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10.1 Introduction

In contrast to the structural imaging used to visualize tissues in the body,
functional imaging is used to observe biological processes. In the field of
nuclear medicine, functional imaging relies on radioisotopes that are tagged
to tracers whose biochemical properties cause them to congregate at regions
of diagnostic interest in the body. As opposed to transmission tomography
with X-ray CT, where the source of imaging radiation is a part of the imaging
device, the radiation source in this case is located within the patient. For
this reason, functional imaging methods in the field of nuclear medicine —
also known as molecular imaging — belong to a family of modalities called
emission tomography, whose differing physical properties make them quite
distinct from the transmission case.

The process begins with radioactive decay, which results when an unstable
isotope ejects particles from its nucleus while transitioning to a stable state.
Although a very complicated process, two modes are of interest to molecular
imaging: v and S. In the former case, gamma rays are ejected directly from
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the nucleus that can be imaged with a so-called gamma camera. 3-D images
can then be reconstructed from 2-D projections in a process called SPECT. In
the second case, a positron is emitted which travels a small distance until an
electron (its antiparticle) is encountered. The ensuing annihilation produces
a pair of 511 keV photons traveling in opposite directions that, when detected
simultaneously, yield lines of response that can be reconstructed into an image
in a process known as positron emission tomography (PET).

Although X-rays produced by bombarding targets with electrons had been
in use since their discovery by Rontgen in 1895, the use of naturally decay-
ing radioisotopes for medical imaging did not occur until 1935, when George
de Hevesy investigated rats injected with radioactive 32P. Using a Geiger
counter, de Hevesy investigated the relative amount of radioactivity in differ-
ent organs after dissection and found that the skeleton had a disproportion-
ately high level of uptake. In doing so, he not only settled once and for all the
ongoing medical question of whether or not bones have an active metabolism
(they do, otherwise they would not have taken up the 32P atoms), but he was
also the first to use radioisotopes and imaging equipment to investigate the
body’s biochemistry. Thus, the so-called tracer principle was born. For his
work in the field of radiotracers, de Hevesy was awarded the Nobel Prize for
Chemistry in 1943, and a variant of his original bone-imaging methodology
based on phosphates is still in wide use today. In the decades following de
Hevesy’s discovery, research from the field of radiochemistry and molecular bi-
ology have yielded a plethora of tracers with desirable uptake characteristics.
Complimentary technical advances have provided imaging devices capable of
aiding physicians answer a range of diagnostic questions.

10.2 Physics of Emission Tomography

10.2.1 Photon Emission

Although the properties of v and 3 decay are different in many respects,
they follow the same basic decay law. Namely, the amount of radioactivity S
(expressed in Bequerel, or decays per second) in a given sample of radioactive
material will decrease until all atoms in the sample reach a stable state. This
process follows an exponential curve, and the amount of activity in the sample
at a given time ¢ can be expressed as

S(t) = Soe~ M2tz (10.1)

where Sy is the initial activity, and ¢, 5 is the isotope’s half-life, or the time it
takes for S(t) to decrease to half of Sy. This process is illustrated in Fig. 10.2,
where the blue curve depicts the amount of activity remaining in a sample
that initially contained 100 MBq. It can be seen from inspection that the
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Figure 10.1: Simplified representation of both modes of decay relevant to
emission tomography. On the left is a nucleus undergoing v decay and emit-
ting a single photon directly. On the right is an example of 37 decay, where a
positron is ejected from the nucleus. The positron travels a short distance be-
fore coming in contact with an electron. The resulting annihilation produces
a pair of 511keV photons traveling in opposite directions.
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Figure 10.2: Exponential decay curve for a 100 MBq sample of a radioiso-
tope having a half-life of six hours (the same as %™Tc).

isotope’s half-life is six hours, which is the same as that of ?*™Tc, the most
commonly used isotope for SPECT imaging.

Although Eq. (10.1) represents a sample’s aggregate decay properties, the
emission of individual photons (or photon pairs for 8 decay) within a partic-
ular time window is a discrete process and follows a Poisson distribution with
a mean v proportional to the amount of radioactivity present. Note that we
can assume independence between the voxels and describe an entire image
in a vectorized format using for a single voxel and v for an entire image.
Similarly, the number of photons counted in a particular observation of this
process, such as a pixel of a SPECT projection, is a Poisson-distributed ran-
dom variable as well, provided that the image formation chain is linear.' If

! In practical scanners, this is not strictly the case, but it is assumed to be here.
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we represent the projection pixels and image voxels as vectors, the distribu-
tion of photon counts on the detector D is related to the activity distribution
being imaged v via the following relation:

D ~ Poisson (Av) , (10.2)

where A € RMY is known as the system matriz and is composed of elements
Gy, Tepresenting the probability that a photon emitted from voxel n is de-
tected at pixel m (cf. Geek Box 7.3). M and N are the numbers of detector
pixels and image voxels, respectively. Multiplying an image vector v by A
thus accomplishes a forward projection into the projection space. Acquired
projection data d from an emission tomography scan therefore represent a
single sample, or observation, drawn from the distribution D.

Eq. (10.2) implies that detected images will always be perturbed by ran-
dom noise, particularly for small numbers of counts. This effect is shown in
Fig. 10.3, where simulated observations are shown for time points ¢ = 0,
2t1/9, t = 42, and ¢ = 61, /9. For each simulation, the total activity from
the blue curve in Fig. 10.2 corresponding to the time point ¢ was distributed
uniformly inside the ellipsoidal object, yielding an amount of activity at each
pixel n that corresponds to the mean value of a Poisson process v, (t). A
random number was then drawn from the Poisson distribution at each pixel
to create the images d(t). This is equivalent to applying Eq. (10.2) with A
set equal to the identity matrix.

