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Abstract. Reactive synthesis is a paradigm for automatically build-
ing correct-by-construction systems that interact with an unknown or
adversarial environment. We study how to do reactive synthesis when
part of the specification of the system is that its behavior should be
random. Randomness can be useful, for example, in a network protocol
fuzz tester whose output should be varied, or a planner for a surveillance
robot whose route should be unpredictable. However, existing reactive
synthesis techniques do not provide a way to ensure random behavior
while maintaining functional correctness. Towards this end, we general-
ize the recently-proposed framework of control improvisation (CI) to add
reactivity. The resulting framework of reactive control improvisation pro-
vides a natural way to integrate a randomness requirement with the usual
functional specifications of reactive synthesis over a finite window. We
theoretically characterize when such problems are realizable, and give a
general method for solving them. For specifications given by reachability
or safety games or by deterministic finite automata, our method yields a
polynomial-time synthesis algorithm. For various other types of specifi-
cations including temporal logic formulas, we obtain a polynomial-space
algorithm and prove matching PSPACE-hardness results. We show that
all of these randomized variants of reactive synthesis are no harder in a
complexity-theoretic sense than their non-randomized counterparts.

1 Introduction

Many interesting programs, including protocol handlers, task planners, and con-
current software generally, are open systems that interact over time with an
external environment. Synthesis of such reactive systems requires finding an
implementation that satisfies the desired specification no matter what the envi-
ronment does. This problem, reactive synthesis, has a long history (see [7] for
a survey). Reactive synthesis from temporal logic specifications [19] has been
particularly well-studied and is being increasingly used in applications such as
hardware synthesis [3] and robotic task planning [15].

In this paper, we investigate how to synthesize reactive systems with random
behavior : in fact, systems where being random in a prescribed way is part of
their specification. This is in contrast to prior work on stochastic games where
randomness is used to model uncertain environments or randomized strategies
are merely allowed, not required. Solvers for stochastic games may incidentally
produce randomized strategies to satisfy a functional specification (and some
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types of specification, e.g. multi-objective queries [4], may only be realizable by
randomized strategies), but do not provide a general way to enforce randomness.
Unlike most specifications used in reactive synthesis, our randomness require-
ment is a property of a system’s distribution of behaviors, not of an individual
behavior. While probabilistic specification languages like PCTL [12] can cap-
ture some such properties, the simple and natural randomness requirement we
study here cannot be concisely expressed by existing languages (even those as
powerful as SGL [2]). Thus, randomized reactive synthesis in our sense requires
significantly different methods than those previously studied.

However, we argue that this type of synthesis is quite useful, because intro-
ducing randomness into the behavior of a system can often be beneficial, enhanc-
ing variety, robustness, and unpredictability. Example applications include:

– Synthesizing a black-box fuzz tester for a network service, we want a program
that not only conforms to the protocol (perhaps only most of the time) but
can generate many different sequences of packets: randomness ensures this.

– Synthesizing a controller for a robot exploring an unknown environment, ran-
domness provides a low-memory way to increase coverage of the space. It can
also help to reduce systematic bias in the exploration procedure.

– Synthesizing a controller for a patrolling surveillance robot, introducing ran-
domness in planning makes the robot’s future location harder to predict.

Adding randomness to a system in an ad hoc way could easily compromise its
correctness. This paper shows how a randomness requirement can be integrated
into the synthesis process, ensuring correctness as well as allowing trade-offs to
be explored: how much randomness can be added while staying correct, or how
strong can a specification be while admitting a desired amount of randomness?

To formalize randomized reactive synthesis we build on the idea of control
improvisation, introduced in [6], formalized in [9], and further generalized in [8].
Control improvisation (CI) is the problem of constructing an improviser, a prob-
abilistic algorithm which generates finite words subject to three constraints: a
hard constraint that must always be satisfied, a soft constraint that need only
be satisfied with some probability, and a randomness constraint that no word be
generated with probability higher than a given bound. We define reactive control
improvisation (RCI), where the improviser generates a word incrementally, alter-
nating adding symbols with an adversarial environment. To perform synthesis in
a finite window, we encode functional specifications and environment assump-
tions into the hard constraint, while the soft and randomness constraints allow
us to tune how randomness is added to the system. The improviser obtained by
solving the RCI problem is then a solution to the original synthesis problem.

The difficulty of solving reactive CI problems depends on the type of speci-
fication. We study several types commonly used in reactive synthesis, including
reachability games (and variants, e.g. safety games) and formulas in the tem-
poral logics LTL and LDL [5,18]. We also investigate the specification types
studied in [8], showing how the complexity of the CI problem changes when
adding reactivity. For every type of specification we obtain a randomized syn-
thesis algorithm whose complexity matches that of ordinary reactive synthesis
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(in a finite window). This suggests that reactive control improvisation should be
feasible in applications like robotic task planning where reactive synthesis tools
have proved effective.

In summary, the main contributions of this paper are:

– The reactive control improvisation (RCI) problem definition (Sect. 3);
– The notion of width, a quantitative generalization of “winning” game positions

that measures how many ways a player can win from that position (Sect. 4);
– A characterization of when RCI problems are realizable in terms of width,

and an explicit construction of an improviser (Sect. 4);
– A general method for constructing efficient improvisation schemes (Sect. 5);
– A polynomial-time improvisation scheme for reachability/safety games and

deterministic finite automaton specifications (Sect. 6);
– PSPACE-hardness results for many other specification types including tem-

poral logics, and matching polynomial-space improvisation schemes (Sect. 7).

