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Abstract. Many emerging Internet of Things devices, gateways and
networks, rely either on mobile networks or on Internet Protocols to sup-
port their connectivity. However it is known that both types of networks
are susceptible to different types of attacks that can significantly disrupt
their operations. In particular 3rd and 4th generation mobile networks
experience signalling related attacks, such as signalling storms, that have
been a common problem in the last decade. This paper presents a generic
model of a mobile network that includes different end user behaviours,
including possible attacks to the signalling system. We then suggest two
attack detection mechanisms, and evaluate them by analysis and simu-
lation based on the generic mobile network model. Our findings suggest
that mobile networks can be modified to be able to automatically detect
attacks. Our results also suggest that attack mitigation can be carriedout
both via the signalling system and on a “per mobile terminal” basis.
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1 Introduction

The security of computing systems is based on three basic principles: confiden-
tiality, integrity and availability. System availability of networks and services
can be significantly impaired by Denial of Service (DoS) attacks which can take
various forms which differ according to the technology being considered. Thus
DoS attacks for IP (Internet Protocol) networks differ significantly from DoS
attacks against mobile networks.

Mobile networks are susceptible to DoS attacks, mostly because of the net-
works’ openness to the Internet, the use of deterministic procedures, and the
use of basic design principles based on “typical” user behaviour. In the last ten
years, there were huge advances from an algorithmic, manufacturing ‘and soft-
ware perspective, pushing forward the innovation of mobile smart devices and
applications, which operate over a mobile network - while the network itself did
not keep up with the pace. One of the problems caused by these circumstances,
is the appearance of DoS attacks known as signalling storms, which overload the
control plane of the mobile network, unlike many previously known data plane
flooding attacks [26,37].
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Network security is ranked as one of the top priorities for future self-aware
networks [18], which is why there is well established research in the field. Fur-
thermore, while work in [21,33] focuses on a general defensive approach against
DoS attacks in future networks, signalling storm specific research can roughly
be categorised in the following groups: problem definition and attacks classifi-
cation [5,30,31,41]; measurements in real operating networks [11,40]; modelling
and simulation [1,27]; impact of attacks on energy consumption [10,12]; attacks
detection and mitigation, using counters [19,20,38], change-point detection tech-
niques [32,42], IP packet analysis [28], randomisation in RRC’s functions [45],
software changes in the mobile terminal [8,34], monitoring terminal’s bandwidth
usage [39], and detection using techniques from Artificial Intelligence [2]. As we
look to the future, such as the Internet of Things (IoT), various forms of attacks
will also have to be considered [6,9].

The communication schemes may be opportunistic [25] and attacks may use
similar opportunistic means to access IoT devices, viruses and worms will con-
tinue being important threats [16] and they can diffuse opportunistically through
a network [17], video input is one of the uses of the IoT and video encoding [7]
can also be specifically targeted by attacks. Furthermore, many network services
are organised to flow over overlay networks [4] that cooperate with the Cloud
[43,44] to offer easy deployable and flexible services for the mobile network con-
trol plane. Thus research needs to remain alert to such developments.

In this paper we mainly use stochastic modelling techniques, in order to rep-
resent complex communication protocols, such as the Radio Resource Control
(RRC), in simplified mathematic terms. In particular we use open and closed
queueing networks with multiple classes of calls. The analysis of these systems
is first described by Jackson [29], Basket et al. [3], and Gelenbe [14,15,22–24],
among others. A second approach is used through discrete event simulation,
whose results in many cases are comparable to queueing network models. More
precisely, we are using a specialised Mobile Networks Security Simulator (SEC-
SIM) created by in research group [27].

The remainder of the paper is organised as follows. In Sect. 2 we present a
queueing network model of a generic architecture of a mobile network, and model
normal and attack behaviour in Sect. 2.2. In Sect. 3 we present two attack detec-
tion techniques, respectively in Sects. 3.1 and 3.2, and a mitigation technique in
Sect. 3.3. Finally, Sect. 4 concludes the paper.

2 Network Model

The proposed model describes a general network architecture, focusing on its
radio access part, from the perspective of both, the control and data (user)
plane. It’s envisioned to represent different mobile network technologies, which
is achieved through representing the resource allocation in the data plane as a
“black box” where different technologies’ sub-models can be plugged in, while
keeping the control plane unchanged. The core part of the model consists only
the basic elements of the architecture, such as multiple Base Station (BS) nodes
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connected to a single network controller consisting one Signalling Server (SS)
node, and the communication stage nodes.

2.1 Model Description

An example workflow captured by our model goes as follows. When a mobile
terminal wants to communicate, it sends a connection setup request through the
control plane of the network, which needs to be processed at the BS and the SS. If
admitted, the mobile proceeds to communicate in the data plane of the network,
in sessions (each comprising multiple data packets), which we denote as calls in
the rest of the paper. If a call is blocked, then the mobile may either leave the
network or attempt to reconnect with a probability that depends on the type of
call. There are two types of calls or connection setup requests in the network: (i)
normal calls representing traffic from legitimate users or applications, and (ii)
attack traffic generated by malicious or malfunctioning applications that may
overload the network. The network model is open with calls joining and leaving
the network, representing for example the arrival and departure of mobiles to
WiFi areas. Its parameters are defined in Table 1 where the superscript r ∈ {n, a}
denotes the class of a call (normal n or attack a) (Fig. 1).
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Fig. 1. A model of the radio access part of a mobile network.