Central profiles drawn from each image along the blue line on the left of
Fig. 10.3(a) are shown at the right. At the aggregate level, the simulated
mean across all the pixels d(t) is almost exactly equivalent to the true (t)
and follows the predictable decay curve in Fig. 10.2. However, the noise level
in the images and profiles appears to increase with ¢. This behavior is due to
the fact that the mean of a Poisson distribution is equivalent to its variance.
But if the variance decreases with the mean, then why does the noise appear
to increase? To answer this, we can define a signal-to-noise ratio SN R within
our homogeneous ellipsoid’s boundaries to use as a noise measure. In this case,
our signal is simply the mean over this object, and the noise is the standard
deviation og4:

snp=2 -4 _ /g (10.3)
Od \/E
The SN R is thus simply the square root of the mean number of photon counts
in the object and increases monotonically, albeit with plateauing benefits,
with the number of counts in the image.

In X-ray CT imaging, where the radiation source is located outside the
body and can be easily controlled by the system, large numbers of photons
are easily attainable, as the patient can be irradiated with a high flux for a
short period of time. However, in molecular imaging the radioactive source is
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Figure 10.3: Simulated images (left) and central horizontal profiles (right)
from an object filled with the activity described in Fig. 10.2. The images were
simulated after zero, two, four, and six half-lives (a, b, ¢, and d, respectively).
The mean value of the object is shown with a dashed red line through each
profile. Note how the images become noisier as the mean decreases.
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Figure 10.4: Typical 15 second projection from a skeletal SPECT acquisi-
tion. Even pixels with the highest counts have only roughly ten photons. Im-
age courtesy of the University Hospital Erlangen, Clinic of Nuclear Medicine.

located within the body and will continue to bombard tissue with potentially
harmful ionizing radiation until it either decays or is excreted by the body.

Therefore, to limit patient dose, relatively small amounts of activity are
usually injected, typically ranging from 100 to 1,000 MBq. The activity is then
distributed throughout the body, leading to low numbers of emitted photons
at any given area. The imaging task is thus similar to taking a photograph
in a very dark room. A long exposure time can yield a better SNR, but
comes with problems of motion blur and patient discomfort. A typical SPECT
projection lasts 15 seconds, resulting in a total scan duration of 30 minutes
for the usual 120 projections! Despite this effort, projections typically have
only about 20 or fewer useful photons per pixel in diagnostically interesting
areas. A representative projection from a skeletal SPECT scan in shown in
Fig. 10.4. The mean pixel value is a measly 0.6, and maximum is only 17,
significantly less than even the noisiest simulation in Fig. 10.3(d). Due higher
scanner sensitivities, PET statistics are slightly better, with roughly a factor
of 10 more counts per pixel at typical scan durations of 4-6 minutes for an
equivalent field of view.

The fundamental challenge in emission tomography is therefore to pro-
duce reconstructed images of the activity distribution v with acceptable im-
age quality from noisy acquired data. The following sections describe other
physical issues encountered as well.

10.2.2 Photon Interactions

Aside from the fundamental problem of noisy data, the second most im-
portant physical factor affecting emission tomography is photon attenuation.
Photons traveling through a medium may interact with atoms and eventually
be absorbed, resulting in a detected flux I less than that originally emitted.
In Chapter 8, we learned how to describe this principle using Beer’s law and
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Figure 10.5: A photon is deflected from its original path (vertical) by a
scatter event and detected at an erroneous location to the left of its ideal
position.

exploit it for imaging. For transmission tomography like X-ray CT, this phe-
nomenon is imaged directly to yield reconstructed images of the medium’s
(i. e. patient’s) structure. This is possible because the location and current
of the emitted flux I is known. In emission tomography, however, Ij is de-
termined by the activity distribution in the body v, which is unknown. At-
tenuation is therefore a hindrance that leads to errors if it is not accounted
for.

Amongst the photon-matter-interactions, Compton scatter is very impor-
tant for emission tomography (cf. Sec. 7.3). In this interaction, the photon
is not absorbed as in attenuation, but merely deflected. The relationship be-
tween deflection angle # and pre- and post-collision energies Ey and Fgeq 18
described by the Klein-Nishina formula:

Ey
1+ (£2)(1 —cos)

Scatter is an important component of emission tomography due to its role
in the degradation of image quality. Specifically, deflected photons may be
erroneously assumed to come from locations in the image volume along their
scattered trajectories, rather than their original paths. This process is illus-
trated in Fig. 10.5, where a photon originating in the image is scattered and
counted at a detector pixel corresponding to a trajectory other than its orig-
inal (vertical) path. This has the effect of reducing resolution, contributing
to image noise, and reducing contrast.

(10.4)

scat —
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Figure 10.6: Simplified schematic representation of a gamma camera show-
ing three primary components.

10.3 Acquisition Systems

10.3.1 SPECT

Early methods for detecting photons emitted from radiotracers focused on
scanning probes (e.g. Geiger counters) over the patient. Scanning a field of
view of any reasonable size was therefore a painstaking process, and 3-D re-
construction was out of the question. In 1957, Hal Anger solved this problem
with the invention of the gamma camera, shown schematically in Fig. 10.6.
A classical gamma camera consists of three components: a collimator, a scin-
tillator, and an array of photomultiplier tubes (PMTS).

The collimator is composed of a lattice of holes separated by septa made
of some highly attenuating material (usually lead). Its role is to restrict the
angle of acceptance at each point on the detector surface and provide an
(ideally) parallel projection of the object being imaged onto the scintillator.
In e.g. optical imaging equipment, this is usually accomplished by means
of a small aperture known as a pinhole. For this reason, collimators with a
parallel-hole geometry consisting of a large array of narrow, parallel bores
are the most commonly used type for SPECT imaging..?

