
Permission Inference for Array Programs

Jérôme Dohrau(B), Alexander J. Summers, Caterina Urban,
Severin Münger, and Peter Müller

Department of Computer Science, ETH Zurich,
Zurich, Switzerland

{jerome.dohrau,alexander.summers,

caterina.urban,peter.mueller}@inf.ethz.ch,

severin.muenger@alumni.ethz.ch

Abstract. Information about the memory locations accessed by a pro-
gram is, for instance, required for program parallelisation and program
verification. Existing inference techniques for this information provide
only partial solutions for the important class of array-manipulating pro-
grams. In this paper, we present a static analysis that infers the memory
footprint of an array program in terms of permission pre- and postcon-
ditions as used, for example, in separation logic. This formulation allows
our analysis to handle concurrent programs and produces specifications
that can be used by verification tools. Our analysis expresses the permis-
sions required by a loop via maximum expressions over the individual
loop iterations. These maximum expressions are then solved by a novel
maximum elimination algorithm, in the spirit of quantifier elimination.
Our approach is sound and is implemented; an evaluation on existing
benchmarks for memory safety of array programs demonstrates accurate
results, even for programs with complex access patterns and nested loops.

1 Introduction

Information about the memory locations accessed by a program is crucial for
many applications such as static data race detection [45], code optimisation
[16,26,33], program parallelisation [5,17], and program verification [23,30,38,39].
The problem of inferring this information statically has been addressed by a
variety of static analyses, e.g., [9,42]. However, prior works provide only partial
solutions for the important class of array-manipulating programs for at least
one of the following reasons. (1) They approximate the entire array as one single
memory location [4] which leads to imprecise results; (2) they do not produce
specifications, which are useful for several important applications such as human
inspection, test case generation, and especially deductive program verification;
(3) they are limited to sequential programs.

In this paper, we present a novel analysis for array programs that addresses
these shortcomings. Our analysis employs the notion of access permission from
separation logic and similar program logics [40,43]. These logics associate a per-
mission with each memory location and enforce that a program part accesses a
c© The Author(s) 2018
H. Chockler and G. Weissenbacher (Eds.): CAV 2018, LNCS 10982, pp. 55–74, 2018.
https://doi.org/10.1007/978-3-319-96142-2_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-96142-2_7&domain=pdf
http://orcid.org/0000-0001-7001-2566

56 J. Dohrau et al.

location only if it holds the associated permission. In this setting, determining
the accessed locations means to infer a sufficient precondition that specifies the
permissions required by a program part.

Phrasing the problem as one of permission inference allows us to address
the three problems mentioned above. (1) We distinguish different array elements
by tracking the permission for each element separately. (2) Our analysis infers
pre- and postconditions for both methods and loops and emits them in a form
that can be used by verification tools. The inferred specifications can easily be
complemented with permission specifications for non-array data structures and
with functional specifications. (3) We support concurrency in three important
ways. First, our analysis is sound for concurrent program executions because
permissions guarantee that program executions are data race free and reduce
thread interactions to specific points in the program such as forking or joining
a thread, or acquiring or releasing a lock. Second, we develop our analysis for a
programming language with primitives that represent the ownership transfer that
happens at these thread interaction points. These primitives, inhale and exhale
[31,38], express that a thread obtains permissions (for instance, by acquiring a
lock) or loses permissions (for instance, by passing them to another thread along
with a message) and can thereby represent a wide range of thread interactions
in a uniform way [32,44]. Third, our analysis distinguishes read and write access
and, thus, ensures exclusive writes while permitting concurrent read accesses.
As is standard, we employ fractional permissions [6] for this purpose; a full
permission is required to write to a location, but any positive fraction permits
read access.

Approach. Our analysis reduces the problem of reasoning about permissions for
array elements to reasoning about numerical values for permission fractions. To
achieve this, we represent permission fractions for all array elements qa[qi] using
a single numerical expression t(qa, qi) parameterised by qa and qi. For instance,
the conditional term (qa=a ∧ qi=j ? 1 : 0) represents full permission (denoted by
1) for array element a[j] and no permission for all other array elements.

Our analysis employs a precise backwards analysis for loop-free code: a varia-
tion on the standard notion of weakest preconditions. We apply this analysis to
loop bodies to obtain a permission precondition for a single loop iteration. Per
array element, the whole loop requires the maximum fraction over all loop iter-
ations, adjusted by permissions gained and lost during loop execution. Rather
than computing permissions via a fixpoint iteration (for which a precise widen-
ing operator is difficult to design), we express them as a maximum over the
variables changed by the loop execution. We then use inferred numerical invari-
ants on these variables and a novel maximum elimination algorithm to infer a
specification for the entire loop. Permission postconditions are obtained analo-
gously.

For the method copyEven in Fig. 1, the analysis determines that the permission
amount required by a single loop iteration is (j%2=0?(qa=a ∧ qi=j?rd:0):(qa=a ∧
qi=j?1 :0)). The symbol rd represents a fractional read permission. Using a suit-
able integer invariant for the loop counter j, we obtain the loop precondition

Permission Inference for Array Programs 57

Fig. 1. Program copyEven. Fig. 2. Program parCopyEven.

Fig. 3. Programming Language. n ranges over integer constants, x over integer vari-
ables, a over array variables, q over non-negative fractional (permission-typed) con-
stants. e stands for integer expressions, and b for boolean. Permission expressions p are
a separate syntactic category.

maxj|0≤j<len(a) ((j%2=0 ? (qa=a ∧ qi=j ? rd : 0) : (qa=a ∧ qi=j ? 1 : 0))). Our
maximum elimination algorithm obtains (qa=a ∧ 0≤qi<len(a)? (qi%2=0? rd : 1) :
0). By ranging over all qa and qi, this can be read as read permission for even
indices and write permission for odd indices within the array a’s bounds.

Contributions. The contributions of our paper are:

1. A novel permission inference that uses maximum expressions over parame-
terised arithmetic expressions to summarise loops (Sects. 3 and 4)

2. An algorithm for eliminating maximum (and minimum) expressions over an
unbounded number of cases (Sect. 5)

3. An implementation of our analysis, which will be made available as an artifact
4. An evaluation on benchmark examples from existing papers and competitions,

demonstrating that we obtain sound, precise, and compact specifications, even
for challenging array access patterns and parallel loops (Sect. 6)

5. Proof sketches for the soundness of our permission inference and correctness
of our maximum elimination algorithm (in the technical report (TR) [15])

2 Programming Language

We define our inference technique over the programming language in Fig. 3. Pro-
grams operate on integers (expressions e), booleans (expressions b), and one-
dimensional integer arrays (variables a); a generalisation to other forms of arrays

58 J. Dohrau et al.

is straightforward and supported by our implementation. Arrays are read and
updated via the statements x := a[e] and a[e] := x; array lookups in expressions
are not part of the surface syntax, but are used internally by our analysis. Per-
mission expressions p evaluate to rational numbers; rd, min, and max are for
internal use.