Finally, Sect. 8 summarizes our results and gives directions for future work.

2 Background

2.1 Notation

Given an alphabet Σ, we write |w| for the length of a finite word w ∈ Σ∗, λ for the
empty word, Σn for the words of length n, and Σ≤n for ∪0≤i≤nΣi, the set of all
words of length at most n. We abbreviate deterministic/nondeterministic finite
automaton by DFA/NFA, and context-free grammar by CFG. For an instance
X of any such formalism, which we call a specification, we write L(X ) for the
language (subset of Σ∗) it defines (note the distinction between a language and
a representation thereof). We view formulas of Linear Temporal Logic (LTL)
[18] and Linear Dynamic Logic (LDL) [5] as specifications using their natural
semantics on finite words (see [5]).

We use the standard complexity classes #P and PSPACE, and the PSPACE-
complete problem QBF of determining the truth of a quantified Boolean for-
mula. For background on these classes and problems see for example [1].

Some specifications we use as examples are reachability games [16], where
players’ actions cause transitions in a state space and the goal is to reach a
target state. We group these games, safety games where the goal is to avoid
a set of states, and reach-avoid games combining reachability and safety goals
[20], together as reachability/safety games (RSGs). We draw reachability games
as graphs in the usual way: squares are adversary-controlled states, and states
with a double border are target states.
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2.2 Synthesis Games

Reactive control improvisation will be formalized in terms of a 2-player game
which is essentially the standard synthesis game used in reactive synthesis [7].
However, our formulation is slightly different for compatibility with the definition
of control improvisation, so we give a self-contained presentation here.

Fix a finite alphabet Σ. The players of the game will alternate picking symbols
from Σ, building up a word. We can then specify the set of winning plays with
a language over Σ. To simplify our presentation we assume that players strictly
alternate turns and that any symbol from Σ is a legal move. These assumptions
can be relaxed in the usual way by modifying the winning set appropriately.

Finite Words: While reactive synthesis is usually considered over infinite
words, in this paper we focus on synthesis in a finite window, as it is unclear
how best to generalize our randomness requirement to the infinite case. This
assumption is not too restrictive, as solutions of bounded length are adequate
for many applications. In fuzz testing, for example, we do not want to gener-
ate arbitrarily long files or sequences of packets. In robotic planning, we often
want a plan that accomplishes a task within a certain amount of time. Fur-
thermore, planning problems with liveness specifications can often be segmented
into finite pieces: we do not need an infinite route for a patrolling robot, but
can plan within a finite horizon and replan periodically. Replanning may even
be necessary when environment assumptions become invalid. At any rate, we
will see that the bounded case of reactive control improvisation is already highly
nontrivial.

As a final simplification, we require that all plays have length exactly n ∈ N.
To allow a range [m,n] we can simply add a new padding symbol to Σ and
extend all shorter words to length n, modifying the winning set appropriately.

Definition 2.1. A history h is an element of Σ≤n, representing the moves of
the game played so far. We say the game has ended after h if |h| = n; otherwise
it is our turn after h if |h| is even, and the adversary’s turn if |h| is odd.

Definition 2.2. A strategy is a function σ : Σ≤n ×Σ → [0, 1] such that for any
history h ∈ Σ≤n with |h| < n, σ(h, ·) is a probability distribution over Σ. We
write x ← σ(h) to indicate that x is a symbol randomly drawn from σ(h, ·).

Since strategies are randomized, fixing strategies for both players does not
uniquely determine a play of the game, but defines a distribution over plays:

Definition 2.3. Given a pair of strategies (σ, τ), we can generate a random
play π ∈ Σn as follows. Pick π0 ← σ(λ), then for i from 1 to n − 1 pick
πi ← τ(π0 . . . πi−1) if i is odd and πi ← σ(π0 . . . πi−1) otherwise. Finally, put
π = π0 . . . πn−1. We write Pσ,τ (π) for the probability of obtaining the play π. This
extends to a set of plays X ⊆ Σn in the natural way: Pσ,τ (X) =

∑
π∈X Pσ,τ (π).

Finally, the set of possible plays is Πσ,τ = {π ∈ Σn | Pσ,τ (π) > 0}.
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The next definition is just the conditional probability of a play given a history,
but works for histories with probability zero, simplifying our presentation.

Definition 2.4. For any history h = h0 . . . hk−1 ∈ Σ≤n and word ρ ∈ Σn−k, we
write Pσ,τ (ρ|h) for the probability that if we assign πi = hi for i < k and sample
πk, . . . , πn−1 by the process above, then πk . . . πn−1 = ρ.

3 Problem Definition

3.1 Motivating Example

Consider synthesizing a planner for a surveillance drone operating near another,
potentially adversarial drone. Discretizing the map into the 7 × 7 grid in Fig. 1
(ignoring the depicted trajectories for the moment), a route is a word over the
four movement directions. Our specification is to visit the 4 circled locations in
30 moves without colliding with the adversary, assuming it cannot move into the
5 highlighted central locations.

Fig. 1. Improvised trajectories for a patrolling drone (solid) avoiding an adversary
(dashed). The adversary may not move into the circles or the square.