Ideally, a point source placed in front of the detector would yield a perfect
point in the image. However, the bores of a collimator are neither infinitely
long nor infinitely narrow, leading to a finite acceptance angle that allows pho-
tons traveling from the point to reach the detector via a range of rays about
the ideal one (i.e. the shortest path from point to detector). The structure
of these alternate paths is described by the collimator’s PSF and effectively

2 Advanced reconstruction algorithms can take advantage of the benefits of non-parallel
projection methods, provided they are accomplished by means of multi-hole collimators
(fan-beam, convergent, divergent).
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Figure 10.7: Schematic representation of collimator and PSF (yellow). The
acceptance angle of a bore is dependent on bore length and width, leading
to a widening of the PSF with depth.

blurs more complicated objects being imaged, which can be thought of as
collections of many points.

This effect can be seen in Fig. 10.7, which shows a schematic representation
of a trio of 1-D parallel collimator bores in front of a detector. A virtual point
source placed at the intersection of the red arrows would be able to reach the
detector along a number of rays. Photons reaching the detector on direct
paths through air are termed geometric, because their PSF is only a function
of the detector and collimator geometry. On an infinitely precise detector,
the resulting response would be an array of indicator functions, but due to
pixelation in the acquired image and other factors, the PSF has a roughly
conical shape.

In many applications it is modeled as a Gaussian, and the resolution is
characterized by the full width at half maximum (FWHM) rpgg, which may
be approximated by the following equation:

Db(Lb =+ Z)
Ly ’
where Dy, is the bore diameter, L its length, and z the distance between the
source plane and the face of the collimator. From Eq. (10.5), it can be seen
that the resolution is depth-dependent and becomes wider with increasing z
for given collimator dimensions.
An image of a point source showing a true PSF is shown in Fig. 10.8.
The image is saturated to highlight the complex structure. In the bright
central area outlined in red, primarily geometric photons are present. In the

TPSF ~ (105)
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Figure 10.8: Measured PSF from a ?™Tc point source imaged at a distance
of 10 cm, shown saturated to emphasize low-intensity regions. The geomet-
ric bright geometric is outlined in red, and most extra-geometric counts lie
between the red and blue hexagons, where a single partial septal wall is pen-
etrated.

region immediately adjacent to it outlined in blue, photons passing through
a portion of a single septum are detected. The long “spider”-like legs are
due to septal penetration across multiple walls, which is most probable in
a direction perpendicular to the edges of the hexagonal collimator bores. A
faint background between these streaks is caused by Compton scattering in
the collimator and contaminates the entire function. The magnitude of the
spider legs is up to 1.5% of the maximum PSF value, and for " Tc up to
10% of photons may be extra-geometric and thus not accounted for by ideal
models. Therefore, some in the field have begun to use PSF models based on
measured true data rather than ideal calculations.

Issues of resolution and septal penetration are important when designing
a collimator. The collimator efficiency p is also significant, as it describes the
ratio of geometric photons passed through the collimator to the total number
emitted towards it. It is ideally constant over z for the parallel hole case and
can be approximated as

D,\?  D?
~ K222 10.6
P (Lb) (Dy + T5)?’ ( )

where T is the width of the septal wall and K is a constant based on hole
geometry. A typical value of p is on the order of 10~%, making it a key, but
necessary, limiting factor in the sensitivity of SPECT systems.

In Eq. (10.6), it can be seen that p increases as bores are either shortened
or widened. However, from Eq. (10.5), we see that these changes decrease res-
olution. Taking Eq. (10.5) and Eq. (10.6) together, it becomes apparent that
the task of collimator design is a compromise between collimator sensitivity
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and resolution. The former directly impacts the quality of counting statis-
tics, and therefore noise, in an acquired image. The latter is related to the
accuracy with which the detector can localize them and properly reproduce
small features such as edges. A third consideration appears via the septal
thickness which, when increased, limits the star artifacts shown in Fig. 10.8
at the expense of smaller p.

Once a photon has passed through the collimator, it impacts the system’s
scintillator (typically composed of Nal), releasing several lower energy pho-
tons in the visible range. These photons then travel to the PMTs, where
they initiate an electron avalanche that is detected as a current signal at the
PMT output. To determine the 2-D location of a photon, a type of centroid
is computed by the output electronics of the PMT array in a process known
as Anger Logic, after its inventor. In the 1-D case, the estimated location of
the photon detection Z can be calculated as

Zq z,Gy
Zq Gq 7
where Gy and z4 are the signal strength at and location of the ¢-th PMT.
Applied in this fashion directly, images will suffer from nonuniformities and
pincushion distortions. These are removed by replacing G, with some non-
linear function thereof. Even after this correction, the method is not exact,
and the resulting finite resolution rpgt adds in quadrature with that of the
PSF to yield a total system resolution rgys = 1/ T%SF + 73 . Another impor-
tant property of the PMT output is that the value of > q G, is proportional
to the energy of the initial photon. This allows SPECT cameras to be energy
resolving as well, allowing the effects of Compton scatter to be mitigated.

(10.7)

{f;:

10.3.2 PET

As shown in Fig. 10.1, the 8 decay that forms the basis of PET produces
two photons that travel in opposing directions away from each other. This
is exploited for imaging purposes by using a ring detector and looking for
coincidences in the observed data. This coincidence detection principle is
illustrated in Fig. 10.9, where a PET ring composed of many small detector
blocks is shown. Extremely high speed electronics monitor each detector’s
output signal and record a detection event when two impulses are detected
simultaneously. The detector blocks themselves are traditionally composed of
a scintillator crystal mated to a small PMT array as with the Anger camera.
However, no collimator is needed to restrict the scintillator’s acceptance angle
in this case because the photon’s incidence angle is implicitly provided by the
detector block at the opposite side of the ring. Nevertheless, inaccuracies in
the scintillator blocks and PMTs still induce a finite PSF in PET whose
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Figure 10.9: PET ring detector and coincidence detection principle. The
detector electronics simultaneously monitor signals from each detector block
and record counts when an impulse is detected from two blocks at the same
time.

geometrical properties vary widely depending on the source’s location in the
field of view.