A full-fledged programming language contains many statements that affect
the ownership of memory locations, expressed via permissions [32,44]. For exam-
ple in a concurrent setting, a fork operation may transfer permissions to the new
thread, acquiring a lock obtains permission to access certain memory locations,
and messages may transfer permissions between sender and receiver. Even in
a sequential setting, the concept is useful: in procedure-modular reasoning, a
method call transfers permissions from the caller to the callee, and back when
the callee terminates. Allocation can be represented as obtaining a fresh object
and then obtaining permission to its locations.

For the purpose of our permission inference, we can reduce all of these oper-
ations to two basic statements that directly manipulate the permissions cur-
rently held [31,38]. An inhale(a, e, p) statement adds the amount p of per-
mission for the array location a[e] to the currently held permissions. Dually,
an exhale(a, e, p) statement requires that this amount of permission is already
held, and then removes it. We assume that for any inhale or exhale statements,
the permission expression p denotes a non-negative fraction. For simplicity, we
restrict inhale and exhale statements to a single array location, but the exten-
sion to unboundedly-many locations from the same array is straightforward [37].

Semantics. The operational semantics of our language is mostly standard, but
is instrumented with additional state to track how much permission is held to
each heap location; a program state therefore consists of a triple of heap H
(mapping pairs of array identifier and integer index to integer values), a permis-
sion map P , mapping such pairs to permission amounts, and an environment σ
mapping variables to values (integers or array identifiers).

The execution of inhale or exhale statements causes modifications to the
permission map, and all array accesses are guarded with checks that at least
some permission is held when reading and that full (1) permission is held when
writing [6]. If these checks (or an exhale statement) fail, the execution terminates
with a permission failure. Permission amounts greater than 1 indicate invalid
states that cannot be reached by a program execution. We model run-time errors
other than permission failures (in particular, out-of-bounds accesses) as stuck
configurations.

3 Permission Inference for Loop-Free Code

Our analysis infers a sufficient permission precondition and a guaranteed permis-
sion postcondition for each method of a program. Both conditions are mappings
from array elements to permission amounts. Executing a statement s in a state

Permission Inference for Array Programs 59

Fig. 4. The backwards analysis rules for permission preconditions and relative permis-
sion differences. The notation αa,e(p) is a shorthand for (qa=a ∧ qi=e ? p : 0) and
denotes p permission for the array location a[e]. Moreover, p[a′[e′] �→ e] matches all
array accesses in p and replaces them with the expression obtained from e by substi-
tuting all occurrences of a′ and e′ with the matched array and index, respectively. The
cases for inhale statements are slightly simplified; the full rules are given in Fig. 6 of
the TR [15].

whose permission map P contains at least the permissions required by a suffi-
cient permission precondition for s is guaranteed to not result in a permission
failure. A guaranteed permission postcondition expresses the permissions that
will at least be held when s terminates (see Sect. A of the TR [15] for formal
definitions).

In this section, we define inference rules to compute sufficient permission
preconditions for loop-free code. For programs which do not add or remove per-
missions via inhale and exhale statements, the same permissions will still be
held after executing the code; however, to infer guaranteed permission postcon-
ditions in the general case, we also infer the difference in permissions between
the state before and after the execution. We will discuss loops in the next section.
Non-recursive method calls can be handled by applying our analysis bottom-up
in the call graph and using inhale and exhale statements to model the permis-
sion effect of calls. Recursion can be handled similarly to loops, but is omitted
here.

We define our permission analysis to track and generate permission expres-
sions parameterised by two distinguished variables qa and qi; by parameterising
our expressions in this way, we can use a single expression to represent a permis-
sion amount for each pair of qa and qi values.

Preconditions. The permission precondition of a loop-free statement s and a
postcondition permission p (in which qa and qi potentially occur) is denoted by
pre(s, p), and is defined in Fig. 4. Most rules are straightforward adaptations of a
classical weakest-precondition computation. Array lookups require some permis-
sion to the accessed array location; we use the internal expression rd to denote
a non-zero permission amount; a post-processing step can later replace rd by

60 J. Dohrau et al.

a concrete rational. Since downstream code may require further permission for
this location, represented by the permission expression p, we take the maximum
of both amounts. Array updates require full permission and need to take alias-
ing into account. The case for inhale subtracts the inhaled permission amount
from the permissions required by downstream code; the case for exhale adds the
permissions to be exhaled. Note that this addition may lead to a required per-
mission amount exceeding the full permission. This indicates that the statement
is not feasible, that is, all executions will lead to a permission failure.

To illustrate our pre definition, let s be the body of the loop in the parCopyEven

method in Fig. 2. The precondition pre(s, 0) = (qa=a ∧ qi=2∗j ? 1/2 : 0) + (qa=a

∧ qi=2∗j+1 ? 1 : 0) expresses that a loop iteration requires a half permission for
the even elements of array a and full permission for the odd elements.

Postconditions. The final state of a method execution includes the permissions
held in the method pre-state, adjusted by the permissions that are inhaled or
exhaled during the method execution. To perform this adjustment, we compute
the difference in permissions before and after executing a statement. The rela-
tive permission difference for a loop-free statement s and a permission expression
p (in which qa and qi potentially occur) is denoted by Δ(s, p), and is defined
backward, analogously to pre in Fig. 4. The second parameter p acts as an accu-
mulator; the difference in permission is represented by evaluating Δ(s, 0).

For a statement s with precondition pre(s, 0), we obtain the postcondition
pre(s, 0)+Δ(s, 0). Let s again be the loop body from parCopyEven. Since s contains
exhale statements, we obtain Δ(s, 0) = 0 − (qa=a ∧ qi=2∗j ? 1/2 : 0) − (qa=a ∧
qi=2∗j+1 ? 1 : 0). Thus, the postcondition pre(s, 0) + Δ(s, 0) can be simplified to
0. This reflects the fact that all required permissions for a single loop iteration
are lost by the end of its execution.

Since our Δ operator performs a backward analysis, our permission post-
conditions are expressed in terms of the pre-state of the execution of s. To
obtain classical postconditions, any heap accesses need to refer to the pre-state
heap, which can be achieved in program logics by using old expressions or log-
ical variables. Formalizing the postcondition inference as a backward analysis
simplifies our treatment of loops and has technical advantages over classical
strongest-postconditions, which introduce existential quantifiers for assignment
statements. A limitation of our approach is that our postconditions cannot cap-
ture situations in which a statement obtains permissions to locations for which
no pre-state expression exists, e.g. allocation of new arrays. Our postconditions
are sound; to make them precise for such cases, our inference needs to be com-
bined with an additional forward analysis, which we leave as future work.

4 Handling Loops via Maximum Expressions
In this section, we first focus on obtaining a sufficient permission precondition
for the execution of a loop in isolation (independently of the code after it) and
then combine the inference for loops with the one for loop-free code described
above.

