
Static Analysis-Based Approaches
for Secure Software Development

Miltiadis Siavvas1,2(B), Erol Gelenbe1, Dionysios Kehagias2,
and Dimitrios Tzovaras2

1 Imperial College London, London SW7 2AZ, UK
{m.siavvas16,e.gelenbe}@imperial.ac.uk

2 Centre for Research and Technology Hellas, Thessaloniki, Greece
{diok,dimitrios.tzovaras}@iti.gr

Abstract. Software security is a matter of major concern for software
development enterprises that wish to deliver highly secure software prod-
ucts to their customers. Static analysis is considered one of the most
effective mechanisms for adding security to software products. The mul-
titude of static analysis tools that are available provide a large number of
raw results that may contain security-relevant information, which may be
useful for the production of secure software. Several mechanisms that can
facilitate the production of both secure and reliable software applications
have been proposed over the years. In this paper, two such mechanisms,
particularly the vulnerability prediction models (VPMs) and the opti-
mum checkpoint recommendation (OCR) mechanisms, are theoretically
examined, while their potential improvement by using static analysis is
also investigated. In particular, we review the most significant contribu-
tions regarding these mechanisms, identify their most important open
issues, and propose directions for future research, emphasizing on the
potential adoption of static analysis for addressing the identified open
issues. Hence, this paper can act as a reference for researchers that wish
to contribute in these subfields, in order to gain solid understanding of
the existing solutions and their open issues that require further research.

Keywords: Software security · Reliability · Static analysis
Vulnerability prediction · Checkpoint and Restart

1 Introduction

Software security is usually considered an afterthought in the software develop-
ment lifecycle (SDLC). It is normally added after the implementation of software
products chiefly by using mechanisms aiming to prevent malicious individuals
from exploiting existing vulnerabilities (e.g. intrusion detection systems). How-
ever, the increasing number of the security incidents reported annually indicates
the inability of these mechanisms to fully protect the software products against

c© The Author(s) 2018
E. Gelenbe et al. (Eds.): Euro-CYBERSEC 2018, CCIS 821, pp. 142–157, 2018.
https://doi.org/10.1007/978-3-319-95189-8_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-95189-8_13&domain=pdf


Static Analysis-Based Approaches for Secure Software Development 143

attacks [1,2]. To this end, software houses have shifted their focus towards build-
ing software products that are highly secure (i.e. as vulnerability-free as possible)
from the ground up.

A software vulnerability is a weakness in the specification, development, or
configuration of software such that its exploitation can violate a security pol-
icy [3]. Most of the software vulnerabilities stem from a small number of common
programming errors [4]. These errors are introduced by the developers during
the coding phase, mainly due to their lack of security expertise [5], or due to the
accelerated production cycles [6]. However, it is unrealistic to expect from them
to remember thousands of security-related bug patterns and bad practices that
they should avoid. As a result, efficient tools are required to help them avoid the
introduction of such security bugs, and therefore write more secure code [7,8].

Automatic static analysis (ASA) tools have been proven effective in uncover-
ing security-related bugs early enough in the software development process [4].
Their main characteristic is that they are applied directly to the source or com-
piled code of the system, without requiring its execution [5]. However, since their
results comprise long lists of raw warnings (i.e. alerts) or absolute values of soft-
ware metrics, they do not provide real insight to the stakeholders of the software
products. In fact, a great number of ASA tools have been proposed over the years
providing a huge volume of such raw data, which may contain security-relevant
information that may be useful for secure software development. Hence, appro-
priate knowledge extraction tools are needed on top of the raw results produced
by ASA tools for facilitating the production of secure software.

To this end, the outputs of ASA tools have recently started being used for
vulnerability prediction. In fact, recent studies have highlighted the ability of
ASA tools to predict software components that contain vulnerabilities (i.e. vul-
nerable components) [9,10]. The prediction outcome may provide useful insights
to project managers about where to focus their testing efforts. However, none of
the already proposed vulnerability prediction models (VPMs), especially those
that are not based on static analysis, managed to achieve a satisfactory trade-off
among accuracy, practicality and performance [10]. The accuracy of the existing
VPMs in cross-project prediction is also observed to be poor. In addition to this,
static analysis results can be used to facilitate the development of software prod-
ucts that are fault tolerant, and therefore reliable, from the beginning, since they
can be used in order to highlight expensive loops and fault-prone components
prior of which application-level checkpoints should be inserted. Although sev-
eral mechanisms have been proposed for assisting developers in the selection and
insertion of application-level checkpoints (e.g. [11,12])), they failed to provide
complete recommendations, while the required development effort is high.

To sum up, we can state that the current trend in the field of Software Security
is the development of knowledge-discovery mechanisms for the intelligent process-
ing of the results produced by ASA tools to support the secure software develop-
ment. A thorough literature review led us to the conclusion that the exploitation
of the raw results produced by ASA tools in order to conduct (i) prediction of
vulnerable software components, and (ii) optimum checkpoint recommendation



144 M. Siavvas et al.

constitute two interesting subfields with potential positive impact on the produc-
tion of secure and reliable software products. To this end, the purpose of this paper
is to review the most significant attempts in each one of the aforementioned sub-
fields, identify existing open issues of high interest, and potentially propose direc-
tion for future research, emphasizing on how these mechanisms may leverage from
static analysis. Hence, this paper can act as a reference for researchers that wish
to contribute in these subfields, in order to gain a solid understanding of exist-
ing solutions and identify open issues that require further research. All these are
presented in detail in the rest of the paper.