The ray connecting the two detection points (red line in Fig. 10.9) is known
as the line of response. Integrating along all parallel lines of response at a
particular rotation angle will produce a row of a sinogram at that angle that
can be used for reconstruction. Early PET systems treated each axial ring
of detector blocks as independent slices and thus ignored lines of response
with oblique axial angles. This strategy, shown in Fig. 10.10(a), reduces the
computational burden on detector electronics (coincidences from fewer blocks
must be monitored simultaneously), but sacrifices many counts.

Newer systems utilize a 3-D detection configuration (cf. Fig. 10.10(b)),
where lines of response across a finite axial range are observed. This provides
an increase in sensitivity due to the fact that, for a given source location,
counts can be registered at a greater number of detectors. However, by the
same token, it is more probable that false (random) coincidences or pairs of
scattered photons will be detected. Also, an extra step of axial rebinning is
needed to produce a sinogram. Spatial and Fourier domain strategies exist,
but the common goal is to transform the acquired oblique lines of response
into approximate virtual lines of response perpendicular to the axial direction.

PET has a number of advantages over SPECT due to more favorable
physics. Sensitivity is roughly an order of magnitude higher due to the absence
of a collimator, and the ring detector offers better tomographic consistency
(i.e. all angles are acquired simultaneously). Furthermore, the reconstruc-
tion problem is better defined than with SPECT due to the (ideally) 1-D
search space along each line of response. Mathematically, this translates into
a system matrix that is better conditioned. By using TOF information de-
rived from slight delays between coincidence detections, the range of possible
emission locations can be even further reduced.
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Figure 10.10: 2-D (left) and 3-D (right) detection configurations for PET.
The latter offers better sensitivity at the expense of more scatter events.

TOF PET systems with 3-D detection thus typically offer superior res-
olution and noise characteristics compared to SPECT, but this comes at a
price. 18F, the most common isotope used in PET, has a half life of only 110
minutes and is more difficult to produce than %™Tc, requiring a complex
logistical network to minimize the time between production and injection.
Furthermore, the higher energy photons imaged in PET require costly ex-
otic scintillator materials. This, combined with highly specialized detector
electronics, makes PET systems more expensive to procure and operate than
their SPECT counterparts.

10.4 Reconstruction

10.4.1 Filtered Back-Projection

In Chapter 8, we presented the filtered back-projection method of reconstruc-
tion in the context of X-ray CT. The advantages of this reconstruction are
its speed and simplicity, as well as reconstructed image properties, such as
resolution, that are relatively easy to determine. However, while filtered back-
projection works quite well for high-count data, it fails to take into account
the Poisson statistics outlined in Sec. 10.2.1. This leads to very noisy images
in SPECT and PET, where detected counts are several orders of magnitude
lower than those seen in CT.

Furthermore, filtered back-projection operates by inverting the Radon
transform — the purely geometrical relationship between voxels in the im-
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age and their projected pixels at the detector. This ignores all of the other
physical factors, such as attenuation, scatter, and the PSF, that play a vital
role in the emission tomography image formation chain. This oversight leads
to artifacts in reconstructed images that greatly degrade image quality. For
these reasons, filtered back-projection is generally no longer used in clinical
situations.

10.4.2 Tterative Reconstruction

In order to improve the noise performance of filtered back-projection, we
must use the statistical relationship in Eq. (10.2) between the mean activity
distribution in each voxel and the observed counts at the detector. Filtered
back-projection implicitly assumes a deterministic relationship, but we can
take stochastic effects into account by using the definition of the Poisson mass
distribution function.

Geek Box 10.1 describes how probable observed detector data are given a
set of model parameters, which take the form of a vector of Poisson means v
for each voxel in our case. Obviously, in emission tomography, these param-
eters are unknown. However, the likelihood function provides us with a tool
to estimate them by searching for the set of " that maximizes P(D = d)
and thus yields the most likely estimate given our data:

v* = argmax P(D = d). (10.8)

The relationship described in Geek Box 10.1 is quite complex, and it is not
immediately clear how to maximize the likelihood. However, a seminal paper
by Shepp and Vardi in 1982 showed that this can be accomplished via the Ex-
pectation Maximization (EM) algorithm, whose general framework involves
the estimation of the “complete” information, given a set of observations and
hidden, “latent”, information. Although a detailed description is outside the
scope of this text, it is worth outlining that for emission tomography, the
complete information is the actual emission distribution v, and the observa-
tions are the counts in the projections d. The latent information is comprised
of all of the photons originating in the image that escape detection.

As shown by Shepp and Vardi, EM’s methodology of alternatingly forming
a conditional expectation via marginalization over a particular variable and
then maximizing the resulting likelihood provides a convenient framework for
attacking Eq. (10.8) as encountered in emission tomography. This expecta-
tion/maximization cycle is repeated until a suitable image is obtained, and
each one of these repetitions is referred to as one iteration k. The algorithm
begins by initializing some estimate of the activity distribution 2. The pro-
cess proceeds at each iteration by forward projecting the current estimate o,
comparing it to the measured data, backprojecting the result, and applying
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Geek Box 10.1: Total Likelihood Function

(a) (b)

a) For the simple case of counts from one voxel being emitted directly
into a single pixel detector, the probability of a particular observation
d given the true mean v is

i
_ _ ,—vZ
P(D=d)=e o

which is known as the likelihood of the observation.
b) Moving one step further, where an array of observations d if formed
by photons emitted from a vector of voxels with means v. This is the
same scenario we examined in the example in Fig. 10.3. Here, the
system matrix is equivalent to the identity matrix A = I, and each
voxel contributes to a single detector element. As each observation is
independent of the others, we can multiply them together to obtain

our likelihood: d

HeXp dl’

where ¢ represents the index of the detector and image elements, which
are equivalent in this case.