Permission Inference for Array Programs 61

4.1 Sufficient Permission Preconditions for Loops

A sufficient permission precondition for a loop guarantees the absence of permis-
sion failures for a potentially unbounded number of executions of the loop body.
This concept is different from a loop invariant: we require a precondition for
all executions of a particular loop, but it need not be inductive. Our technique
obtains such a loop precondition by projecting a permission precondition for a
single loop iteration over all possible initial states for the loop executions.

Exhale-Free Loop Bodies. We consider first the simpler (but common) case
of a loop that does not contain exhale statements, e.g., does not transfer permis-
sions to a forked thread. The solution for this case is also sound for loop bodies
where each exhale is followed by an inhale for the same array location and at
least the same permission amount, as in the encoding of most method calls.

Consider a sufficient permission precondition p for the body of a loop
while (b) { s }. By definition, p will denote sufficient permissions to execute
s once; the precise locations to which p requires permission depend on the initial
state of the loop iteration. For example, the sufficient permission precondition for
the body of the copyEven method in Fig. 1, (j%2=0?(qa=a ∧ qi=j?rd :0):(qa=a ∧
qi=j ? 1 : 0)), requires permissions to different array locations, depending on the
value of j. To obtain a sufficient permission precondition for the entire loop, we
leverage an over-approximating loop invariant I+ from an off-the-shelf numeri-
cal analysis (e.g., [13]) to over-approximate all possible values of the numerical
variables that get assigned in the loop body, here, j. We can then express the
loop precondition using the pointwise maximum maxj|I+∧b (p), over the values
of j that satisfy the condition I+ ∧ b. (The maximum over an empty range is
defined to be 0.) For the copyEven method, given the invariant 0 ≤ j ≤ len(a),
the loop precondition is maxj|0≤j<len(a) (p).

In general, a permission precondition for a loop body may also depend on
array values, e.g., if those values are used in branch conditions. To avoid the
need for an expensive array value analysis, we define both an over- and an under-
approximation of permission expressions, denoted p↑ and p↓ (cf. Sect. A.1 of the
TR [15]), with the guarantees that p ≤ p↑ and p↓ ≤ p. These approximations
abstract away array-dependent conditions, and have an impact on precision only
when array values are used to determine a location to be accessed. For exam-
ple, a linear array search for a particular value accesses the array only up to
the (a-priori unknown) point at which the value is found, but our permission
precondition conservatively requires access to the full array.

Theorem 1. Let while (b) { s } be an exhale-free loop, let x be the integer
variables modified by s, and let I+ be a sound over-approximating numerical
loop invariant (over the integer variables in s). Then maxx|I+∧b (pre(s, 0)↑) is a
sufficient permission precondition for while (b) { s }.

Loops with Exhale Statements. For loops that contain exhale statements,
the approach described above does not always guarantee a sufficient permission

62 J. Dohrau et al.

precondition. For example, if a loop gives away full permission to the same
array location in every iteration, our pointwise maximum construction yields a
precondition requiring the full permission once, as opposed to the unsatisfiable
precondition (since the loop is guaranteed to cause a permission failure).

As explained above, our inference is sound if each exhale statement is fol-
lowed by a corresponding inhale, which can often be checked syntactically. In
the following, we present another decidable condition that guarantees soundness
and that can be checked efficiently by an SMT solver. If neither condition holds,
we preserve soundness by inferring an unsatisfiable precondition; we did not
encounter any such examples in our evaluation.

Our soundness condition checks that the maximum of the permissions
required by two loop iterations is not less than the permissions required by exe-
cuting the two iterations in sequence. Intuitively, that is the case when neither
iteration removes permissions that are required by the other iteration.

Theorem 2 (Soundness Condition for Loop Preconditions). Given a
loop while (b) { s }, let x be the integer variables modified in s and let v and v′
be two fresh sets of variables, one for each of x. Then maxx|I+∧b (pre(s, 0)↑) is a
sufficient permission precondition for while (b) { s } if the following implication
is valid in all states:

(I+ ∧ b)[v/x] ∧ (I+ ∧ b)[v′/x] ∧ (
∨

v �= v′) ⇒
max(pre(s, 0)↑[v/x], pre(s, 0)↑[v′/x]) ≥ pre(s, pre(s, 0)↑[v′/x])↑[v/x]

The additional variables v and v′ are used to model two arbitrary valuations of x;
we constrain these to represent two initial states allowed by I+ ∧ b and different
from each other for at least one program variable. We then require that the effect
of analysing each loop iteration independently and taking the maximum is not
smaller than the effect of sequentially composing the two loop iterations.

The theorem requires implicitly that no two different iterations of a loop
observe exactly the same values for all integer variables. If that could be the
case, the condition

∨
v �= v′ would cause us to ignore a potential pair of initial

states for two different loop iterations. To avoid this problem, we assume that all
loops satisfy this requirement; it can easily be enforced by adding an additional
variable as loop iteration counter [21].

For the parCopyEven method (Fig. 2), the soundness condition holds since,
due to the v �= v′ condition, the two terms on the right of the implication
are equal for all values of qi. We can thus infer a sufficient precondition as
maxj|0≤j<len(a)/2 ((qa=a ∧ qi=2∗j ? 1/2 : 0) + (qa=a ∧ qi=2∗j+1 ? 1 : 0)).

4.2 Permission Inference for Loops

We can now extend the pre- and postcondition inference from Sect. 3 with loops.
pre(while (b) { s }, p) must require permissions such that (1) the loop executes
without permission failure and (2) at least the permissions described by p are held
when the loop terminates. While the former is provided by the loop precondition

Permission Inference for Array Programs 63

as defined in the previous subsection, the latter also depends on the permissions
gained or lost during the execution of the loop. To characterise these permissions,
we extend the Δ operator from Sect. 3 to handle loops.

Under the soundness condition from Theorem 2, we can mimic the approach
from the previous subsection and use over-approximating invariants to project
out the permissions lost in a single loop iteration (where Δ(s, 0) is negative)
to those lost by the entire loop, using a maximum expression. This projection
conservatively assumes that the permissions lost in a single iteration are lost
by all iterations whose initial state is allowed by the loop invariant and loop
condition. This approach is a sound over-approximation of the permissions lost.

However, for the permissions gained by a loop iteration (where Δ(s, 0) is pos-
itive), this approach would be unsound because the over-approximation includes
iterations that may not actually happen and, thus, permissions that are not
actually gained. For this reason, our technique handles gained permissions via
an under-approximate1 numerical loop invariant I− (e.g., [35]) and thus projects
the gained permissions only over iterations that will surely happen.