2 Literature Review

2.1 Vulnerability Prediction Modeling

Vulnerability prediction modeling is a subfield of software security, aiming to
predict software components that are likely to contain vulnerabilities (i.e. vul-
nerable components). Vulnerability prediction models (VPMs) are normally built
based on machine learning techniques that use software attributes as input, to
discriminate between vulnerable and neutral components. These models can be
used for prioritizing testing and inspection efforts, by allocating limited test
resources to potentially vulnerable parts. Although it is a relatively new area
of research, a great number of VPMs has already been proposed in the related
literature. As stated in [9], the main VPMs that can be found in the literature
utilize software metrics [13–22], text mining [23–28], and security-related static
analysis alerts [10,29–32] to predict vulnerabilities. These types of VPMs are
analyzed in the rest of this section.

Software Metrics. Shin and Williams [13,14] were the first to investigate the
ability of software metrics, particularly complexity metrics, to predict vulnera-
bilities in software products. Several regression models were built based on dif-
ferent subsets of the studied metrics in order to discriminate between vulnerable
and non-vulnerable (i.e. neutral) functions. The results of their analysis (which
was based on Mozilla JavaScript Engine) suggest that complexity metrics can
be used only as weak indicators of software vulnerabilities. Based on the same
code base, Nguyen and Tran [15] evaluated the ability of semantic complexity in
vulnerability prediction. The models which were built using semantic complex-
ity demonstrated on average a better predictive performance compared to the
best models of [14]. In [16] an empirical study conducted on Mozilla Firefox and
Whiteshark revealed the ability of execution complexity metrics (i.e. complexity
metrics that are collected during the code execution) to discriminate between
vulnerable and neutral functions. In particular, VPMs built on these features
were found to predict vulnerability-prone functions with similar prediction per-
formance to commonly used statically collected complexity metrics, but with
lower inspection effort.

The main purpose of the previous studies was to empirically evaluate the
experts’ opinion that software complexity is the enemy of software security. The



Static Analysis-Based Approaches for Secure Software Development 145

weak relationship that was generally observed between complexity and vulnera-
bilities led to the need for incorporating additional metrics in vulnerability pre-
diction. Towards this end, Chowdhury and Zulkernine [17], based on 52 releases
of Mozilla Firefox, highlighted the ability of complexity, coupling, and cohe-
sion (CCC) metrics to indicate the existence of vulnerabilities in software files.
Based on this observation, the same authors proposed a framework for the auto-
matic prediction of vulnerable files based on CCC metrics [18]. The VPMs that
were built demonstrated a high accuracy and tolerable false positive rate. Shin
et al. [19] examined the ability of complexity, code churn, and developer activity
to discriminate between vulnerable and neutral files in two widely-used software
products, namely Mozilla Firefox and Red Hat Linux Kernel. The results of the
analysis suggest that the selected metrics may be used as sufficient indicators of
vulnerabilities in software files, while those retrieved from software history may
be stronger indicators than the commonly-used complexity measurements.

Moshtari et al. [20], contrary to previous studies, examined and highlighted
the ability of software complexity to predict vulnerabilities between software
products (i.e. cross-project prediction), based on 5 open-source software prod-
ucts, namely Mozilla Firefox, Linux Kernel, Apache Tomcat, Eclipse, and Open
SCADA. Similarly, in a recent study [21], the predictive power of complexity
and coupling in cross-project prediction was compared. The results revealed
that complexity metrics had better predictive power than coupling metrics in
cross-project prediction, while the combination of traditional complexity mea-
surements with a newly proposed set of coupling metrics led to an improvement
in the recall of the best complexity-based VPM that was built in this work.

Text Mining. Apart from software metrics that have received much atten-
tion in the field of vulnerability prediction, VPMs using text mining have also
demonstrated highly promising results. In this approach, the source code of the
software artifacts is parsed and represented as a set of tokens (i.e. keywords).
Subsequently, these tokens are intuitively combined and used to train vulnerabil-
ity predictors. Neuhaus et al. [23] were the first to adopt a form of text mining for
vulnerability prediction. They proposed Vulture, a VPM that predicts vulnera-
bilities in software components based on their import statements and function
calls, which are parsed from their source code. An empirical evaluation of the
model on Mozilla Firefox and Thunderbird, revealed that the proposed VPM
was able to predict half of all the existing vulnerable components, and about
one third of all the predictions were correct. Vulture is also the first known
VPM that can be found in the related literature.

A more complete text mining-based prediction approach was introduced by
Hovsepyan et al. [24]. According to their technique, each software component is
characterized as a series of text terms extracted from their source code along
with their associated frequencies, which are then used to forecast whether each
component is likely to contain vulnerabilities. An empirical evaluation on 19
versions of a large-scale Android application, revealed that their technique may
be promising for vulnerability prediction, as the produced predictors achieved



146 M. Siavvas et al.

sufficient precision (85% on average) and recall (87% on average). Based on
these preliminary results, the same authors conducted a more elaborate empirical
study to investigate the validity of their approach [25]. In particular, several
VPMs using Näıve Bayes and Random Forest algorithms were constructed and
evaluated on a code base of 20 large-scale Android applications. The evaluation
results revealed that the predictive power of the proposed models is equal or even
superior to what is achieved by state-of-the-art VPMs, which indicates that text
mining can be used for the construction of satisfactory VPMs. However, the
produced models performed poorly in cross-project prediction, which can be
explained by the fact that their predictions are based on text terms, which are
highly project-specific features.