¢) In a true imaging scenario, A # I, and multiple image voxels
contribute to a single detector element. To account for this, we must
subdivide the total detected counts in each pixel d,, into contributions
from each image voxel: d,, =), dp(n). The probabilities contained
in the system matrix must also be included. The total likelihood is
therefore the sum over each of these possible scenarios:

)dm (n)

(Vmam,n
= H exp (—Vmam’n)W

The dual product has the effect of incorporating the contribution from
each voxel to each pixel.
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a weight to the estimate to create a new "1 The update mechanism for the
algorithm can be expressed using the following equation:

~k+1 ﬁrli dm (10 9)
v = = a ey A—— .
" Z am/ n m o Z ﬁ,’j,am,n,
m/ n/

Collectively, this method is known as the maximum likelihood expectation
maximization (MLEM) algorithm and is widely used in many commercial
and research applications.

The iterative reconstruction process for MLEM thus consists of an objec-
tive function that describes the quality of the current estimate (the likelihood
function) and a way of optimizing it (EM). Within the field of image recon-
struction, a wide range of objective function/optimizer pairs are available.
Another objective function that has found wide use is weighted least squares:

0" = argmin||d — AP}, = argmin » _ wp,(dy, — [AD])?, (10.10)
1 17

m

where [AD],, is the m-th pixel of the forward projected estimate and w is
a vector of weights. The weights are often used to take noise into account
by, for example, setting each element of w equal to an estimate of the vari-
ance at the corresponding detector pixel. This has the effect of adjusting
each pixel’s contribution to the objective function depending on its noise
properties. The weighted least squares objective function is convex and can
be solved with gradient-based optimization techniques such as the conjugate
gradient method.

10.4.3 Quantitative Reconstructions

Although iterative reconstruction is motivated by the underlying statistics of
photon emission, another major advantage is its ability to model the physics
of the imaging system. This is accomplished via the system matrix. In ad-
dition to geometric information, the system matrix can include the effects
of attenuation and scatter to allow the reconstruction to correct for them.
Furthermore, resolution lost due to PSF blurring may be regained to some
extent if this is modeled as well.

Aside from image quality improvements such as contrast enhancement and
noise reduction, proper system modeling enables PET and SPECT systems to
become quantitative as well. In other words, instead of reconstructing images
1133 arbitrary or relative units, absolute units such as activity concentration

q

~1 are produced. This important distinction allows scans across different

patients, scanners, and time points to be meaningfully compared. This is
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not only useful for individual patient management, but enables larger, multi-
center clinical studies as well.

Assuming an accurate system model is available, the cornerstone of a quan-
titative imaging system is the calibration. This anchors the counts observed
during an acquisition to a physical amount of radioactivity in the detector’s
field of view. A common way of doing this is to perform an acquisition on
a homogeneous phantom with a known activity concentration expressed as
%. A volume of interest may then be defined in the reconstructed image,
and a count density in units of counts per ml may be determined. Time must
then be taken into account by correcting for decay and normalizing by the
acquisition duration. After these steps, a volumetric sensitivity factor avor,
may be defined relative to its units as follows:

counts
avor, = 7““1‘{‘]%%' ml, (10.11)
ml

With this factor in hand, subsequent acquisitions may be quantified, provided
they are acquired with the same isotope and reconstructed in the same way.
The procedure for this is straightforward and consists of obtaining the count
rate density from a volume of interest in units of %““1 and dividing by

avoL, thus producing the desired absolute units of %.

This solution is not without drawbacks. It requires the filling of a phan-
tom for calibration and is vulnerable to errors and inconsistencies that come
from user-defined volumes of interest. A more elegant method is to utilize a
planar sensitivity oplanar = Hfﬁl‘fEtBSq. This value is then incorporated into the
system matrix to relate the forward projected counts to absolute activity in
the reconstructed volume. The result is a reconstruction that is inherently
quantitative and dependent on a calibration factor that can be obtained from
less tedious planar acquisitions of a point source.

In the medical community, it is also of interest to normalize for factors
such as patient weight and injected dose. The commonly used Standardized
Uptake Value (SUV) is an example of this. It is based on the assumptions
that a) a tracer in healthy tissue will distribute uniformly throughout the
body and b) that the body has a uniform density equal to that of water (i.e.
1 kg/1). Combining these assumptions yields the following relation:

kBayor

mlyor
SUV MBapy, ke’ (10.12)
where the subscripts VOI and INJ refer to quantities drawn from a recon-
structed volume of interest (e.g. a region surrounding a suspect tumor) and
total injected dose, respectively.
Despite the somewhat unintuitive units of %7 the logic behind the SUV
is sound: a value significantly greater than unity indicates a disproportionate
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Figure 10.11: 1-D signal (green) convolved with gaussian to yield “observed
data” that is reconstructed (i.e. deconvolved) using the MLEM algorithm
(blue curve). In this case, the blurring function is not modeled, and the
reconstruction cannot improve upon the observed data (the two curves are
equal). Figure courtesy of Siemens Molecular Imaging Inc., USA.

amount of uptake and a potential abnormality. This is particularly the case
for tracers where assumption (a) from above holds. Furthermore, by normal-
izing for two factors that vary across acquisitions (injected dose and patient
weight), the SUV allows for easier comparison between different patients and
time points.