Existing reactive synthesis tools can produce a strategy for the patroller
ensuring that the specification is always satisfied. However, the strategy may be
deterministic, so that in response to a fixed adversary the patroller will always
follow the same route. Then it is easy for a third party to predict the route,
which could be undesirable, and is in fact unnecessary if there are many other
ways the drone can satisfy its specification.

Reactive control improvisation addresses this problem by adding a new type
of specification to the hard constraint above: a randomness requirement stating
that no behavior should be generated with probability greater than a threshold
ρ. If we set (say) ρ = 1/5, then any controller solving the synthesis problem must
be able to satisfy the hard constraint in at least 5 different ways, never producing
any given behavior more than 20% of the time. Our synthesis algorithm can in
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fact compute the smallest ρ for which synthesis is possible, yielding a controller
that is maximally-randomized in that the system’s behavior is as close to a
uniform distribution as possible.

To allow finer tuning of how randomness is introduced into the controller,
our definition also includes a soft constraint which need only be satisfied with
some probability 1−ε. This allows us to prefer certain safe behaviors over others.
In our drone example, we require that with probability at least 3/4, we do not
visit a circled location twice.

These hard, soft, and randomness constraints form an instance of our reactive
control improvisation problem. Encoding the hard and soft constraints as DFAs,
our algorithm (Sect. 6) produced a controller achieving the smallest realizable
ρ = 2.2 × 10−12. We tested the controller using the PX4 autopilot [17] to refine
the generated routes into control actions for a drone simulated in Gazebo [14]
(videos and code are available online [11]). A selection of resulting trajectories
are shown in Fig. 1 (the remainder in Appendix A of the full paper [10] ): starting
from the triangles, the patroller’s path is solid, the adversary’s dashed. The left
run uses an adversary that moves towards the patroller when possible. The right
runs, with a simple adversary moving in a fixed loop, illustrate the randomness
of the synthesized controller.

3.2 Reactive Control Improvisation

Our formal notion of randomized reactive synthesis in a finite window is a reac-
tive extension of control improvisation [8,9], which captures the three types of
constraint (hard, soft, randomness) seen above. We use the notation of [8] for
the specifications and languages defining the hard and soft constraints:

Definition 3.1 ([8]). Given hard and soft specifications H and S of languages
over Σ, an improvisation is a word w ∈ L(H)∩Σn. It is admissible if w ∈ L(S).
The set of all improvisations is denoted I, and admissible improvisations A.

Running Example. We will use the following simple example throughout the
paper: each player may increment (+), decrement (−), or leave unchanged (=)
a counter which is initially zero. The alphabet is Σ = {+,−,=}, and we set
n = 4. The hard specification H is the DFA in Fig. 2 requiring that the counter
stay within [−2, 2]. The soft specification S is a similar DFA requiring that the
counter end at a nonnegative value.

Then for example the word ++== is an admissible improvisation, satisfying
both hard and soft constraints, and so is in A. The word +−=− on the other
hand satisfies H but not S, so it is in I but not A. Finally, +++− does not
satisfy H, so it is not an improvisation at all and is not in I.

A reactive control improvisation problem is defined by H, S, and parameters
ε and ρ. A solution is then a strategy which ensures that the hard, soft, and
randomness constraints hold against every adversary. Formally, following [8,9]:
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Σ
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Σ

Fig. 2. The hard specification DFA H in our running example. The soft specification
S is the same but with only the shaded states accepting.

Definition 3.2. Given an RCI instance C = (H,S, n, ε, ρ) with H, S, and n as
above and ε, ρ ∈ [0, 1] ∩ Q, a strategy σ is an improvising strategy if it satisfies
the following requirements for every adversary τ :

Hard constraint: Pσ,τ (I) = 1
Soft constraint: Pσ,τ (A) ≥ 1 − ε

Randomness: ∀π ∈ I, Pσ,τ (π) ≤ ρ.

If there is an improvising strategy σ, we say that C is realizable. An improviser
for C is then an expected-finite time probabilistic algorithm implementing such a
strategy σ, i.e. whose output distribution on input h ∈ Σ≤n is σ(h, ·).
Definition 3.3. Given an RCI instance C = (H,S, n, ε, ρ), the reactive control
improvisation (RCI) problem is to decide whether C is realizable, and if so to
generate an improviser for C.

Running Example. Suppose we set ε = 1/2 and ρ = 1/2. Let σ be the strategy
which picks + or − with equal probability in the first move, and thenceforth picks
the action which moves the counter closest to ±1 respectively. This satisfies
the hard constraint, since if the adversary ever moves the counter to ±2 we
immediately move it back. The strategy also satisfies the soft constraint, since
with probability 1/2 we set the counter to +1 on the first move, and if the
adversary moves to 0 we move back to +1 and remain nonnegative. Finally, σ
also satisfies the randomness constraint, since each choice of first move happens
with probability 1/2 and so no play can be generated with higher probability.
So σ is an improvising strategy and this RCI instance is realizable.

We will study classes of RCI problems with different types of specifications:

Definition 3.4. If HSpec and SSpec are classes of specifications, then the
class of RCI instances C = (H,S, n, ε, ρ) where H ∈ HSpec and S ∈ SSpec
is denoted RCI (HSpec,SSpec). We use the same notation for the decision
problem associated with the class, i.e., given C ∈ RCI (HSpec,SSpec), decide
whether C is realizable. The size |C| of an RCI instance is the total size of the bit
representations of its parameters, with n represented in unary and ε, ρ in binary.