Pang et al. [26] proposed an improvement of the aforementioned tech-
nique [24,25], by employing N-Gram analysis. According to their proposal, con-
tinuous sequences of tokens should be used instead of raw text features for
predicting vulnerable components. An empirical evaluation based on 4 android
applications (retrieved from the same code base with [25]), revealed that SVM
predictors built based on N-Gram technique were able to predict vulnerable com-
ponents with high accuracy, precision and recall. In a recent replication of their
study [27], the same authors observed that the adoption of deep neural networks
instead of SVM, can also lead to VPMs with highly satisfactory predictive per-
formance. Despite their promising results, these techniques are too expensive in
terms of memory and execution time, due to the nature of their features (i.e.
long sequences of text terms), which restricts their practicality.

In [28] a sophisticated two-tier composite approach called VULPREDICTOR
was proposed to predict vulnerable files. VULPREDICTOR [28] analyzes text
features along with software metrics and is built on top of an ensemble of classi-
fiers. VULPREDICTOR outperforms the state-of-the-art approaches proposed
by Walden et al. [33], which use either software metrics or text features for
vulnerability prediction, but not both. This indicates that the combination of
software metrics with text mining may be promising for vulnerability prediction.

Static Analysis. Limited attempts can be also found in the related litera-
ture regarding the ability of security-related static analysis alerts to predict the
existence of vulnerabilities. The idea of using static analysis alerts for the iden-
tification of attack- or vulnerability-prone software components was inspired by
Gegick and Williams [29]. Based on this concept Gegick et al. [30] constructed
several VPMs using ASA alerts density, code churn, and lines of code as inputs,
while different combinations of these features were also considered. Recursive
partitioning and logistic regression was employed for the construction of these
models. An empirical evaluation of the produced VPMs on a large commercial
telecommunication software system revealed that the model based on ASA alerts
density and code churn was the best predictor, being able to detect 100% of the
attack-prone components, with 8% false positive rate (FPR). This indicates that
ASA alerts can be used effectively for vulnerability prediction, while their com-
bination with other vulnerability indicators (e.g. software metrics) may also be



Static Analysis-Based Approaches for Secure Software Development 147

promising. In [31] a replication of the work presented in [30] on a different code
base (i.e. a large Cisco software system) led to different observations. In fact,
the FPR of the produced model was found to be higher, which suggests that
the selection of the code base may influence the predictive performance of the
produced models.

Moreover, several recent studies have highlighted the need for refining exist-
ing VPMs by using security-specific metrics and ASA alerts as inputs in order
to improve their accuracy [32]. To this end, Yang et al. [10] proposed a novel
VPM that uses security-specific warnings produced by an ASA tool to predict
vulnerable components. The evaluation results revealed that the proposed app-
roach may lead to an improvement of up to 5% in terms of accuracy compared to
the state-of-the-art models proposed in [33]. This suggests that the adoption of
security-specific warnings, and especially their combination with software met-
rics, may be beneficial for the production of accurate VPMs.

Comparison of Existing Models. Finally, different empirical studies have
shown that text mining-based models exhibit better predictive performance in
comparison to other state-of-the-art techniques [9,33,34]. However, they perform
poorly in cross-project prediction, which indicates that they are highly project-
specific [33], while excessive amount of time and memory is required for their
construction and regular application [9,34]. Hence, VPMs that use software met-
rics (such as complexity, code churns etc.) and density of ASA alerts may be a
more viable solution in practice [34], as they are less expensive to build and
apply [34], and they perform slightly better in cross-project prediction [33]. This
highly suggests that the adoption of security-related ASA alerts and statically
collected software metrics may be a promising approach for the construction
of more accurate, as well as practical VPMs. Hence, future research attempts
should focus towards this direction.

Open Issues and Contributions. Despite the multitude of VPMs that have
been already proposed over the years, there are still many open issues that
require further investigation. First of all, none of the already proposed techniques
managed to achieve a satisfactory trade-off among accuracy, practicality and
performance [10]. Accurate VPMs usually provide predictions at the binary level
(i.e. file or component level), which is impractical in terms of inspection time, as
binaries normally contain hundreds of source files [32]. More practical VPMs that
provide predictions at the source code level are usually inaccurate [10] or they
produce a large number of false positives (i.e. clean files wrongly predicted to
be vulnerable), which renders the inspection process time-consuming and effort-
demanding. On the contrary, models that are both accurate and practical, such
as text mining-based VPMs [25], are highly expensive to build and apply [25,34].
Thus, a model able to achieve a sufficient compensation among the previously
mentioned factors is necessary.

Another issue is that the datasets used in the literature for the deriva-
tion of VPMs are constructed based chiefly on reported vulnerabilities of real



148 M. Siavvas et al.

products. However, not all of the vulnerabilities that a product contains are
always reported, and therefore many components that are considered clean in
the dataset may in fact be vulnerable. Moreover, the number of vulnerable files
that a software product includes is often too small [35], leading to highly imbal-
anced datasets, which influence significantly the accuracy of the produced pre-
dictors [32]. The usage of a highly balanced and sound dataset is expected to
improve the accuracy of the produced VPMs. For this purpose, well-known vul-
nerability code bases like the Juliet suite [36] can be used for the construction
of such a dataset.

The last issue is that the existing VPMs perform poorly in cross-project
prediction [10]. This is normally due to the fact that they are based on project-
specific features for providing their predictions. For instance, as stated previ-
ously, text mining VPMs [25] base their prediction on the frequencies of specific
text features (i.e. keywords) extracted from the source code of software products,
which makes them highly project-specific [33,34]. The usage of security-related
software metrics and alerts produced by ASA tools are expected to lead to more
generic VPMs (i.e. models with sufficient cross-project performance), as these
factors can catch more high-level and abstract attributes of software products.