Numerous variations on the SUV exist. One of the most popular is the
SUV 42, which simply places the maximum activity concentration found in
a volume of interest in the numerator of Eq. (10.12) to guard against partial
volume effects. Other extensions normalize by lean body mass or body surface
area to better account for anatomical variations.

10.4.4 Practical Considerations

Although superior to analytical methods, iterative reconstructions are not
without their own complications. Namely, the inclusion of a system model
and optimization scheme adds a plethora of parameters that must be tailored
to the imaging task at hand. Poor judgment in selecting these values may
degrade image quality.

To illustrate this concept, we use a simple 1-D signal with two step func-
tions blurred by a Gaussian. The original signal represents the truth, and its
blurred version our observed data. If we initialize a constant function and ap-
ply the MLEM algorithm from Eq. (10.9), we can attempt to “reconstruct”
the truth from the data. In Fig. 10.11, the results are shown for the case
where the blurring function is not modeled (similar to an emission tomogra-
phy reconstruction without PSF compensation). As expected, the best our
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Figure 10.12: Reconstruction after six MLEM iterations where the blur-
ring function is modeled in the system matrix. Edge resolution is improved
over Fig. 10.11, but ringing artifacts also become visible. Figure courtesy of
Siemens Molecular Imaging Inc, USA.

Figure 10.13: MLEM reconstruction after 300 iterations. The edges have
become sharper, and artifacts amplified relative to Fig. 10.12. Figure courtesy
of Siemens Molecular Imaging Inc., USA.

method can do is to adjust the constant initialization until it matches the
blurred observations: the two curves are identical.

Fig. 10.12 shows six MLEM iterations with the blur incorporated into
the system matrix. This is equivalent to adding a deconvolution problem
to our reconstruction, and we see that the edges have become sharpened
as frequencies suppressed by the blur are recovered by the reconstruction.
However, ringing artifacts have also become visible due to the fact that the
original spectrum is only partially recovered. The results after 300 iterations
are shown in Fig. 10.13, where even better edge resolution is achieved, albeit
with more severe ringing as well.

If we incorporate Poisson noise into the observed data, we can make our
experiment more realistic. How does this change the results? The reconstruc-
tion after six iterations shown in Fig. 10.14 indicates that they are broadly
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Figure 10.14: Six MLEM iterations with on data perturbed with Poisson
noise. The result is slightly irregular but comparable to Fig. 10.12. Figure
courtesy of Siemens Molecular Imaging Inc., USA.

Figure 10.15: 300 MLEM iterations on noisy data. The interior of the large
object is highly irregular, and quality is noticably worse than Fig. 10.13.
Figure courtesy of Siemens Molecular Imaging Inc., USA.

comparable to the noiseless case in Fig. 10.12, although slight irregularities
inside the wide object can be seen. However, the case after 300 iterations
shown in Fig. 10.15 is starkly different from its noiseless counterpart, with
the interior of the wide object becoming very inhomogeneous.

The noise in the reconstructed signal in Fig. 10.15 is a result of the ill-
conditioned nature of the reconstruction problem and can be generalized to
the case of emission tomography. During early iterations, low frequencies are
recovered that correspond mostly to signal information, such as high-contrast,
large objects. However, at higher iterations, the algorithm turns its attention
to higher frequencies where the signal and noise energies are comparable. The
result is an overfitting of the noise and degradation of image quality.

By iterating further, we can increase resolution and thus reduce quanti-
tative bias due to edge roll-off. However, as seen in Fig. 10.15, this runs the
risk of introducing too much noise into the image. The use of image post-
smoothing or smoothness regularization can reduce noise while sacrificing
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some resolution and thus entails making the same type of compromise. In
practice, the choice of many reconstruction parameters is therefore another
example of the bias/variance trade-off already discussed above with respect
to SPECT collimator design.

Another complication for iterative reconstruction in emission tomography
is that there are source-dependent factors such as attenuation and scatter in
the system matrix. This implies that the properties of the reconstruction will
vary from patient to patient, even if the same acquisition and reconstruction
parameters are used. Furthermore, depth- and position-dependent PSF's in
SPECT and PET lead to shift-variant properties within a given image as
well. These factors should be taken into account when reconstructing and
interpreting images.

10.5 Clinical Applications

Molecular imaging is used in various fields of medicine such as neurology,
oncology, cardiology, and orthopedics. Its application areas can be broadly
subdivided into two fields: diagnostics and therapy.

10.5.1 Diagnostics

As the most common use for emission tomography, diagnostics is also the
most diverse. In the field of neurology, both PET and SPECT offer perfusion
tracers that give physicians insight into the amount of blood flow in the
brain during the scan, which is proportional to brain activity. An example
of a SPECT brain perfusion procedure using °°™Tc-Ethylcysteinat-Dimer
(ECD) is shown in Fig. 10.16(a). An epileptic patient is scanned immediately
following a seizure and during a neutral state. The reconstructed images are
subtracted and fused with an MR of the patient’s brain to localize the focus
of the seizure. More specialized applications including imaging of amyloid
plaques linked to Alzheimer’s disease (PET) and dopamine receptor imaging
(SPECT) are also available.

For oncology, '8F, the most commonly used PET isotope, may be bonded
to a molecule in the glucose family resulting in so-called fludeoxyglucose
(FDG). Using these FDG-PET scans, doctors can search for areas with
high glucose metabolism — a sign of rapidly growing metastatic tumors.
Fig. 10.16(b) shows an FDG-PET scan of a patient with melanoma. Ma-
lignant metastases are visible below the liver and beside the heart. A com-
mon oncological use for SPECT is skeletal imaging with ?°Tc bonded to
phosphorous compounds. High uptake of these tracers is often indicative of
secondary lesions from e. g. prostate or breast cancer.
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(b)

Figure 10.16: Examples of diagnostic procedures in molecular imaging. a)
Differential SPECT scan using " Tc-ECD to localize seizure epicenter. b)
FDG-PET scan for a patient with melanoma. Several small lesions are visi-
ble below liver and beside heart. Images courtesy of the University Hospital
Erlangen, Clinic of Nuclear Medicine.