Finally, a synthesis algorithm in our context takes a specification in the form
of an RCI instance and produces an implementation in the form of an improviser.
This corresponds exactly to the notion of an improvisation scheme from [8]:
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Definition 3.5 ([8]). A polynomial-time improvisation scheme for a class P
of RCI instances is an algorithm S with the following properties:

Correctness: For any C ∈ P, if C is realizable then S(C) is an improviser for
C, and otherwise S(C) = ⊥.

Scheme efficiency: There is a polynomial p : R → R such that the runtime of
S on any C ∈ P is at most p(|C|).

Improviser efficiency: There is a polynomial q : R → R such that for every
C ∈ P, if G = S(C) �= ⊥ then G has expected runtime at most q(|C|).

The first two requirements simply say that the scheme produces valid impro-
visers in polynomial time. The third is necessary to ensure that the improvisers
themselves are efficient: otherwise, the scheme might for example produce impro-
visers running in time exponential in the size of the specification.

A main goal of our paper is to determine for which types of specifications
there exist polynomial-time improvisation schemes. While we do find such algo-
rithms for important classes of specifications, we will also see that determining
the realizability of an RCI instance is often PSPACE-hard. Therefore we also
consider polynomial-space improvisation schemes, defined as above but replac-
ing time with space.

4 Existence of Improvisers

4.1 Width and Realizability

The most basic question in reactive synthesis is whether a specification is real-
izable. In randomized reactive synthesis, the question is more delicate because
the randomness requirement means that it is no longer enough to ensure some
property regardless of what the adversary does: there must be many ways to do
so. Specifically, there must be at least 1/ρ improvisations if we are to generate
each of them with probability at most ρ. Furthermore, at least this many impro-
visations must be possible given an unknown adversary: even if many exist, the
adversary may be able to force us to use only a single one. We introduce a new
notion of the size of a set of plays that takes this into account.

Definition 4.1. The width of X ⊆ Σn is W (X) = maxσ minτ |X ∩ Πσ,τ |.
The width counts how many distinct plays can be generated regardless of

what the adversary does. Intuitively, a “narrow” game—one whose set of winning
plays has small width—is one in which the adversary can force us to choose
among only a few winning plays, while in a “wide” one we always have many
safe choices available. Note that which particular plays can be generated depends
on the adversary: the width only measures how many can be generated. For
example, W (X) = 1 means that a play in X can always be generated, but
possibly a different element of X for different adversaries.
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Fig. 3. Synthesis game for our running example. States are labeled with the widths of
I (left) and A (right) given a history ending at that state.

Running Example. Figure 3 shows the synthesis game for our running example:
paths ending in circled or shaded states are plays in I or A respectively (ignore
the state labels for now). At left, the bold arrows show the 4 plays in I possible
against the adversary that moves away from 0, and down at 0. This shows
W (I) ≤ 4, and in fact 4 plays are possible against any adversary, so W (I) = 4.
Similarly, at right we see that W (A) = 1.

It will be useful later to have a relative version of width that counts how
many plays are possible from a given position:

Definition 4.2. Given a set of plays X ⊆ Σn and a history h ∈ Σ≤n, the width
of X given h is W (X|h) = maxσ minτ |{π | hπ ∈ X ∧ Pσ,τ (π|h) > 0}|.
This is a direct generalization of “winning” positions: if X is the set of winning
plays, then W (X|h) counts the number of ways to win from h.

We will often use the following basic properties of W (X|h) without comment
(for lack of space this proof and the details of later proof sketches are deferred
to Appendix B of the full paper [10]). Note that (3)–(5) provide a recursive way
to compute widths that we will use later, and which is illustrated by the state
labels in Fig. 3.

Lemma 4.1. For any set of plays X ⊆ Σn and history h ∈ Σ≤n:

1. 0 ≤ W (X|h) ≤ |Σ|n−|h|;
2. W (X|λ) = W (X);
3. if |h| = n, then W (X|h) = 1h∈X ;
4. if it is our turn after h, then W (X|h) =

∑
u∈Σ W (X|hu);

5. if it is the adversary’s turn after h, then W (X|h) = minu∈Σ W (X|hu).

Now we can state the realizability conditions, which are simply that I and A
have sufficiently large width. In fact, the conditions turn out to be exactly the
same as those for non-reactive CI except that width takes the place of size [9].



316 D. J. Fremont and S. A. Seshia

Theorem 4.1. The following are equivalent:

(1) C is realizable.
(2) W (I) ≥ 1/ρ and W (A) ≥ (1 − ε)/ρ.
(3) There is an improviser for C.

Running Example. We saw above that our example was realizable with ε = ρ =
1/2, and indeed 4 = W (I) ≥ 1/ρ = 2 and 1 = W (A) ≥ (1−ε)/ρ = 1. However, if
we put ρ = 1/3 we violate the second inequality and the instance is not realizable:
essentially, we need to distribute probability 1 − ε = 1/2 among plays in A (to
satisfy the soft constraint), but since W (A) = 1, against some adversaries we can
only generate one play in A and would have to give it the whole 1/2 (violating
the randomness requirement).

The difficult part of the Theorem is constructing an improviser when the
inequalities (2) hold. Despite the similarity in these conditions to the non-
reactive case, the construction is much more involved. We begin with a general
overview.