To sum up, an interesting topic would be to investigate whether the combi-
nation of security-specific static analysis alerts and statically collected software
metrics, along with the usage of a highly balanced and sound dataset, may lead
to a VPM that achieves an acceptable trade-off among accuracy, practicality and
performance. Another topic that worths examination is whether such a model
demonstrates sufficient prediction performance in cross-project prediction.

2.2 Optimum Checkpoint Recommendation

As will be discussed in the present section, the application-level checkpoint and
restart (ALCR) mechanism is the most effective mechanism for building software
applications that are fault tolerant from the beginning [37–39]. However, since
it is based on the deliberate insertion of checkpoints into the source code, it
requires significant expertise and development effort. Early work has considered
the start of an execution block in block-structured programs [40] as a natural
point to insert checkpoints.

On the otherhand, the optimum checkpoint recommendation (OCR) corre-
sponds to the selection of the optimum source code locations where application-
level checkpoints should be inserted, as well as of the optimum checkpointing
frequency in case of repetitive processes (e.g. loops). This mechanism is highly
useful during the SDLC as it helps developers make informed decisions regarding
the optimum placement of the checkpoints, leading to more fault-tolerant and,
thus, reliable software applications. In addition, by allowing the automatic inser-
tion of the recommended checkpoints the development effort associated with the
ALCR mechanism is reduced, and the developers’ productivity remains almost
unaffected. In the following sections, the related literature along with the fun-
damental background concepts of the overall field is provided.



Static Analysis-Based Approaches for Secure Software Development 149

Transaction-Oriented Systems and Optimum Checkpoint Interval.
Checkpoint and rollback/recovery is one of the most widely-used mechanisms for
adding fault tolerance to software applications [37–39]. It was originally devel-
oped for enhancing the reliability of transaction-oriented computer systems (e.g.
database or file systems), which are responsible for the sequential processing
of incoming transactions [41]. If no fault tolerance mechanism is adopted by
these systems, all the transactions need to be re-executed in case of a failure,
leading to significant performance burden. According to the checkpoint and roll-
back/recovery scheme, at predetermined instants of times (i.e. intervals), a snap-
shot (i.e. a secure valid copy) of all the data that have been successfully processed
so far is taken and stored in an area that cannot be affected by failures (e.g. a
secondary file system) [41–43]. This stored snapshot is called checkpoint [41–43].
In case of a failure, a rollback/recovery is performed, during which the contents
of the checkpoint are copied from the secondary memory to the main memory
of the system [44] and all the transactions since the most recent checkpoint are
re-executed [41–43]. By using this scheme, the number of transactions that need
to be re-executed is significantly reduced.

The major challenge of such systems is the selection of the optimum check-
point interval (OCI), that is, the time interval between two successive check-
points that maximizes the system availability [41,43,44]. The term availability
corresponds to the probability that the system is available for processing transac-
tions [44,45]. Hence, the vast majority of the research attempts in this field have
focused chiefly on the selection of the optimum checkpoint interval (e.g. [44–46]),
as well as on the impact that the checkpoint interval may have on other qualities
of transaction-oriented systems (e.g. [41,43]). The first attempt for determining
the OCI was conducted by Young [46], who attempted to compute the optimum
time interval between two successive checkpoints so as to achieve a satisfactory
trade-off between the time required for the establishment of a checkpoint, and
the time required for the system to recover from a failure. The author proposed a
simple yet practical formula for the calculation of the OCI, in which the optimum
interval depends on the mean time to failures, as well as on the time required
for the creation of a checkpoint.

The selection of the OCI is crucial, as the cost of checkpointing is observed
to be high if the checkpoints are frequent [47]. Based on this observation, in [41]
the author investigated the impact that the selection of the OCI may have on the
system performance. The results of the analysis revealed that the optimum value
of the interval between two successive checkpoints that maximizes the system
availability, does not optimize its performance as well. Therefore, the OCI should
be calculated in a way that a sufficient compensation between the contradictory
factors of availability and performance is achieved. Another important parameter
of transaction-oriented systems is their response time. Hence, in [43] the authors
examined the impact that the selection of the checkpoint interval may have
on the availability and the response time of transaction-oriented systems. The
results of their analysis revealed that the average response time depends highly
on the checkpoint interval, and that the interval that minimizes the average



150 M. Siavvas et al.

response time is considerably different from the one that maximizes the system
availability (i.e. the OCI). The authors also proposed a mathematical model
for representing transaction-oriented systems that utilize the checkpoint and
rollback/recovery mechanism. This model can be used both for the calculation of
the OCI and for the estimation of its impact on important performance measures.

In [44] Gelenbe et al. proved that the checkpoint interval should be determin-
istic in order to maximize the system availability, and that the OCI is a function
of the system load. Based on these observations, the authors proposed a new for-
mula for the calculation of the OCI that also considers the system load among
other parameters. In [45] the same authors, in an attempt to further enhance
the completeness of the OCI calculation, proposed a formula that takes time
dependence into account. In particular, they showed that the OCI is a function
of (i) the system load and (ii) the time-dependent failure rate. The results of
their analysis also highlighted that the checkpoint interval should be determin-
istic in order to maximize the availability of the system, further supporting their
previous observation [44].

Finally, Gelenbe et al. [47,48] proposed a new fault tolerant mechanism,
called failure (or virus) tests, which can be used in conjunction to the traditional
checkpoint rollback/recovery technique for further enhancing the reliability of
transaction-oriented systems. According to their newly proposed approach, the
data and the transaction trail of the system are periodically checked for errors
and inconsistencies. If at least one error (or inconsistency) is detected, the system
is forced to go through a recovery as if a failure occurred. The authors also
proposed a method for the calculation of the OCI, as well as the optimum interval
between two successive failure tests that maximizes the system availability.