This approach is reflected in the definition of our Δ operator below via d,
which represents the permissions possibly lost or definitely gained over all iter-
ations of the loop. In the former case, we have Δ(s, 0) < 0 and, thus, the first
summand is 0 and the computation based on the over-approximate invariant
applies (note that the negated maximum of negated values is the minimum; we
take the minimum over negative values). In the latter case (Δ(s, 0) > 0), the
second summand is 0 and the computation based on the under-approximate
invariant applies (we take the maximum over positive values).

Δ(while (b) { s }, p) = (b ? d + p′ : p), where:
d = max

x|I−∧b
max(0, Δ(s, 0))↓ − max

x|I+∧b
max(0, − Δ(s, 0))↑

p′ = max
x|I−∧¬b

max(0, p)↓ − max
x|I+∧¬b

max(0, −p)↑

x denotes again the integer variables modified in s. The role of p′ is to carry over
the permissions p that are gained or lost by the code following the loop, taking
into account any state changes performed by the loop. Intuitively, the maximum
expressions replace the variables x in p with expressions that do not depend
on these variables but nonetheless reflect properties of their values right after
the execution of the loop. For permissions gained, these properties are based
on the under-approximate loop invariant to ensure that they hold for any possi-
ble loop execution. For permissions lost, we use the over-approximate invariant.
For the loop in parCopyEven we use the invariant 0 ≤ j ≤ len(a)/2 to obtain
d = −maxj|0≤j<len(a)/2 ((qa=a ∧ qi=2∗j ? 1/2 : 0) + (qa=a ∧ qi=2∗j+1 ? 1 : 0)).
Since there are no statements following the loop, p and therefore p′ are 0.

Using the same d term, we can now define the general case of pre for loops,
combining (1) the loop precondition and (2) the permissions required by the code
after the loop, adjusted by the permissions gained or lost during loop execution:

1 An under-approximate loop invariant must be true only for states that will actually
be encountered when executing the loop.

64 J. Dohrau et al.

pre(while (b) { s }, p) = (b ? max(max
x|I+∧b

pre(s, 0)↑, max
x|I+∧¬b

(p↑) − d) : p)

Similarly to p′ in the rule for Δ, the expression maxx|I+∧¬b (p↑) conservatively
over-approximates the permissions required to execute the code after the loop.
For method parCopyEven, we obtain a sufficient precondition that is the negation
of the Δ. Consequently, the postcondition is 0.

Soundness. Our pre and Δ definitions yield a sound method for computing
sufficient permission preconditions and guaranteed postconditions:

Theorem 3 (Soundness of Permission Inference). For any statement s, if
every while loop in s either is exhale-free or satisfies the condition of Theorem 2
then pre(s, 0) is a sufficient permission precondition for s, and pre(s, 0)+Δ(s, 0)
is a corresponding guaranteed permission postcondition.

Our inference expresses pre and postconditions using a maximum operator
over an unbounded set of values. However, this operator is not supported by SMT
solvers. To be able to use the inferred conditions for SMT-based verification, we
provide an algorithm for eliminating these operators, as we discuss next.

5 A Maximum Elimination Algorithm

We now present a new algorithm for replacing maximum expressions over an
unbounded set of values (called pointwise maximum expressions in the follow-
ing) with equivalent expressions containing no pointwise maximum expressions.
Note that, technically our algorithm computes solutions to maxx|b∧p≥0(p) since
some optimisations exploit the fact that the permission expressions our analysis
generates always denote non-negative values.

5.1 Background: Quantifier Elimination

Our algorithm builds upon ideas from Cooper’s classic quantifier elimination
algorithm [11] which, given a formula ∃x.b (where b is a quantifier-free Presburger
formula), computes an equivalent quantifier-free formula b′. Below, we give a brief
summary of Cooper’s approach.

The problem is first reduced via boolean and arithmetic manipulations to a
formula ∃x.b in which x occurs at most once per literal and with no coefficient.
The key idea is then to reduce ∃x.b to a disjunction of two cases: (1) there
is a smallest value of x making b true, or (2) b is true for arbitrarily small
values of x.

In case (1), one computes a finite set of expressions S (the bi in [11]) guar-
anteed to include the smallest value of x. For each (in/dis-)equality literal con-
taining x in b, one collects a boundary expression e which denotes a value for x

Permission Inference for Array Programs 65

making the literal true, while the value e − 1 would make it false. For example,
for the literal y < x one generates the expression y + 1. If there are no (non-)
divisibility constraints in b, by definition, S will include the smallest value of x
making b true. To account for (non-)divisibility constraints such as x%2=0, the
lowest-common-multiple δ of the divisors (and 1) is returned along with S; the
guarantee is then that the smallest value of x making b true will be e + d for
some e ∈ S and d ∈ [0, δ − 1]. We use 〈〈b〉〉small(x) to denote the function handling
this computation. Then, ∃x.b can be reduced to

∨
e∈S,d∈[0,δ−1] b[e + d/x], where

(S, δ) = 〈〈b〉〉small(x).
In case (2), one can observe that the (in/dis-)equality literals in b will flip

value at finitely many values of x, and so for sufficiently small values of x, each
(in/dis-)equality literal in b will have a constant value (e.g., y > x will be true). By
replacing these literals with these constant values, one obtains a new expression b′

equal to b for small enough x, and which depends on x only via (non-)divisibility
constraints. The value of b′ will therefore actually be determined by x mod δ,
where δ is the lowest-common-multiple of the (non-)divisibility constraints. We
use 〈〈b〉〉−∞(x) to denote the function handling this computation. Then, ∃x.b can
be reduced to

∨
d∈[0,δ−1] b′[d/x], where (b′, δ) = 〈〈b〉〉−∞(x).

In principle, the maximum of a function y = maxx f(x) can be defined using
two first-order quantifiers ∀x.f(x) ≤ y and ∃x.f(x) = y. One might therefore
be tempted to tackle our maximum elimination problem using quantifier elim-
ination directly. We explored this possibility and found two serious drawbacks.
First, the resulting formula does not yield a permission-typed expression that
we can plug back into our analysis. Second, the resulting formulas are extremely
large (e.g., for the copyEven example it yields several pages of specifications), and
hard to simplify since relevant information is often spread across many terms due
to the two separate quantifiers. Our maximum elimination algorithm addresses
these drawbacks by natively working with arithmetic expression, while mim-
icking the basic ideas of Cooper’s algorithm and incorporating domain-specific
optimisations.

5.2 Maximum Elimination

The first step is to reduce the problem of eliminating general maxx|b (p) terms to
those in which b and p come from a simpler restricted grammar. These simple per-
mission expressions p do not contain general conditional expressions (b′ ?p1 :p2),
but instead only those of the form (b′ ?r :0) (where r is a constant or rd). Further-
more, simple permission expressions only contain subtractions of the form p −
(b′ ?r :0). This is achieved in a precursory rewriting of the input expression by, for
instance, distributing pointwise maxima over conditional expressions and binary
maxima. For example, the pointwise maximum term (part of the copyEven exam-
ple): maxj|0≤j<len(a) ((j%2=0 ? (qa=a ∧ qi=j ? rd : 0) : (qa=a ∧ qi=j ? 1 : 0))) will
be reduced to:

max(maxj|0≤j<len(a)∧j%2=0 ((qa=a ∧ qi=j ? rd : 0)),
maxj|0≤j<len(a)∧j%2�=0 ((qa=a ∧ qi=j ? 1 : 0)))

66 J. Dohrau et al.

Fig. 5. Filtered boundary expression computation.