4.2 Improviser Construction: Discussion

Our improviser can be viewed as an extension of the classical random-walk reduc-
tion of uniform sampling to counting [21]. In that algorithm (which was used
in a similar way for DFA specifications in [8,9]), a uniform distribution over
paths in a DAG is obtained by moving to the next vertex with probability pro-
portional to the number of paths originating at it. In our case, which plays are
possible depends on the adversary, but the width still tells us how many plays
are possible. So we could try a random walk using widths as weights: e.g. on
the first turn in Fig. 3, picking +, −, and = with probabilities 1/4, 2/4, and 1/4
respectively. Against the adversary shown in Fig. 3, this would indeed yield a
uniform distribution over the four possible plays in I.

However, the soft constraint may require a non-uniform distribution. In the
running example with ε = ρ = 1/2, we need to generate the single possible
play in A with probability 1/2, not just the uniform probability 1/4 . This is
easily fixed by doing the random walk with a weighted average of the widths
of I and A: specifically, move to position h with probability proportional to
αW (A|h) + β(W (I|h) − W (A|h)). In the example, this would result in plays
in A getting probability α and those in I \ A getting probability β. Taking α
sufficiently large, we can ensure the soft constraint is satisfied.

Unfortunately, this strategy can fail if the adversary makes more plays avail-
able than the width guarantees. Consider the game on the left of Fig. 4, where
W (I) = 3 and W (A) = 2. This is realizable with ε = ρ = 1/3, but no values of α
and β yield improvising strategies, essentially because an adversary moving from
X to Z breaks the worst-case assumption that the adversary will minimize the
number of possible plays by moving to Y . In fact, this instance is realizable but
not by any memoryless strategy. To see this, note that all such strategies can be
parametrized by the probabilities p and q in Fig. 4. To satisfy the randomness
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Fig. 4. Reachability games where a näıve random walk, and all memoryless strategies,
fail (left) and where no strategy can optimize either ε or ρ against every adversary
simultaneously (right).

constraint against the adversary that moves from X to Y , both p and (1 − p)q
must be at most 1/3. To satisfy the soft constraint against the adversary that
moves from X to Z we must have pq + (1 − p)q ≥ 2/3, so q ≥ 2/3. But then
(1 − p)q ≥ (1 − 1/3)(2/3) = 4/9 > 1/3, a contradiction.

To fix this problem, our improvising strategy σ̂ (which we will fully specify
in Algorithm 1 below) takes a simplistic approach: it tracks how many plays
in A and I are expected to be possible based on their widths, and if more are
available it ignores them. For example, entering state Z from X there are 2 ways
to produce a play in I, but since W (I|X) = 1 we ignore the play in I \ A. Extra
plays in A are similarly ignored by being treated as members of I \ A. Ignoring
unneeded plays may seem wasteful, but the proof of Theorem 4.1 will show that
σ̂ nevertheless achieves the best possible ε:

Corollary 4.1. C is realizable iff W (I) ≥ 1/ρ and ε ≥ εopt ≡ max(1 −
ρW (A), 0). Against any adversary, the error probability of Algorithm 1 is at
most εopt.

Thus, if any improviser can achieve an error probability ε, ours does. We could
ask for a stronger property, namely that against each adversary the improviser
achieves the smallest possible error probability for that adversary. Unfortunately,
this is impossible in general. Consider the game on the right in Fig. 4, with ρ = 1.
Against the adversary which always moves up, we can achieve ε = 0 with the
strategy that at P moves to Q. We can also achieve ε = 0 against the adversary
that always moves down, but only with a different strategy, namely the one
that at P moves to R. So there is no single strategy that achieves the optimal
ε for every adversary. A similar argument shows that there is also no strategy
achieving the smallest possible ρ for every adversary. In essence, optimizing ε or
ρ in every case would require the strategy to depend on the adversary.

4.3 Improviser Construction: Details

Our improvising strategy, as outlined in the previous section, is shown in Algo-
rithm1. We first compute α and β, the (maximum) probabilities for generating
elements of A and I \ A respectively. As in [8], we take α as large as possible
given α ≤ ρ, and determine β from the probability left over (modulo a couple
corner cases).
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Algorithm 1. the strategy σ̂

1: α ← min(ρ, 1/W (A)) (or 0 instead if W (A) = 0)
2: β ← (1 − αW (A))/(W (I) − W (A)) (or 0 instead if W (I) − W (A) = 0)
3: mA ← W (A), mI ← W (I)
4: h ← λ
5: while the game is not over after h do
6: if it is our turn after h then
7: mA

u , mI
u ← Partition(mA, mI , h) � returns values for each u ∈ Σ

8: for each u ∈ Σ, put tu ← αmA
u + β(mI

u − mA
u )

9: pick u ∈ Σ with probability proportional to tu and append it to h
10: mA ← mA

u , mI ← mI
u

11: else
12: the adversary picks u ∈ Σ given the history h; append it to h

return h

4

1

2

1

1

2

3

2

1

0

1

1

1

0

1

1

1

1

1

+2

+1

+0

−1

−2

+3

−3

+

−

=
1

1

0

0

1

1

1

0

0

0

1

0

0

0

1

1

1

0

0

Fig. 5. A run of Algorithm 1, labeling states with corresponding widths of I (left) and
A (right).