Long-Running Software Applications. Although the idea of the checkpoint
and rollback/recovery has been initially proposed for transaction-oriented sys-
tems, it has been also found promising for enhancing the reliability of long-
running software applications [49,50]. Long-running software applications are
considerably more complex compared to the transaction-oriented systems, since
even the most simple software programs consist of a tremendous number of exe-
cution states [51]. Therefore, periodically saving only the successfully processed
data of a software application is not enough for ensuring its reliability. On the
contrary, a “safe copy” (i.e. a checkpoint) of the overall execution state of the
application should be taken and saved in a secondary file system that cannot
be tampered by failures [37,52]. This safe state can be used for recovering the
execution of the program in case of a failure.

It should be noted that the majority of software failures are caused by design
and implementation errors [51]. However, due to the high complexity of modern
software products, it is impossible to guarantee their correctness, even with the
most exhaustive validation and verification. Hence, since software applications
are inevitably bundled with such issues, effective fault tolerance mechanisms
are required to enhance their reliability [51,53]. Several rollback/recovery-based
fault tolerance mechanisms have been proposed over the years for enhancing



Static Analysis-Based Approaches for Secure Software Development 151

the reliability of long-running software applications, including: (i) the Recovery
Block (RB) scheme [51], (ii) the N-Version Programming (NVP) [54], and (iii)
the Checkpoint and Restart (CR) [50] technique.

Despite their benefits in enhancing the reliability of software applications,
NVP and RB approaches are characterized by high development costs, since
they require the division of the source code into individual blocks and the def-
inition of alternative implementations for each one of these blocks. Therefore,
due to these high development costs, as well as to the significant overheads they
introduce, their adoption is restricted to very critical applications (e.g. safety-
critical applications), in which the reliability is the most important factor [55].

Checkpoint and Restart (CR) is a fault tolerance mechanism widely used for
enhancing the reliability of long-running software applications [38,39,50], since it
introduces significantly less overheads and development costs, compared to the
aforementioned rollback/recovery fault tolerance mechanisms (e.g. [51,54]). A
CR mechanism is responsible for keeping a “safe copy” of the current execution
state of the software application, and use this “safe copy” for restoring the
application in case of a failure. According to [39], three types of CR exist, which
are (i) the system-level CR, (ii) the library-level CR, and (iii) the application-
level CR, each one of them having its own strengths and shortcomings.

Both system- and library-level CR techniques are reactive approaches for
adding fault tolerance, since they allow checkpointing of software applications
without requiring any modification to their source code. However, their major
shortcoming is that they create checkpoints with large memory footprints, as
the entire execution state of the application and the operating system processes
is saved, which inevitably contains redundant information. Two representative
examples of system- and library-level CR tools are BLCR [56] and DMTCP [57]
respectively.

When the CR is built within the application itself, it is called application-
level CR (ALCR) [39,58]. Unlike its counterparts, it necessitates changes to the
source code of the applications in order to define (i) the locations of the check-
points, (ii) the checkpointing frequency, and (iii) the data that should be check-
pointed. Although it requires significant development effort, it is considered the
most effective CR approach [37–39], as it allows the creation of checkpoints with
smaller memory footprints, since the minimum amount of information required
for restoring the application state is essentially saved. A great number of tools
for implementing ALCR in software applications can be found in the related
literature [58]. A more detailed description and comparison of these types of CR
can be found in [50,58].

Several CR tools and libraries are available for ensuring the reliability of
single-process software applications, including the well-known: BLCR [56], and
Condor [11]. However, the CR approach has recently become an attractive area of
research due to our increasing reliance on long-running multi-process HPC appli-
cations. Such applications are characterized by expensive and time-consuming
computations, and therefore excessive re-computation should be avoided in case
of a failure [37]. For these applications, a distributed CR scheme should be



152 M. Siavvas et al.

employed, in which the checkpoints of the individual processes that constitute
the parallel job should be effectively combined in order to create consistent
recovery states of the overall parallel application.

The most common approach for incorporating the CR mechanism into the
HPC applications is by integrating it into libraries that are required for the imple-
mentation of such applications, like OpenMPI (e.g. [59]), OpenCL (e.g. [12]), and
OpenMP (e.g. [37,52]). For instance, in [59] the authors extended the OpenMPI
library, which is commonly used by HPC applications, in order to support the CR
fault tolerance mechanism. Contrary to previous fault tolerant MPI implementa-
tions that were characterized by complicated and difficult to use interfaces [49],
the proposed implementation manages to automate the process of construct-
ing the global checkpoint of the parallel application, increasing in that way its
usability. In [12], the authors proposed CheCL, a tool for incorporating CR into
OpenCL applications, since common CR libraries fail to checkpoint processes
that use OpenCL. The main advantage of CheCL is that it does not require the
modification of the application source code. Instead, the proposed tool monitors
the execution of the software application and all the API calls are forwarded to
an API proxy, which stores all the information required for restoring OpenCL
objects. The application, which is decoupled from OpenCL calls, is then check-
pointed using the BLCR [56] CR library.