Arbitrarily-Small Values. We exploit a high-level case-split in our algorithm
design analogous to Cooper’s: given a pointwise maximum expression maxx|b (p),
either a smallest value of x exists such that p has its maximal value (and b is
true), or there are arbitrarily small values of x defining this maximal value. To
handle the latter case, we define a completely analogous 〈〈p〉〉−∞(x) function, which
recursively replaces all boolean expressions b′ in p with 〈〈b′〉〉−∞(x) as computed by
Cooper; we relegate the definition to Sect. B.3 of the TR [15]. We then use (b′ ?
p′ :0), where (b′, δ1) = 〈〈b〉〉−∞(x) and (p′, δ2) = 〈〈p〉〉−∞(x), as our expression in this
case. Note that this expression still depends on x if it contains (non-)divisibility
constraints; Theorem 4 shows how x can be eliminated using δ1 and δ2.

Selecting Boundary Expressions for Maximum Elimination. Next, we
consider the case of selecting an appropriate set of boundary expressions, given a
maxx|b (p) term. We define this first for p in isolation, and then give an extended
definition accounting for the b. Just as for Cooper’s algorithm, the boundary
expressions must be a set guaranteed to include the smallest value of x defining
the maximum value in question. The set must be finite, and be as small as
possible for efficiency of our overall algorithm. We refine the notion of boundary
expression, and compute a set of pairs (e, b′) of integer expression e and its
filter condition b′: the filter condition represents an additional condition under
which e must be included as a boundary expression. In particular, in contexts
where b′ is false, e can be ignored; this gives us a way to symbolically define
an ultimately-smaller set of boundary expressions, particularly in the absence of
contextual information which might later show b′ to be false. We call these pairs
filtered boundary expressions.

Definition 1 (Filtered Boundary Expressions). The filtered boundary
expression computation for x in p, written 〈〈p〉〉smallmax(x), returns a pair of a set
T of pairs (e, b′), and an integer constant δ, as defined in Fig. 5. This definition

Permission Inference for Array Programs 67

is also overloaded with a definition of filtered boundary expression computation
for (x | b) in p, written 〈〈(p, b)〉〉smallmax(x).

Just as for Cooper’s 〈〈b〉〉small(x) computation, our function 〈〈p〉〉smallmax(x) com-
putes the set T of (e, b′) pairs along with a single integer constant δ, which is
the least common multiple of the divisors occurring in p; the desired smallest
value of x may actually be some e + d where d ∈ [0, δ − 1]. There are three key
points to Definition 1 which ultimately make our algorithm efficient:

First, the case for 〈〈(b ? p : 0)〉〉smallmax(x) only includes boundary expressions
for making b true. The case of b being false (from the structure of the permission
expression) is not relevant for trying to maximise the permission expression’s
value (note that this case will never apply under a subtraction operator, due
to our simplified grammar, and the case for subtraction not recursing into the
right-hand operand).

Second, the case for 〈〈p1 − (b ? p : 0)〉〉smallmax(x) dually only considers bound-
ary expressions for making b false (along with the boundary expressions for max-
imising p1). The filter condition p1 > 0 is used to drop the boundary expressions
for making b false; in case p1 is not strictly positive we know that the evaluation
of the whole permission expression will not yield a strictly-positive value, and
hence is not an interesting boundary value for a non-negative maximum.

Third, in the overloaded definition of 〈〈(p, b)〉〉smallmax(x), we combine boundary
expressions for p with those for b. The boundary expressions for b are, however,
superfluous if, in analysing p we have already determined a value for x which
maximises p and happens to satisfy b. If all boundary expressions for p (whose
filter conditions are true) make b true, and all non-trivial (i.e. strictly positive)
evaluations of 〈〈p〉〉−∞(x) used for potentially defining p’s maximum value also
satisfy b, then we can safely discard the boundary expressions for b.

We are now ready to reduce pointwise maximum expressions to equivalent
maximum expressions over finitely-many cases:

Theorem 4 (Simple Maximum Expression Elimination). For any pair
(p, b), if |= p ≥ 0, then we have:

|= max
x|b

p = max
(

max
(e,b′′)∈T
d∈[0,δ−1]

(b′′ ∧ b[e + d/x] ? p[e + d/x] : 0)),

max
d∈[0,lcm(δ1,δ2)−1]

(b′[d/x] ? p′[d/x] : 0)
)

where (T, δ) = 〈〈(p, b)〉〉smallmax(x), (b′, δ1) = 〈〈b〉〉−∞(x) and (p′, δ2) = 〈〈p〉〉−∞(x).

To see how our filter conditions help to keep the set T (and therefore, the
first iterated maximum on the right of the equality in the above theorem) small,
consider the example: maxx|x≥0 ((x=i ? 1 : 0)) (so p is (x=i ? 1 : 0), while b is
x ≥ 0). In this case, evaluating 〈〈(p, b)〉〉smallmax(x) yields the set T =
{(i, true), (0, i < 0)} with the meaning that the boundary expression i is con-
sidered in all cases, while the boundary expression 0 is only of interest if i < 0.
The first iterated maximum term would be max((true∧ i≥0?(i=i?1 :0) :0), (i<0
∧0≥0?(0=i?1:0):0)). We observe that the term corresponding to the boundary

68 J. Dohrau et al.

Table 1. Experimental results. For each program, we list the lines of code and the num-
ber of loops (in brackets the nesting depth). We report the relative size of the inferred
specifications compared to hand-written specifications, and whether the inferred spec-
ifications are precise (a star next to the tick indicates slightly more precise than hand-
written specifications). Inference times are given in ms.

value 0 can be simplified to 0 since it contains the two contradictory conditions
i < 0 and 0 = i. Thus, the entire maximum can be simplified to (i≥0 ? 1 : 0).
Without the filter conditions the result would instead be max((i≥0 ? 1 : 0),
(0=i ? 1 : 0)). In the context of our permission analysis, the filter conditions
allow us to avoid generating boundary expressions corresponding e.g. to the
integer loop invariants, provided that the expressions generated by analysing
the permission expression in question already suffice. We employ aggressive syn-
tactic simplification of the resulting expressions, in order to exploit these filter
conditions to produce succinct final answers.

6 Implementation and Experimental Evaluation

We have developed a prototype implementation of our permission inference. The
tool is written in Scala and accepts programs written in the Viper language [38],
which provides all the features needed for our purposes.