Next we initialize mA and mI , our expectations for how many plays in A and
I respectively are still possible to generate. Initially these are given by W (A)
and W (I), but as we saw above it is possible for more plays to become available.
The function Partition handles this, deciding which mA (resp., mI) out of
the available W (A|h) (W (I|h)) plays we will use. The behavior of Partition is
defined by the following lemma; its proof (in Appendix B [10]) greedily takes the
first mA possible plays in A under some canonical order and the first mI − mA

of the remaining plays in I.

Lemma 4.2. If it is our turn after h ∈ Σ≤n, and mA,mI ∈ Z satisfy 0 ≤
mA ≤ mI ≤ W (I|h) and mA ≤ W (A|h), there are integer partitions

∑
u∈Σ mA

u

and
∑

u∈Σ mI
u of mA and mI respectively such that 0 ≤ mA

u ≤ mI
u ≤ W (I|hu)

and mA
u ≤ W (A|hu) for all u ∈ Σ. These are computable in poly-time given

oracles for W (I|·) and W (A|·).
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Finally, we perform the random walk, moving from position h to hu with
(unnormalized) probability tu, the weighted average described above.

Running Example. With ε = ρ = 1/2, as before W (A) = 1 and W (I) = 4
so α = 1/2 and β = 1/6. On the first move, mA and mI match W (A|h) and
W (I|h), so all plays are used and Partition returns (W (A|hu),W (I|hu)) for
each u ∈ Σ. Looking up these values in Fig. 5, we see (mA

=,mI
=) = (0, 2) and

so t(=) = 2β = 1/3. Similarly t(+) = α = 1/2 and t(−) = β = 1/6. We
choose an action according to these weights; suppose =, so that we update
mA ← 0 and mI ← 2, and suppose the adversary responds with =. From Fig. 5,
W (A| ==) = 1 and W (I| ==) = 3, whereas mA = 0 and mI = 2. So Partition
discards a play, say returning (mA

u ,mI
u) = (0, 1) for u ∈ {+,=} and (0, 0) for

u ∈ {−}. Then t(+) = t(=) = β = 1/6 and t(−) = 0. So we pick + or =
with equal probability, say +. If the adversary responds with +, we get the play
==++, shown in bold on Fig. 5. As desired, it satisfies the hard constraint.

The next few lemmas establish that σ̂ is well-defined and in fact an impro-
vising strategy, allowing us to prove Theorem 4.1. Throughout, we write mA(h)
(resp., mI(h)) for the value of mA (mI) at the start of the iteration for history
h. We also write t(h) = αmA(h) + β(mI(h) − mA(h)) (so t(hu) = tu when we
pick u).

Lemma 4.3. If W (I) ≥ 1/ρ, then σ̂ is a well-defined strategy and Pσ̂,τ (I) = 1
for every adversary τ .

Proof (sketch). An easy induction on h shows the conditions of Lemma 4.2 are
always satisfied, and that t(h) is always positive since we never pick a u with
tu = 0. So

∑
u tu = t(h) > 0 and σ̂ is well-defined. Furthermore, t(h) > 0 implies

mI(h) > 0, so for any h ∈ Πσ̂,τ we have 1h∈I = W (I|h) ≥ mI(h) > 0 and thus
h ∈ I. ��
Lemma 4.4. If W (I) ≥ 1/ρ, then Pσ̂,τ (A) ≥ min(ρW (A), 1) for every τ .

Proof (sketch). Because of the αmA(h) term in the weights t(h), the probability
of obtaining a play in A starting from h is at least αmA(h)/t(h) (as can be seen
by induction on h in order of decreasing length). Then since mA(λ) = W (A)
and t(λ) = 1 we have Pσ̂,τ (A) ≥ αW (A) = min(ρW (A), 1). ��
Lemma 4.5. If W (I) ≥ 1/ρ, then Pσ̂,τ (π) ≤ ρ for every π ∈ Σn and τ .

Proof (sketch). If the adversary is deterministic, the weights we use for our
random walk yield a distribution where each play π has probability either α or
β (depending on whether mA(π) = 1 or 0). If the adversary assigns nonzero
probability to multiple choices this only decreases the probability of individual
plays. Finally, since W (I) ≥ 1/ρ we have α, β ≤ ρ. ��
Proof (of Theorem 4.1). We use a similar argument to that of [8].
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(1)⇒(2) Suppose σ is an improvising strategy, and fix any adversary τ . Then
ρ|Πσ,τ ∩ I| =

∑
π∈Πσ,τ ∩I ρ ≥ ∑

π∈I Pσ,τ (π) = Pσ,τ (I) = 1, so |Πσ,τ ∩ I| ≥
1/ρ. Since τ is arbitrary, this implies W (I) ≥ 1/ρ. Since A ⊆ I, we also
have ρ|Πσ,τ ∩ A| =

∑
π∈Πσ,τ ∩A ρ ≥ ∑

π∈A Pσ,τ (π) = Pσ,τ (A) ≥ 1 − ε, so
|Πσ,τ ∩ A| ≥ (1 − ε)/ρ and thus W (A) ≥ (1 − ε)/ρ.

(2)⇒(3) By Lemmas 4.3 and 4.5, σ̂ is well-defined and satisfies the hard and
randomness constraints. By Lemma 4.4, Pσ̂,τ (A) ≥ min(ρW (A), 1) ≥ 1 − ε,
so σ̂ also satisfies the soft constraint and thus is an improvising strategy. Its
transition probabilities are rational, so it can be implemented by an expected
finite-time probabilistic algorithm, which is then an improviser for C.