As already mentioned, ALCR is the most effective CR mechanism as it
incurs minimum overhead compared to its counterparts, but it requires signif-
icant development effort, which hinders its adoption in practice. To this end,
Rodŕıguez et al. [52] proposed CPPC, a tool for providing ALCR to message pass-
ing applications. The tool manages to reduce the manual effort required by the
developers, as it identifies the safe points of the applications where checkpoints
should be inserted (i.e. code locations with no inconsistencies), and automatically
implements the checkpoints. In fact, it identifies long-running loops and auto-
matically inserts checkpoints at the first safe point of each loop. Losada et al. [37]
proposed an application-level checkpointing solution for hybrid MPI-OpenMP
applications. In fact, the proposed solution is an extension of the CPPC [52]
tool, which allows checkpointing of applications implemented using either MPI
or OpenMP, in order to support hybrid MPI-OpenMP applications.

Shahzad et al. [38] proposed CRAFT, a library for incorporating the appli-
cation level CR fault tolerance mechanism to software applications implemented
in C++. Similarly to CPPC [52] and [37], the proposed library aims to reduce
the development cost associated with the ALCR mechanism, by allowing the
identification of expensive loops and the automatic insertion of the application-
level checkpoints. In a recent research attempt, Arora [39] proposed ITALC, a
tool that helps the developers in semi-automatically re-engineering their appli-
cations to insert the code for the implementation of ALCR mechanism, without
compromising their productivity. ITALC identifies hotspots (i.e. expensive loops
or suspicious commands) where checkpoints can be inserted, and prompts the
user in order to select which of those hotspots should be checkpointed.



Static Analysis-Based Approaches for Secure Software Development 153

Open Issues and Contributions. As already mentioned, among the CR
mechanisms, ALCR is considered the most effective, since it leaves the minimum
memory footprint, but it requires significant development effort and expertise for
its implementation [38,39]. Although several libraries for assisting and automat-
ing the insertion of application level checkpoints have already been proposed
(e.g. [37–39,52]), they are hindered by a set of shortcomings. Firstly, existing
approaches provide incomplete recommendations, since although they identify
hotspots for the insertion of the checkpoints (e.g. [39,52]), these hotspots are
restricted only to expensive loops. Apart from the expensive loops, failure-prone
software artifacts (e.g. classes or methods) should be also identified and check-
points should be inserted prior to their execution, in order to achieve quick recov-
ery in case of failure. Moreover, in case of expensive loops, existing approaches do
not provide recommendations regarding the optimum checkpointing frequency.
Static analysis can be used to highlight existing failure-prone components and
expensive loops that may require checkpointing. It can be also used to calculate
both the logical complexity and the total cost of the application loops, informa-
tion that can be used for the recommendation of a reasonable checkpointing fre-
quency for the loops that may require checkpointing. Such features are expected
to reduce the expertise required for the implementation of the checkpoints, as
well as the checkpointing overhead, as both the locations and the frequency of
the checkpoints will be optimally defined.

3 Conclusion and Future Work

In the present study, two commonly used mechanisms for enhancing the security
and reliability of software products, namely the vulnerability prediction mod-
els (VPMs) and the optimum checkpoint recommendation (OCR) mechanisms
were examined, by investigating their state-of-the-art. Through our study we
identified some interesting open issues regarding the aforementioned mechanisms
that can be potentially addressed through static analysis. In particular, none of
the existing VPMs that have been proposed so far has managed to achieve a
satisfactory trade-off among the contradictory factors of accuracy, practicality
and performance, while their predictive performance in cross-project prediction
is generally observed to be poor. In addition, although several libraries and
tools for assisting developers in the selection and insertion of application-level
checkpoints have been proposed, they have failed to provide complete recom-
mendations, since they focus exclusively on expensive loops, while they do not
provide any recommendation regarding their checkpointing frequency. Therefore,
an interesting direction for future research is to investigate whether the results
produced by static analysis tools, can be used in order to (i) construct better
VPMs, and (ii) facilitate the optimum selection of application-level checkpoint
locations and frequencies.

Acknowledgements. This work is partially funded by the European Union’s Hori-
zon 2020 Research and Innovation Programme through SDK4ED project under Grant
Agreement No. 780572.



154 M. Siavvas et al.

References

1. Salini, P., Kanmani, S.: Survey and analysis on security requirements engineering.
Comput. Electr. Eng. 38(6), 1785–1797 (2012)

2. McGraw, G.: On bricks and walls: why building secure software is hard. Comput.
Secur. 21(3), 229–238 (2002)

3. Krsul, I.: Software vulnerability analysis. Ph.D. thesis, Department of Computer
Sciences, Purdue University (1998)

4. Chess, B., McGraw, G.: Static analysis for security. IEEE Secur. Priv. 2, 76–79
(2004)

5. McGraw, G.: Software Security: Building Security. Addison-Wesley Professional,
Boston (2006)

6. Boehm, B., Basili, V.R.: Software defect reduction top 10 list. Computer (2001)
7. Wurster, G., van Oorschot, P.C.: The developer is the enemy. In: Proceedings of

the 2008 Workshop on New Security Paradigms, NSPW 2008, pp. 89–97 (2008)
8. Green, M., Smith, M.: Developers are not the enemy! The need for usable security

APIs. IEEE Secur. Priv. 14, 40–46 (2016)
9. Jimenez, M., Papadakis, M., Traon, Y.L.: Vulnerability prediction models: a case

study on the linux kernel. In: 2016 IEEE 16th International Working Conference
on Source Code Analysis and Manipulation (SCAM), pp. 1–10 (2016)

10. Yang, J., Ryu, D., Baik, J.: Improving vulnerability prediction accuracy with secure
coding standard violation measures. In: 2016 International Conference on Big Data
and Smart Computing, BigComp 2016, pp. 115–122 (2016)

11. Litzkow, M., Tannenbaum, T., Linvy, M.: Checkpoint and migration of UNIX
processes in the condor distributed processing system. Technical report CS-TR-
199701346, University of Wisconsin, Madison (1997)