In addition to oncology, bone SPECT is also used in the field of orthope-
dics to localize and diagnose the source of pain felt by patients with faulty
prosthetics, small fractures, or degenerative disease. PET and SPECT also
both offer myocardial perfusion tracers, which allow cardiologists to assess
the viability of the heart muscle and diagnose various heart diseases.

Using quantitative imaging, physicians are also able to monitor disease
over time. By comparing metrics such as SUV at scans taken at different time
points, they can track the progression of e.g. metastatic lesions and better
assess response to therapy. An example of this is shown in Fig. 10.17, where
a breast cancer patient was imaged with *™Tc-labelled 3,3-diphosphono-1,2-
propanodicarboxylic acid (DPD) at three different time points, roughly six
months apart. In the first scan (cf. Fig. 10.17(a)), a region was seen in the
skull with uptake suspicious of a metastatic bone tumor. In a follow up study,
the SUV,,. was seen to increase, and treatment with bisphosphonates was
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(b) September, 2012; SUV 42 = 6.0

(¢) February, 2013; SUV 05 = 5.1

Figure 10.17: Same breast cancer patient imaged on three different dates
with 99*Te-DPD. The calculated SUV,,,4. from the volume of interest at the
posterior right area of the skull is also shown. A decrease in uptake was noted
between the second and third scans, indicating a response to therapy. Images
courtesy of the University Hospital Erlangen, Clinic of Nuclear Medicine.

begun. In the final scan shown in Fig. 10.17(c), SUV 4. decreased, indicating
a response to therapy.
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10.5.2 Therapy

In addition to purely diagnostic imaging, emission tomography plays an in-
tegral role in radioisotope therapy as well. Such procedures utilize the tracer
principle to target malignant tissue with radiation. This radiation then elim-
inates or stems the growth of unwanted cells. However, these positive effects
must be weighed against the negative side effects on healthy tissue. To ac-
complish this, physicians must estimate the dose of a course of therapy on
sensitive organs.

This process, known as dosimetry, is quite complex. It relies on quantify-
ing the activity distribution within the patient, determining how long it will
remain there, and estimating how much energy will be deposited in healthy
tissue. As therapy agents typically involve higher energy emissions and more
complicated spectra, the system matrix in such cases becomes more diffi-
cult to define. Furthermore, post-processing such as organ segmentation and
biological modeling become necessary.

10.6 Hybrid Imaging

10.6.1 Clinical Need

SPECT and PET offer excellent sensitivity for the detection of disease due
to the functional information they provide. However, pathological regions of
an image may be difficult to localize in the body in the absence of structural
information.

Take, for example, a hypothetical surgeon who is planning a biopsy and
needs to find the specific Sentinel Lymph Nodes (SLNs) draining a tumor in a
breast cancer patient. Prior to surgery, a SPECT scan has clearly shown the
presence of an SLN with high uptake in the underarm area, but it is known
that there are multiple possible lymph nodes here. This stand-alone SPECT
might appear similar to the left pane of Fig. 10.18, where only a single bright
spot is visible. How will the surgeon proceed?

Historically, during planar acquisitions, a technologist might trace the out-
side edge of a patient’s body with a radioactive “pen” to provide a rough
anatomical point of reference in the image. The advantages of this method
are limited, and it is, in any case, not possible for SPECT, where attempts
may be made to register a previously acquired CT to the current SLN SPECT
study. However, the human anatomy is non-rigid, and shifts in posture and
time between scans may lead to errors. Our surgeon would therefore be left
with the option to operate in the general area of the suspected SLN and rely
on tedious scanning with gamma, counting probes to find the exact node.
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SPECT/CT

Figure 10.18: SPECT data after labeling of a Sentinel Lymph Node (SLN)
with 2°™Tc-Nanocoll. The corresponding structural information from a com-
plimentary X-ray CT scan helps provide proper localization of the activ-
ity. Images courtesy of the University Hospital Erlangen, Clinic of Nuclear
Medicine.

10.6.2 Advent und Acceptance of Hybrid Scanners

In 2000, David Townsend and Ronald Nutt of the University of Geneva,
working together with CTI (now a division of Siemens Molecular Imaging),
introduced the first hybrid PET/CT scanner. This device offered a PET ring
detector and multi-slice spiral CT scanner integrated into the same gantry.
Patients could therefore receive PET and CT studies in quick succession with-
out moving, greatly reducing registration errors and providing both structural
and functional information in one fell swoop. Six years later, Siemens Molec-
ular Imaging introduced the Symbia SPECT/CT scanner, bringing the same
advantages to the field of SPECT. Other manufacturers quickly developed
similar hybrid imaging systems as well.

With the advent of hybrid imaging, our hypothetical surgeon can now use
the CT acquired with the SPECT study to pinpoint the location of the SLN
prior to surgery, reducing both the time needed to perform the operation and
the risk of misidentification. This is illustrated in the center and right panes
of Fig. 10.18. In the center, a CT acquired immediately after the SPECT to
the left is shown, and in the right, the two fused datasets are displayed. As the
patient was lying on the same SPECT/CT gantry in the same position during
both acquisitions, the surgeon can be sure of the accuracy in the registration
between the two datasets.

The integration of PET or SPECT system with an X-ray CT scanner
represents a complex engineering task. On the hardware side, care must be
taken to ensure that the physical mating of the two systems does not affect
their individual performance. On the firm- and software side, separate data
transmission protocols, formats, and user interfaces must be unified as well.
After the devices are physically complete, system engineers must work with
others to develop new calibration and quality control routines. These might,
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for example, provide the reconstruction software with updated transforma-
tions between the SPECT and CT coordinate systems, as these parameters
vary over time due to parts wearing down or being replaced.