Permission Inference for Array Programs 69

Given a Viper program, the tool first performs a forward numerical anal-
ysis to infer the over-approximate loop invariants needed for our handling of
loops. The implementation is parametric in the numerical abstract domain used
for the analysis; we currently support the abstract domains provided by the
Apron library [24]. As we have yet to integrate the implementation of under-
approximate invariants (e.g., [35]), we rely on user-provided invariants, or assume
them to be false if none are provided. In a second step, our tool performs the
inference and maximum elimination. Finally, it annotates the input program
with the inferred specification.

We evaluated our implementation on 43 programs taken from various sources;
included are all programs that do not contain strings from the array memory
safety category of SV-COMP 2017, all programs from Dillig et al. [14] (except
three examples involving arrays of arrays), loop parallelisation examples from
VerCors [5], and a few programs that we crafted ourselves. We manually checked
that our soundness condition holds for all considered programs. The parallel loop
examples were encoded as two consecutive loops where the first one models the
forking of one thread per loop iteration (by iteratively exhaling the permissions
required for all loop iterations), and the second one models the joining of all
these threads (by inhaling the permissions that are left after each loop iteration).
For the numerical analysis we used the polyhedra abstract domain provided by
Apron. The experiments were performed on a dual core machine with a 2.60 GHz
Intel Core i7-6600U CPU, running Ubuntu 16.04.

An overview of the results is given in Table 1. For each program, we compared
the size and precision of the inferred specification with respect to hand-written
ones. The running times were measured by first running the analysis 50 times
to warm up the JVM and then computing the average time needed over the
next 100 runs. The results show that the inference is very efficient. The inferred
specifications are concise for the vast majority of the examples. In 35 out of 48
cases, our inference inferred precise specifications. Most of the imprecisions are
due to the inferred numerical loop invariants. In all cases, manually strengthen-
ing the invariants yields a precise specification. In one example, the source of
imprecision is our abstraction of array-dependent conditions (see Sect. 4).

7 Related Work

Much work is dedicated to the analysis of array programs, but most of it focuses
on array content, whereas we infer permission specifications. The simplest app-
roach consists of “smashing” all array elements into a single memory location [4].
This is generally quite imprecise, as only weak updates can be performed on the
smashed array. A simple alternative is to consider array elements as distinct vari-
ables [4], which is feasible only when the length of the array is statically-known.
More-advanced approaches perform syntax-based [18,22,25] or semantics-based
[12,34] partitions of an array into symbolic segments. These require segments
to be contiguous (with the exception of [34]), and do not easily generalise to

70 J. Dohrau et al.

multidimensional arrays, unlike our approach. Gulwani et al. [20] propose an
approach for inferring quantified invariants for arrays by lifting quantifier-free
abstract domains. Their technique requires templates for the invariants.

Dillig et al. [14] avoid an explicit array partitioning by maintaining con-
straints that over- and under-approximate the array elements being updated by
a program statement. Their work employs a technique for directly generalising
the analysis of a single loop iteration (based on quantifier elimination), which
works well when different loop iterations write to disjoint array locations. Gedell
and Hähnle [17] provide an analysis which uses a similar criterion to determine
that it is safe to parallelise a loop, and treat its heap updates as one bulk effect.
The condition for our projection over loop iterations is weaker, since it allows
the same array location to be updated in multiple loop iterations (like for exam-
ple in sorting algorithms). Blom et al. [5] provide a specification technique for
a variety of parallel loop constructs; our work can infer the specifications which
their technique requires to be provided.

Another alternative for generalising the effect of a loop iteration is to use a
first order theorem prover as proposed by Kovács and Voronkov [28]. In their
work, however, they did not consider nested loops or multidimensional arrays.
Other works rely on loop acceleration techniques [1,7]. In particular, like ours,
the work of Bozga et al. [7] does not synthesise loop invariants; they directly
infer post-conditions of loops with respect to given preconditions, while we addi-
tionally infer the preconditions. The acceleration technique proposed in [1] is
used for the verification of array programs in the tool Booster [2].

Monniaux and Gonnord [36] describe an approach for the verification of array
programs via a transformation to array-free Horn clauses. Chakraborty et al. [10]
use heuristics to determine the array accesses performed by a loop iteration and
split the verification of an array invariant accordingly. Their non-interference
condition between loop iterations is similar to, but stronger than our soundness
condition (cf. Sect. 4). Neither work is concerned with specification inference.

A wide range of static/shape analyses employ tailored separation logics as
abstract domain (e.g., [3,9,19,29,41]); these works handle recursively-defined
data structures such as linked lists and trees, but not random-access data struc-
tures such as arrays and matrices. Of these, Gulavani et al. [19] is perhaps
closest to our work: they employ an integer-indexed domain for describing recur-
sive data structures. It would be interesting to combine our work with such
separation logic shape analyses. The problems of automating biabduction and
entailment checking for array-based separation logics have been recently studied
by Brotherston et al. [8] and Kimura and Tatsuta [27], but have not yet been
extended to handle loop-based or recursive programs.

8 Conclusion and Future Work

We presented a precise and efficient permission inference for array programs.
Although our inferred specifications contain redundancies in some cases, they are

Permission Inference for Array Programs 71

human readable. Our approach integrates well with permission-based inference
for other data structures and with permission-based program verification.

As future work, we plan to use SMT solving to further simplify our inferred
specifications, to support arrays of arrays, and to extend our work to an inter-
procedural analysis and explore its combination with biabduction techniques.

Acknowledgements. We thank Seraiah Walter for his earlier work on this topic, and
Malte Schwerhoff and the anonymous reviewers for their comments and suggestions.
This work was supported by the Swiss National Science Foundation.

References

1. Alberti, F., Ghilardi, S., Sharygina, N.: Definability of accelerated relations in
a theory of arrays and its applications. In: Fontaine, P., Ringeissen, C., Schmidt,
R.A. (eds.) FroCoS 2013. LNCS (LNAI), vol. 8152, pp. 23–39. Springer, Heidelberg
(2013). https://doi.org/10.1007/978-3-642-40885-4_3

2. Alberti, F., Ghilardi, S., Sharygina, N.: Booster: an acceleration-based verification
framework for array programs. In: Cassez, F., Raskin, J.-F. (eds.) ATVA 2014.
LNCS, vol. 8837, pp. 18–23. Springer, Cham (2014). https://doi.org/10.1007/978-
3-319-11936-6_2

3. Berdine, J., Calcagno, C., O’Hearn, P.W.: Smallfoot: modular automatic assertion
checking with separation logic. In: de Boer, F.S., Bonsangue, M.M., Graf, S., de
Roever, W.-P. (eds.) FMCO 2005. LNCS, vol. 4111, pp. 115–137. Springer, Heidel-
berg (2006). https://doi.org/10.1007/11804192_6