12. Takizawa, H., Koyama, K., Sato, K., Komatsu, K., Kobayashi, H.: CheCL: trans-
parent checkpointing and process migration of OpenCL applications. In: Proceed-
ings of the 25th IEEE International Parallel and Distributed Processing Sympo-
sium (2011)

13. Shin, Y., Williams, L.: Is complexity really the enemy of software security? In:
Proceedings of the ACM Conference on Computer and Communications Security
(2008)

14. Shin, Y., Williams, L.: An empirical model to predict security vulnerabilities using
code complexity metrics. In: Proceedings of the 2008 ACM-IEEE International
Symposium on Empirical Software Engineering and Measurement (2008)

15. Nguyen, V.H., Tran, L.M.S.: Predicting vulnerable software components with
dependency graphs. In: Proceedings of the 6th International Workshop on Security
Measurements and Metrics - MetriSec 2010 (2010)

16. Shin, Y., Williams, L.: An initial study on the use of execution complexity met-
rics as indicators of software vulnerabilities. In: Proceedings of the International
Conference on Software Engineering (2011)

17. Chowdhury, I., Zulkernine, M.: Can complexity, coupling, and cohesion metrics
be used as early indicators of vulnerabilities? In: Proceedings of the 2010 ACM
Symposium on Applied Computing (2010)

18. Chowdhury, I., Zulkernine, M.: Using complexity, coupling, and cohesion metrics
as early indicators of vulnerabilities. J. Syst. Archit. 57, 294–313 (2011)

19. Shin, Y., Meneely, A., Williams, L., Osborne, J.A.: Evaluating complexity, code
churn, and developer activity metrics as indicators of software vulnerabilities. IEEE
Trans. Softw. Eng. 37(6), 772–787 (2011)



Static Analysis-Based Approaches for Secure Software Development 155

20. Moshtari, S., Sami, A., Azimi, M.: Using complexity metrics to improve software
security. Comput. Fraud Secur. 2013(5), 8–17 (2013)

21. Moshtari, S., Sami, A.: Evaluating and comparing complexity, coupling and a new
proposed set of coupling metrics in cross-project vulnerability prediction. In: Pro-
ceedings of the 31st Annual ACM Symposium on Applied Computing, SAC 2016
(2016)

22. Alves, H., Fonseca, B., Antunes, N.: Software metrics and security vulnerabili-
ties: dataset and exploratory study. In: Proceedings of the 2016 12th European
Dependable Computing Conference, EDCC 2016 (2016)

23. Neuhaus, S., Zimmermann, T., Holler, C., Zeller, A.: Predicting vulnerable soft-
ware components. In: Proceedings of the 14th ACM Conference on Computer and
Communications Security, CCS 2007, p. 529 (2007)

24. Hovsepyan, A., Scandariato, R., Joosen, W., Walden, J.: Software vulnerability
prediction using text analysis techniques. In: Proceedings of the 4th International
Workshop on Security Measurements and Metrics, MetriSec 2012, p. 7 (2012)

25. Scandariato, R., Walden, J., Hovsepyan, A., Joosen, W.: Predicting vulnerable
software components via text mining. IEEE Trans. Softw. Eng. 40(10), 993–1006
(2014)

26. Pang, Y., Xue, X., Namin, A.S.: Predicting vulnerable software components
through N-gram analysis and statistical feature selection. In: 2015 IEEE 14th Inter-
national Conference on Machine Learning and Applications (2015)

27. Pang, Y., Xue, X., Wang, H.: Predicting vulnerable software components through
deep neural network. In: Proceedings of the 2017 International Conference on Deep
Learning Technologies, ICDLT 2017, pp. 6–10 (2017)

28. Zhang, Y., Lo, D., Xia, X., Xu, B., Sun, J., Li, S.: Combining software metrics and
text features for vulnerable file prediction. In: Proceedings of the IEEE Interna-
tional Conference on Engineering of Complex Computer Systems, ICECCS 2016,
pp. 40–49, January 2016

29. Gegick, M., Williams, L.: Toward the use of automated static analysis alerts for
early identification of vulnerability-and attack-prone components. In: Second Inter-
national Conference on Internet Monitoring and Protection, ICIMP 2007 (2007)

30. Gegick, M., Williams, L., Osborne, J., Vouk, M.: Prioritizing software security
fortification through code-level metrics. In: Proceedings of the 4th ACM Workshop
on Quality of Protection, pp. 31–38 (2008)

31. Gegick, M., Rotella, P., Williams, L.: Predicting attack-prone components. In:
Proceedings of the 2nd International Conference on Software Testing, Verification,
and Validation, ICST 2009, pp. 181–190 (2009)

32. Morrison, P., Herzig, K., Murphy, B., Williams, L.: Challenges with applying vul-
nerability prediction models. In: Proceedings of the 2015 Symposium and Boot-
camp on the Science of Security, pp. 4:1–4:9 (2015)

33. Walden, J., Stuckman, J., Scandariato, R.: Predicting vulnerable components: soft-
ware metrics vs text mining. In: Proceedings of the International Symposium on
Software Reliability Engineering, ISSRE, pp. 23–33 (2014)

34. Tang, Y., Zhao, F., Yang, Y., Lu, H., Zhou, Y., Xu, B.: Predicting vulnerable
components via text mining or software metrics? An effort-aware perspective. In:
Proceedings of the 2015 IEEE International Conference on Software Quality, Reli-
ability and Security, QRS 2015, pp. 27–36 (2015)