(3)⇒(1) Immediate. ��
Proof (of Corollary 4.1). The inequalities in the statement are equivalent to
those of Theorem 4.1 (2). By Lemma 4.4, we have Pσ̂,τ (A) ≥ min(ρW (A), 1). So
the error probability is at most 1 − min(ρW (A), 1) = εopt. ��

5 A Generic Improviser

We now use the construction of Sect. 4 to develop a generic improvisation scheme
usable with any class of specifications Spec supporting the following operations:

Intersection: Given specs X and Y, find Z such that L(Z) = L(X ) ∩ L(Y).
Width Measurement: Given a specification X , a length n ∈ N in unary, and

a history h ∈ Σ≤n, compute W (X|h) where X = L(X ) ∩ Σn.

Efficient algorithms for these operations lead to efficient improvisation
schemes:

Theorem 5.1. If the operations on Spec above take polynomial time (resp.
space), then RCI (Spec,Spec) has a polynomial-time (space) improvisation
scheme.

Proof. Given an instance C = (H,S, n, ε, ρ) in RCI (Spec,Spec), we first apply
intersection to H and S to obtain A ∈ Spec such that L(A) ∩ Σn = A.
Since intersection takes polynomial time (space), A has size polynomial in |C|.
Next we use width measurement to compute W (I) = W (L(H) ∩ Σn|λ) and
W (A) = W (L(A) ∩ Σn|λ). If these violate the inequalities in Theorem4.1, then
C is not realizable and we return ⊥. Otherwise C is realizable, and σ̂ above is
an improvising strategy. Furthermore, we can construct an expected finite-time
probabilistic algorithm implementing σ̂, using width measurement to instanti-
ate the oracles needed by Lemma 4.2. Determining mA(h) and mI(h) takes O(n)
invocations of Partition, each of which is poly-time relative to the width mea-
surements. These take time (space) polynomial in |C|, since H and A have size
polynomial in |C|. As mA,mI ≤ |Σ|n, they have polynomial bitwidth and so
the arithmetic required to compute tu for each u ∈ Σ takes polynomial time.
Therefore the total expected runtime (space) of the improviser is polynomial. ��
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Note that as a byproduct of testing the inequalities in Theorem4.1, our
algorithm can compute the best possible error probability εopt given H, S, and
ρ (see Corollary 4.1). Alternatively, given ε, we can compute the best possible ρ.

We will see below how to efficiently compute widths for DFAs, so Theo-
rem 5.1 yields a polynomial-time improvisation scheme. If we allow polynomial-
space schemes, we can use a general technique for width measurement that only
requires a very weak assumption on the specifications, namely testability in
polynomial space:

Theorem 5.2. RCI (PSA,PSA) has a polynomial-space improvisation scheme,
where PSA is the class of polynomial-space decision algorithms.

Proof (sketch). We apply Theorem 5.1, computing widths recursively using Lem-
mas 4.1, (3)–(5). As in the PSPACE QBF algorithm, the current path in the
recursive tree and required auxiliary storage need only polynomial space. ��

6 Reachability Games and DFAs

Now we develop a polynomial-time improvisation scheme for RCI instances with
DFA specifications. This also provides a scheme for reachability/safety games,
whose winning conditions can be straightforwardly encoded as DFAs.

Suppose D is a DFA with states V , accepting states T , and transition function
δ : V × Σ → V . Our scheme is based on the fact that W (L(D)|h) depends only
on the state of D reached on input h, allowing these widths to be computed by
dynamic programming. Specifically, for all v ∈ V and i ∈ {0, . . . , n} we define:

C(v, i) =

⎧
⎪⎨

⎪⎩

1v∈T i = n

minu∈Σ C(δ(v, u), i + 1) i < n ∧ i odd
∑

u∈Σ C(δ(v, u), i + 1) otherwise.

Running Example. Figure 6 shows the values C(v, i) in rows from i = n down-
ward. For example, i = 2 is our turn, so C(1, 2) = C(0, 3) + C(1, 3) + C(2, 3) =
1+1+0 = 2, while i = 3 is the adversary’s turn, so C(−3, 3) = min{C(−3, 4)} =
min{0} = 0. Note that the values in Fig. 6 agree with the widths W (I|h) shown
in Fig. 5.

Lemma 6.1. For any history h ∈ Σ≤n, writing X = L(D) ∩ Σn we have
W (X|h) = C(D(h), |h|), where D(h) is the state reached by running D on h.

Proof. We prove this by induction on i = |h| in decreasing order. In the base case
i = n, we have W (X|h) = 1h∈X = 1D(h)∈T = C(D(h), n). Now take any history
h ∈ Σ≤n with |h| = i < n. By hypothesis, for any u ∈ Σ we have W (X|hu) =
C(D(hu), i + 1). If it is our turn after h, then W (X|h) =

∑
u∈Σ W (X|hu) =∑

u∈Σ C(D(hu), i + 1) = C(D(h), i) as desired. If instead it is the adversary’s
turn after h, then W (X|h) = minu∈Σ W (X|hu) = minu∈Σ C(D(hu), i + 1) =
C(D(h), i) again as desired. So by induction the hypothesis holds for any i. ��
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Fig. 6. The hard specification DFA H in our running example, showing how W (I|h)
is computed.

Theorem 6.1. RCI (DFA, DFA) has a polynomial-time improvisation scheme.