4. Bertrane, J., Cousot, P., Cousot, R., Feret, J., Mauborgne, L., Miné, A., Rival, X.:
Static analysis and verification of aerospace software by abstract interpretation. In:
AIAA (2010)

5. Blom, S., Darabi, S., Huisman, M.: Verification of loop parallelisations. In: Egyed,
A., Schaefer, I. (eds.) FASE 2015. LNCS, vol. 9033, pp. 202–217. Springer, Heidel-
berg (2015). https://doi.org/10.1007/978-3-662-46675-9_14

6. Boyland, J.: Checking interference with fractional permissions. In: Cousot, R. (ed.)
SAS 2003. LNCS, vol. 2694, pp. 55–72. Springer, Heidelberg (2003). https://doi.
org/10.1007/3-540-44898-5_4

7. Bozga, M., Habermehl, P., Iosif, R., Konečný, F., Vojnar, T.: Automatic verification
of integer array programs. In: Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS,
vol. 5643, pp. 157–172. Springer, Heidelberg (2009). https://doi.org/10.1007/978-
3-642-02658-4_15

8. Brotherston, J., Gorogiannis, N., Kanovich, M.: Biabduction (and related prob-
lems) in array separation logic. In: de Moura, L. (ed.) CADE 2017. LNCS (LNAI),
vol. 10395, pp. 472–490. Springer, Cham (2017). https://doi.org/10.1007/978-3-
319-63046-5_29

9. Calcagno, C., Distefano, D., O’Hearn, P.W., Yang, H.: Compositional shape anal-
ysis by means of bi-abduction. J. ACM 58(6), 26:1–26:66 (2011)

10. Chakraborty, S., Gupta, A., Unadkat, D.: Verifying array manipulating programs
by tiling. In: Ranzato, F. (ed.) SAS 2017. LNCS, vol. 10422, pp. 428–449. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-66706-5_21

https://doi.org/10.1007/978-3-642-40885-4_3
https://doi.org/10.1007/978-3-319-11936-6_2
https://doi.org/10.1007/978-3-319-11936-6_2
https://doi.org/10.1007/11804192_6
https://doi.org/10.1007/978-3-662-46675-9_14
https://doi.org/10.1007/3-540-44898-5_4
https://doi.org/10.1007/3-540-44898-5_4
https://doi.org/10.1007/978-3-642-02658-4_15
https://doi.org/10.1007/978-3-642-02658-4_15
https://doi.org/10.1007/978-3-319-63046-5_29
https://doi.org/10.1007/978-3-319-63046-5_29
https://doi.org/10.1007/978-3-319-66706-5_21

72 J. Dohrau et al.

11. Cooper, D.C.: Theorem proving in arithmetic without multiplication. Mach. Intell.
7(91–99), 300 (1972)

12. Cousot, P., Cousot, R., Logozzo, F.: A parametric segmentation functor for fully
automatic and scalable array content analysis. In: POPL, pp. 105–118 (2011)

13. Cousot, P., Halbwachs, N.: Automatic discovery of linear restraints among variables
of a program. In: POPL, pp. 84–96 (1978)

14. Dillig, I., Dillig, T., Aiken, A.: Fluid updates: beyond strong vs. weak updates. In:
Gordon, A.D. (ed.) ESOP 2010. LNCS, vol. 6012, pp. 246–266. Springer, Heidelberg
(2010). https://doi.org/10.1007/978-3-642-11957-6_14

15. Dohrau, J., Summers, A.J., Urban, C., Münger, S., Müller, P.: Permission inference
for array programs (extended version) (2018). arXiv:1804.04091

16. Ferrante, J., Ottenstein, K.J., Warren, J.D.: The program dependence graph and
its use in optimization. In: Paul, M., Robinet, B. (eds.) Programming 1984. LNCS,
vol. 167, pp. 125–132. Springer, Heidelberg (1984). https://doi.org/10.1007/3-540-
12925-1_33

17. Gedell, T., Hähnle, R.: Automating verification of loops by parallelization. In: Her-
mann, M., Voronkov, A. (eds.) LPAR 2006. LNCS (LNAI), vol. 4246, pp. 332–346.
Springer, Heidelberg (2006). https://doi.org/10.1007/11916277_23

18. Gopan, D., Reps, T.W., Sagiv, S.: A framework for numeric analysis of array
operations. In: POPL, pp. 338–350 (2005)

19. Gulavani, B.S., Chakraborty, S., Ramalingam, G., Nori, A.V.: Bottom-up shape
analysis. In: Palsberg, J., Su, Z. (eds.) SAS 2009. LNCS, vol. 5673, pp. 188–204.
Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-03237-0_14

20. Gulwani, S., McCloskey, B., Tiwari, A.: Lifting abstract interpreters to quantified
logical domains. In: POPL, pp. 235–246 (2008)

21. Gupta, A., Rybalchenko, A.: InvGen: an efficient invariant generator. In: Bouajjani,
A., Maler, O. (eds.) CAV 2009. LNCS, vol. 5643, pp. 634–640. Springer, Heidelberg
(2009). https://doi.org/10.1007/978-3-642-02658-4_48

22. Halbwachs, N., Péron, M.: Discovering properties about arrays in simple programs.
In: PLDI, pp. 339–348 (2008)

23. Jacobs, B., Smans, J., Philippaerts, P., Vogels, F., Penninckx, W., Piessens, F.:
VeriFast: a powerful, sound, predictable, fast verifier for C and Java. In: Bobaru,
M., Havelund, K., Holzmann, G.J., Joshi, R. (eds.) NFM 2011. LNCS, vol. 6617,
pp. 41–55. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-20398-
5_4

24. Jeannet, B., Miné, A.: Apron: a library of numerical abstract domains for static
analysis. In: Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS, vol. 5643, pp. 661–
667. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-02658-4_52

25. Jhala, R., McMillan, K.L.: Array abstractions from proofs. In: Damm, W., Her-
manns, H. (eds.) CAV 2007. LNCS, vol. 4590, pp. 193–206. Springer, Heidelberg
(2007). https://doi.org/10.1007/978-3-540-73368-3_23

26. Johnson, N.P., Fix, J., Beard, S.R., Oh, T., Jablin, T.B., August, D.I.: A collabo-
rative dependence analysis framework. In: CGO, pp. 148–159 (2017)

27. Kimura, D., Tatsuta, M.: Decision procedure for entailment of symbolic heaps
with arrays. In: Chang, B.-Y.E. (ed.) APLAS 2017. LNCS, vol. 10695, pp. 169–
189. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-71237-6_9