35. Shin, Y., Williams, L.: Can traditional fault prediction models be used for vulner-
ability prediction? Empir. Softw. Eng. 18(1), 25–59 (2013)

36. Boland, T., Black, P.E.: Juliet 1.1 C/C++ and Java test suite. Computer (Long.
Beach. Calif.) 45(10), 88–90 (2012)



156 M. Siavvas et al.

37. Losada, N., Mart́ın, M.J., Rodŕıguez, G., Gonzalez, P.: Portable application-level
checkpointing for hybrid MPI-OpenMP applications. Procedia Comput. Sci. 80,
19–29 (2016)

38. Shahzad, F., Thies, J., Kreutzer, M., Zeiser, T., Hager, G., Wellein, G.: CRAFT:
a library for easier application-level checkpoint/restart and automatic fault toler-
ance. CoRR (2017)

39. Arora, R.: ITALC: interactive tool for application - level checkpointing. In: Pro-
ceedings of the Fourth International Workshop on HPC User Support Tools (2017)

40. Gelenbe, E., Mitrani, I.: Modelling the behaviour of block structured processes
with hardware and software failures. In: Iazeolla, G., et al. (eds.) Mathematical
Computer Performance and Reliability, pp. 329–339. Elsevier Science Publishers,
New York City (1984)

41. Gelenbe, E.: A model of roll-back recovery with multiple checkpoints. In: Proceed-
ings of the 2nd International Conference on Software Engineering, ICSE 1976, Los
Alamitos, CA, USA, pp. 251–255. IEEE Computer Society Press (1976)

42. Gelenbe, E.: Model of information recovery using the method of multiple check-
points. Autom. Remote Control 40(4), 598–605 (1979)

43. Gelenbe, E., Derochette, D.: Performance of rollback recovery systems under inter-
mittent failures. Commun. ACM 21(6), 493–499 (1978)

44. Gelenbe, E.: On the optimum checkpoint interval. J. ACM 26(2), 259–270 (1979)
45. Gelenbe, E., Hernàndez, M.: Optimum checkpoints with age-dependent failures.

Acta Informatica 531, 519–531 (1990)
46. Young, J.W.: A first order approximation to the optimum checkpoint interval.

Commun. ACM 17(9), 530–531 (1974)
47. Gelenbe, E., Hernàndez, M.: Enhanced availability of transaction oriented systems

using failure tests. In: 1992 Proceedings of the Third International Symposium on
Software Reliability Engineering, pp. 342–350 (1992)

48. Gelenbe, E., Hernández, M.: Virus tests to maximize availability of software sys-
tems. Theor. Comput. Sci. 125(1), 131–147 (1994)

49. Elnozahy, E.N., Alvisi, L., Wang, Y.M., Johnson, D.B.: A survey of rollback-
recovery protocols in message-passing systems. ACM Comput, Surv. 34(1), 375–
408 (2002)

50. Egwutuoha, I.P., Levy, D., Selic, B., Chen, S.: A survey of fault tolerance mech-
anisms and checkpoint/restart implementations for high performance computing
systems. J. Supercomput. 65(3), 1302–1326 (2013)

51. Randell, B.: System structure for software fault tolerance. Science (2) (1975)
52. Rodŕıguez, G., Mart́ın, M.J., González, P., Touriño, J., Doallo, R.: CPPC: a

compiler-assisted tool for portable checkpointing of message-passing applications.
Concurr. Comput. Pract. Exp. 22(6), 749–766 (2010)

53. Carzaniga, A., Gorla, A., Perino, N., Pezzè, M.: Automatic workarounds: exploiting
the intrinsic redundancy of web applications. ACM Trans. Softw. Eng. Methodol.
24(3), 1–42 (2015)

54. Chen, L., Avizienis, A.: N-version programming: a fault-tolerance approach to
reliability of software operation. In: Proceedings of the 8th IEEE International
Symposium on Fault-Tolerant Computing (FTCS 1978), vol. 1, pp. 3–9 (1978)

55. Armoush, A., Salewski, F., Kowalewski, S.: A hybrid fault tolerance method for
recovery block with a weak acceptance test. In: Proceedings of the 5th International
Conference on Embedded and Ubiquitous Computing, EUC 2008, vol. 1, pp. 484–
491 (2008)

56. Duell, J., Hangrove, P., Roman, E.: The design and implementation of berkeley
lab’s linux checkpoint/restart. Berkeley Lab Technical report (2002)



Static Analysis-Based Approaches for Secure Software Development 157

57. Ansel, J., Arya, K., Cooperman, G.: DMTCP: transparent checkpointing for cluster
computations and the desktop. In: Proceedings of the 2009 IEEE International
Parallel and Distributed Processing Symposium, IPDPS 2009 (2009)

58. Walters, J.P., Chaudhary, V.: Application-level checkpointing techniques for par-
allel programs. In: Madria, S.K., Claypool, K.T., Kannan, R., Uppuluri, P., Gore,
M.M. (eds.) ICDCIT 2006. LNCS, vol. 4317, pp. 221–234. Springer, Heidelberg
(2006). https://doi.org/10.1007/11951957 21

59. Hursey, J., Squyres, J.M., Mattox, T.I., Lumsdaine, A.: The design and implemen-
tation of checkpoint/restart process fault tolerance for open MPI. Architecture
(2007)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder.

https://doi.org/10.1007/11951957_21
http://creativecommons.org/licenses/by/4.0/

	Static Analysis-Based Approaches for Secure Software Development
	1 Introduction
	2 Literature Review
	2.1 Vulnerability Prediction Modeling
	2.2 Optimum Checkpoint Recommendation

	3 Conclusion and Future Work
	References