Proof. We implement Theorem 5.1. Intersection can be done with the standard
product construction. For width measurement we compute the quantities C(v, i)
by dynamic programming (from i = n down to i = 0) and apply Lemma6.1. ��

7 Temporal Logics and Other Specifications

In this section we analyze the complexity of reactive control improvisation for
specifications in the popular temporal logics LTL and LDL. We also look at NFA
and CFG specifications, previously studied for non-reactive CI [8], to see how
their complexities change in the reactive case.

For LTL specifications, reactive control improvisation is PSPACE-hard
because this is already true of ordinary reactive synthesis in a finite window
(we suspect this has been observed but could not find a proof in the literature).

Theorem 7.1. Finite-window reactive synthesis for LTL is PSPACE-hard.

Proof (sketch). Given a QBF φ = ∃x∀y . . . χ, we can view assignments to its
variables as traces over a single proposition. In polynomial time we can construct
an LTL formula ψ whose models are the satisfying assignments of χ. Then there
is a winning strategy to generate a play satisfying ψ iff φ is true. ��
Corollary 7.1. RCI (LTL, Σ∗) and RCI (Σ∗, LTL) are PSPACE-hard.

This is perhaps disappointing, but is an inevitable consequence of LTL subsum-
ing Boolean formulas. On the other hand, our general polynomial-space scheme
applies to LTL and its much more expressive generalization LDL:

Theorem 7.2. RCI (LDL, LDL) has a polynomial-space improvisation scheme.

Proof. This follows from Theorem 5.2, since satisfaction of an LDL formula by
a finite word can be checked in polynomial time (e.g. by combining dynamic
programming on subformulas with a regular expression parser). ��
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Thus for temporal logics polynomial-time algorithms are unlikely, but adding
randomization to reactive synthesis does not increase its complexity.

The same is true for NFA and CFG specifications, where it is again PSPACE-
hard to find even a single winning strategy:

Theorem 7.3. Finite-window reactive synthesis for NFAs is PSPACE-hard.

Proof (sketch). Reduce from QBF as in Theorem 7.1, constructing an NFA
accepting the satisfying assignments of χ (as done in [13]). ��
Corollary 7.2. RCI (NFA, Σ∗) and RCI (Σ∗, NFA) are PSPACE-hard.

Theorem 7.4. RCI (CFG, CFG) has a polynomial-space improvisation scheme.

Proof. By Theorem 5.2, since CFG parsing can be done in polynomial time. ��
Since NFAs can be converted to CFGs in polynomial time, this completes

the picture for the kinds of CI specifications previously studied. In non-reactive
CI, DFA specifications admit a polynomial-time improvisation scheme while for
NFAs/CFGs the CI problem is #P-equivalent [8]. Adding reactivity, DFA spec-
ifications remain polynomial-time while NFAs and CFGs move up to PSPACE.

Table 1. Complexity of the reactive control improvisation problem for various types
of hard and soft specifications H, S. Here PSPACE indicates that checking realizability
is PSPACE-hard, and that there is a polynomial-space improvisation scheme.

H\S RSG DFA NFA CFG LTL LDL

RSG
poly-time

DFA
NFA
CFG

PSPACE
LTL
LDL

8 Conclusion

In this paper we introduced reactive control improvisation as a framework for
modeling reactive synthesis problems where random but controlled behavior is
desired. RCI provides a natural way to tune the amount of randomness while
ensuring that safety or other constraints remain satisfied. We showed that RCI
problems can be efficiently solved in many cases occurring in practice, giving a
polynomial-time improvisation scheme for reachability/safety or DFA specifica-
tions. We also showed that RCI problems with specifications in LTL or LDL, pop-
ularly used in planning, have the PSPACE-hardness typical of bounded games,
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and gave a matching polynomial-space improvisation scheme. This scheme gener-
alizes to any specification checkable in polynomial space, including NFAs, CFGs,
and many more expressive formalisms. Table 1 summarizes these results.

These results show that, at a high level, finding a maximally-randomized
strategy using RCI is no harder than finding any winning strategy at all: for
specifications yielding games solvable in polynomial time (respectively, space),
we gave polynomial-time (space) improvisation schemes. We therefore hope that
in applications where ordinary reactive synthesis has proved tractable, our notion
of randomized reactive synthesis will also. In particular, we expect our DFA
scheme to be quite practical, and are experimenting with applications in robotic
planning. On the other hand, our scheme for temporal logic specifications seems
unlikely to be useful in practice without further refinement. An interesting direc-
tion for future work would be to see if modern solvers for quantified Boolean
formulas (QBF) could be leveraged or extended to solve these RCI problems.
This could be useful even for DFA specifications, as conjoining many simple
properties can lead to exponentially-large automata. Symbolic methods based
on constraint solvers would avoid such blow-up.

We are also interested in extending the RCI problem definition to unbounded
or infinite words, as typically used in reactive synthesis. These extensions, as
well as that to continuous signals, would be useful in robotic planning, cyber-
physical system testing, and other applications. However, it is unclear how best
to adapt our randomness constraint to settings where the improviser can gen-
erate infinitely many words. In such settings the improviser could assign arbi-
trarily small or even zero probability to every word, rendering the randomness
constraint trivial. Even in the bounded case, RCI extensions with more complex
randomness constraints than a simple upper bound on individual word probabil-
ities would be worthy of study. One possibility would be to more directly control
diversity and/or unpredictability by requiring the distribution of the improviser’s
output to be close to uniform after transformation by a given function.
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