped around due to the periodicity and
appear as lower frequencies. Then, these high frequencies are indistinguish-
able from the true low frequencies. Fig. 2.7 demonstrates this effect visually.

2.4.3 Noise

In many cases, acquired measurements or images are corrupted by some un-
wanted signal components. Common noise sources are quantization and ther-
mal noise. Additional noise sources occur in the field of medical imaging, due
to the related image acquisition techniques.

We can often find a simple model of the noise corrupting the image. The
model does not represent the physical noise causes, but it approximately
describes the errors that occur in the final signal. An additive noise model is
commonly denoted as
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Figure 2.8: Example of a white noise function

f(&) = s(t) + n(t) (2.28)

where s(t) is the underlying desired signal. We observe the signal f(t), which
is corrupted by the noise n(t). For the statistics of the noise, we can use
various models e. g., a Gaussian noise distribution p(n(t)) = N (n(t)|pn, Xn)-
Another property of noise is its temporal or spatial correlation. This can be
described by correlating the signal with itself, which is called autocorrelation
function. An extreme case is white noise. White noise is temporally or spa-
tially uncorrelated, meaning the autocorrelation function is a Dirac impulse.
The spectrum of white noise is constant, i. e., it contains all frequencies to the
same amount as a white light source would contain all visible wavelengths
(cf. Fig. 2.8).

2.5 Examples

To conclude this chapter, we want to show the introduced concepts of con-
volution and Fourier transform on two example systems. A simple system is
a smoothing filter, that allows only slow changes of the signal. This is called
a low-pass filter. It is an important building block in many applications, for
example to remove high-frequency noise from a signal or to remove signal
parts with high-frequency before down-sampling to avoid aliasing.

The filter coefficients of a low-pass filter are visualized in Fig. 2.9(a). The
low-pass filter has a cutoff frequency of gsaﬁi‘;le and a length of 81 coef-
ficients. The true properties of the low-pass filter are best perceived in the
frequency domain, as displayed in Fig. 2.9(b). Note that the scale of the y-axis
is logarithmic. In this context, values of 0 indicate that the signal can pass
unaltered. Small values indicate that the signal components are damped. In
this example, high frequencies are suppressed by several orders of magnitude.
An ideal low-pass filter is a rectangle in the Fourier domain, i.e., all values
below the cutoff frequency are passed unaltered and all values above are set
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Figure 2.9: Example of a low-pass filter
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Figure 2.10: Example of a high-pass filter

to 0. In our discrete filter, we can only approximate this shape. In the time-
domain, the coefficients are samples of a sinc function, which is the inverse
Fourier transform of a rectangular function in Fourier domain (cf. Tab. 2.2).
The opposite of the low-pass filter is the high-pass filter, shown in Fig. 2.10.
Here, frequencies below the cutoff frequency are suppressed, whereas frequen-
cies above are unaltered. Note that the time domain versions of high- and
low-pass filters are difficult to differentiate.

Finally, we show how a signal with high and low frequency components
is transformed after convolution with a high-pass and a low-pass filter. The
signal in Fig. 2.11 is a sine with additive white noise. Thus, noise is distributed
equally in the whole frequency domain. A large portion of the noise can be
removed by suppressing frequency components where no signal is present.
Consequently, the cutoff frequency of the filters is slightly above the frequency
of the sine function. As a result, the output of the high-pass filter is similar
to the noise and the output of the low-pass filter is similar to the sine. In our
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2.5

—— Input signal f(t)
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—— Low-passed g;(t)
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Figure 2.11: Sine signal with additive noise after processing with a low-pass
filter and a high-pass filter.

example, we chose a causal filter which introduces a time delay in the filter
output. A causal filter can only react to past inputs and needs to collect a
certain amount of samples before the filtered result appears at the output.
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