In addition to the clinical benefits of hybrid imaging, the reconstruction
process itself can be improved as well. In Sec. 10.4.3, we briefly discussed
the importance of CT attenuation correction for emission tomography. The
advent of hybrid devices has made these corrections the standard in most
clinics rather than a research topic, reducing attenuation artifacts and paving
the way for quantitative imaging.

Hybrid PET and SPECT/CT devices represented a major step forward in
medical imaging. However, CT as a structural modality has its own weak-
nesses. Namely, soft tissue contrast in regions of interest for molecular imag-
ing, such as the liver and brain, is poor. Also, the presence of extra radiation
dose from the CT is obviously undesirable. For this reason, MR imaging was
proposed as a structural imaging modality for use in hybrid scanners.

Although clinically exciting e.g. for neurology applications due to MR’s
unparalleled contrast between different brain tissues and PET’s array of sen-
sitive neurological tracers, the mating of PET and MR represented a host of
new physical challenges. The most important of these was how to eliminate
PMTs from the design, which are unusable in MR’s strong magnetic fields due
to the interference they induce on a PMT’s moving electrons. Engineers were
able to overcome this by substituting the standard scintillator-PMT setup
with semiconductor detectors that convert photons directly to image data.
However, another issue is how to derive attenuation maps from the MR data,
which does not have the same direct physical meaning that CT’s Hounsfield
units have and therefore must be processed further to obtain a g-map. In this
case, pattern recognition methods may be used to estimate the density map
based on atlas data and segmentation/classification of the patient’s tissue.

Having overcome these and other issues to a large extent, beginning in
2011, each of the major manufacturers has released a commercial PET/MR
system. Much research is currently being performed to both improve their
performance and define new clinical applications.

10.6.3 Further Benefits of Hybrid Imaging

In addition to incorporating the p-map into the system matrix to improve
the physical model of the projection process, CT or MR information may be
integrated into the reconstruction in other ways as well. We could assume,
for example, that a sharp boundary in an MR brain image should have a
correspondingly sharp boundary in the nuclear image because we expect that
the radioactivity concentration across two types of tissue (e.g. white and
gray matter) will be discontinuous. As the low resolution SPECT or PET
reconstructions are not capable of reproducing this high resolution on their
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Geek Box 10.2: Maximum a posteriori Estimation

In order to understand the idea of MAP estimation, we have to un-
derstand that our model, i.e., the Poisson distribution, introduces
conditions on our probability. Thus P(D = d) is actually conditioned
by the Poisson means v. As such, we actually need to denote it as
P(D = dJv) or P(d|v) in short. Next, we realize that we are actually
interested in P(v|d), as d is observable in our case and we seek to
maximize the probability of v given d. Fortunately, Bayes’ rule applies
for conditional probabilities:

P(djv)P(v)

Pld) (10.13)

D" = argmax P(v|d) = argmax
v v
where P(d|v) is known from physics, P(d) is independent of the op-
timization and can therefore be neglected, and P(v) is the prior term.
Now P(v) is independent of the actual observation d and can there-
fore be used to model any prior knowledge on the distribution of v. For
hybrid applications, P(v) is chosen based on the CT or MR informa-
tion. Of course, MAP methods may also be used with purely PET or
SPECT data to enforce e. g. smoothness, but their greatest potential
benefit is the incorporation of information from other modalities.

own, we could work this prior knowledge from MR into the objective function
of an iterative reconstruction algorithm.

The family of maximum a posteriori (MAP) algorithms is capable of doing
exactly this by building upon the maximum likelihood method with a term
representing some prior information known about the object. As the name
implies, the MAP method seeks to maximize the posterior probability of the
observed data given the distribution being imaged. We explain this principle
in Geek Box 10.2.

Another example of this higher level of integration, although one not re-
lying on the MAP principle, is the xSPECT Bone algorithm from Siemens,
which is currently used for reconstructing SPECT skeletal scans. This method
works by segmenting the CT into several different tissue classes and forward
projecting them separately at each iteration. In addition to voxel-wise image
updates, the classes themselves are also allowed to be scaled independently
while optimizing the objective function. This scaling allows the SPECT re-
construction to have very sharp edges at the boundaries between tissue classes
(e.g. if a cortical bone class has much more uptake than a neighboring lung
region), while maintaining a typical SPECT-like resolution within each class.

An example of this method is shown in Fig. 10.19 below. Note how the
edges of the vertebrae in the xXSPECT image (center) are much sharper than
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Figure 10.19: MLEM (left) and xSPECT Bone (center) reconstructions.
The latter achieves sharper resolution at the edge of tissue classes with the
help of extra-modal CT data (right). Images courtesy of the University Hos-
pital Erlangen, Clinic of Nuclear Medicine.

the standard MLEM SPECT reconstruction (left) due to the boundary in-
formation provided by the CT (right). However, the bladder appears very
similar in the two SPECT reconstructions, as there is little additional CT
boundary information here.

Despite the advantages of methods such as MAP and xSPECT Bone, there
are risks as well. For example, a MAP method may assume that bone den-
sity is always positively correlated to tracer uptake and enforce this behavior
to improve quantitative accuracy. This is indeed generally the case, but in
the early stages of a bone infarction, there is little or no blood supply to
the bone and, hence, no tracer uptake, despite a normal CT. Our example
MAP algorithm would then try to allocate activity here during the recon-
struction and potentially provide the physician with a false negative. One
should therefore be very careful when designing priors, as they are generally
based on assumptions about anatomy or biochemistry that may not be true
in all cases.
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