28. Kovács, L., Voronkov, A.: Finding loop invariants for programs over arrays using
a theorem prover. In: Chechik, M., Wirsing, M. (eds.) FASE 2009. LNCS, vol.
5503, pp. 470–485. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-
642-00593-0_33

https://doi.org/10.1007/978-3-642-11957-6_14
http://arxiv.org/abs/1804.04091
https://doi.org/10.1007/3-540-12925-1_33
https://doi.org/10.1007/3-540-12925-1_33
https://doi.org/10.1007/11916277_23
https://doi.org/10.1007/978-3-642-03237-0_14
https://doi.org/10.1007/978-3-642-02658-4_48
https://doi.org/10.1007/978-3-642-20398-5_4
https://doi.org/10.1007/978-3-642-20398-5_4
https://doi.org/10.1007/978-3-642-02658-4_52
https://doi.org/10.1007/978-3-540-73368-3_23
https://doi.org/10.1007/978-3-319-71237-6_9
https://doi.org/10.1007/978-3-642-00593-0_33
https://doi.org/10.1007/978-3-642-00593-0_33

Permission Inference for Array Programs 73

29. Le, Q.L., Gherghina, C., Qin, S., Chin, W.-N.: Shape analysis via second-order bi-
abduction. In: Biere, A., Bloem, R. (eds.) CAV 2014. LNCS, vol. 8559, pp. 52–68.
Springer, Cham (2014). https://doi.org/10.1007/978-3-319-08867-9_4

30. Leino, K.R.M.: Dafny: an automatic program verifier for functional correctness. In:
Clarke, E.M., Voronkov, A. (eds.) LPAR 2010. LNCS (LNAI), vol. 6355, pp. 348–
370. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-17511-4_20

31. Leino, K.R.M., Müller, P.: A basis for verifying multi-threaded programs. In:
Castagna, G. (ed.) ESOP 2009. LNCS, vol. 5502, pp. 378–393. Springer, Heidelberg
(2009). https://doi.org/10.1007/978-3-642-00590-9_27

32. Leino, K.R.M., Müller, P., Smans, J.: Deadlock-free channels and locks. In: Gordon,
A.D. (ed.) ESOP 2010. LNCS, vol. 6012, pp. 407–426. Springer, Heidelberg (2010).
https://doi.org/10.1007/978-3-642-11957-6_22

33. Lerner, S., Grove, D., Chambers, C.: Composing dataflow analyses and transfor-
mations. In: POPL, pp. 270–282 (2002)

34. Liu, J., Rival, X.: An array content static analysis based on non-contiguous parti-
tions. Comput. Lang. Syst. Struct. 47, 104–129 (2017)

35. Miné, A.: Inferring sufficient conditions with backward polyhedral under-
approximations. Electron. Not. Theor. Comput. Sci. 287, 89–100 (2012)

36. Monniaux, D., Gonnord, L.: Cell morphing: from array programs to array-free
horn clauses. In: Rival, X. (ed.) SAS 2016. LNCS, vol. 9837, pp. 361–382. Springer,
Heidelberg (2016). https://doi.org/10.1007/978-3-662-53413-7_18

37. Müller, P., Schwerhoff, M., Summers, A.J.: Automatic verification of iterated sepa-
rating conjunctions using symbolic execution. In: Chaudhuri, S., Farzan, A. (eds.)
CAV 2016. LNCS, vol. 9779, pp. 405–425. Springer, Cham (2016). https://doi.org/
10.1007/978-3-319-41528-4_22

38. Müller, P., Schwerhoff, M., Summers, A.J.: Viper: a verification infrastructure for
permission-based reasoning. In: Jobstmann, B., Leino, K.R.M. (eds.) VMCAI 2016.
LNCS, vol. 9583, pp. 41–62. Springer, Heidelberg (2016). https://doi.org/10.1007/
978-3-662-49122-5_2

39. Piskac, R., Wies, T., Zufferey, D.: GRASShopper – complete heap verification with
mixed specifications. In: Ábrahám, E., Havelund, K. (eds.) TACAS 2014. LNCS,
vol. 8413, pp. 124–139. Springer, Heidelberg (2014). https://doi.org/10.1007/978-
3-642-54862-8_9

40. Reynolds, J.: Separation logic: a logic for shared mutable data structures. In: Pro-
ceedings of the 17th Annual IEEE Symposium on Logic in Computer Science, LICS
2002, Washington, D.C., USA, pp. 55–74. IEEE Computer Society (2002)

41. Rowe, R.N.S., Brotherston, J.: Automatic cyclic termination proofs for recursive
procedures in separation logic. In: Proceedings of the 6th ACM SIGPLAN Con-
ference on Certified Programs and Proofs, CPP 2017, New York, NY, USA, pp.
53–65. ACM (2017)

42. Sălcianu, A., Rinard, M.: Purity and side effect analysis for Java programs. In:
Cousot, R. (ed.) VMCAI 2005. LNCS, vol. 3385, pp. 199–215. Springer, Heidelberg
(2005). https://doi.org/10.1007/978-3-540-30579-8_14

43. Smans, J., Jacobs, B., Piessens, F.: Implicit dynamic frames: combining dynamic
frames and separation logic. In: Drossopoulou, S. (ed.) ECOOP 2009. LNCS, vol.
5653, pp. 148–172. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-
642-03013-0_8

https://doi.org/10.1007/978-3-319-08867-9_4
https://doi.org/10.1007/978-3-642-17511-4_20
https://doi.org/10.1007/978-3-642-00590-9_27
https://doi.org/10.1007/978-3-642-11957-6_22
https://doi.org/10.1007/978-3-662-53413-7_18
https://doi.org/10.1007/978-3-319-41528-4_22
https://doi.org/10.1007/978-3-319-41528-4_22
https://doi.org/10.1007/978-3-662-49122-5_2
https://doi.org/10.1007/978-3-662-49122-5_2
https://doi.org/10.1007/978-3-642-54862-8_9
https://doi.org/10.1007/978-3-642-54862-8_9
https://doi.org/10.1007/978-3-540-30579-8_14
https://doi.org/10.1007/978-3-642-03013-0_8
https://doi.org/10.1007/978-3-642-03013-0_8

74 J. Dohrau et al.

44. Summers, A.J., Müller, P.: Automating deductive verification for weak-memory
programs. In: Beyer, D., Huisman, M. (eds.) TACAS 2018. LNCS, vol. 10805, pp.
190–209. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-89960-2_11

45. Voung, J.W., Jhala, R., Lerner, S.: RELAY: static race detection on millions of
lines of code. In: European Software Engineering Conference and Foundations of
Software Engineering (ESEC-FSE), pp. 205–214. ACM (2007)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder.

https://doi.org/10.1007/978-3-319-89960-2_11
http://creativecommons.org/licenses/by/4.0/

	Permission Inference for Array Programs
	1 Introduction
	2 Programming Language
	3 Permission Inference for Loop-Free Code
	4 Handling Loops via Maximum Expressions
	4.1 Sufficient Permission Preconditions for Loops
	4.2 Permission Inference for Loops

	5 A Maximum Elimination Algorithm
	5.1 Background: Quantifier Elimination
	5.2 Maximum Elimination

	6 Implementation and Experimental Evaluation
	7 Related Work
	8 Conclusion and Future Work
	References