We assume calls arrive from outside the network according to independent
Poisson processes and the service times in each node are independent and expo-
nentially distributed. Since calls may be blocked at the SS due to congestion,



Signalling Attacks in Mobile Telephony 133

Table 1. The main parameters of the model

N Number of cells covered by one signalling server

λr
0i Rate of new class-r calls joining cell i ∈ {1, . . . , N}, which corresponds to

mobile phone activations and handovers by roaming users

λr
i Rate of class-r connection requests traversing the i-th BS. These include

calls joining from outside the network, calls that have been successfully
served and return as new calls, and calls that retry connecting after not
being admitted at cell j due to insufficient data channels

λr
s Total rate of class-r calls arriving at the SS, λr

s =
∑N

i=1 λr
i

γr
i Rate of class-r calls that timed out after being admitted to cell i

pr
ib Proportion of class-r calls not admitted for communication at cell i

pr
b0 Probability that a blocked class-r call leaves the network; pa

b0 represents
attackers’ stubbornness while pn

b0 reflects human persistence

pr
i0 Proportion of class-r calls leaving the network after successful service at

cell i

pr
ij Proportion of class-r calls joining cell j after being blocked at cell i given

that they stay in the network, i.e.
∑N

j=1 pij = 1

μb Class-independent service rate of connection requests in the BS,
representing the cell signalling capacity

μs Class-independent service rate of connection requests in the SS,
representing the SS capacity

tr0 Inactivity timer

the aggregate arrival processes at different parts of the network are not Poisson.
Nevertheless, to simplify matters so as to obtain analytical solutions, we make
the approximation that all flows within the network are Poisson. The service
time distribution for the BS and SS nodes in the signalling stage is same for
both classes of calls, because the signalling procedure undertaken by the net-
work does not distinguish call classes. On the other hand, in the communication
stage, the service time distribution is distinct for different classes of calls because
of the different bandwidth usage behaviour of the normal and malicious calls.

The flow of calls in the above model could be expressed in a closed form as
follows. The total arrival rate of class-r connection requests at BS i is the sum
of the rates of (i) new calls, (ii) returning calls that timed out, and (iii) calls
that were blocked at a cell j by the SS and are attempting to connect at cell i:

λr
i = λr

0i︸︷︷︸
new calls

+ γr
i (1 − pr

i0)︸ ︷︷ ︸
reconnecting after

timeout

+
N∑

j=1

λr
jp

r
jb(1 − pr

b0)p
r
ji

︸ ︷︷ ︸
joining after being blocked
at cell j due to congestion

, (1)

where the proportion of blocked calls pr
ib and the rate of admitted calls that has

timed out γr
i depend on λr

j , ∀j. The model as presented is suitable for modelling
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different mobile technologies under an attack. More details, and a comparison
of the attacks’ influence on two groups of technologies, are presented in [36].

2.2 User Behaviour Model

An important part of the network model is the user behaviour model. In gen-
eral, the two classes of calls have different service time distributions. A normal
call, for example web browsing traffic, would usually happen in bursts which
would occupy the channel for a longer period. Contrary, attack calls would usu-
ally transfer only a small portion of data in order to trigger quick bandwidth
allocations and deallocations. The two patterns are depicted on Fig. 2 with Tn

denoting the normal session duration and T a the attack session duration, and s
and q respectively denoting “service” and “quiet” periods. In this part we need
to estimate the average session duration E[T r] = 1/μr.

Fig. 2. The user behaviour model describing the duration of a single data session T r

of class r.

Figure 2 could be translated to a Markov Chain model as in Fig. 3, using the
states: service (S), quiet (Q), and end of session (F). The transitions among S and
Q states are controlled with αr, and βr, where 1/αr is the average communication
time of a class-r burst, and 1/βr is the average duration of a quiet (inactivity)
period, regarding class-r calls. The timeout rate is given with τ = 1/t0.

Fig. 3. State diagram of the user behaviour model.

Let us denote with Πi the probability of the session being in one of the states
{S,Q, F}. The average session duration could be found using the following ratio:

ΠS + ΠQ + ΠF

1 + E[T r]
= ΠF .
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Solving the balance equations yields the state probabilities in equilibrium, and
the above equation solves to:

(μr)−1 = E[T r] ≡ 1
μr

=
1
αr

+
1
τ

+
βr

αrτ
. (2)

In the above expression, one can see that when the timeout is very short,
with τ → ∞, the average session duration tends to the communication time of a
single burst 1/αr. Modifying the αr and βr parameters, this modelling approach
can be used to investigate different traffic types, and different attack patterns.

3 Detection and Mitigation

In this Section, we first present two real-time storm detection mechanisms based
on counting channel allocations and monitoring bandwidth usage. Both are
tested in the SECSIM simulator. The mitigation mechanism employs an idea
of using a adjustable inactivity timer, and is tested with the model in Sect. 2.

3.1 Counter Detection

Description. The Counter detection mechanism enables detection of signalling
storms per mobile terminal in real-time. It is based on counting the repetitive
bandwidth allocations of same channel type (eg. a shared FACH or dedicated
DCH channel in a 3G UMTS network). It is envisioned as a lightweight mecha-
nism that should not impose any processing, storage, and memory problems if
implemented on a mobile terminal.

Decision Making. The mechanism requires two input parameters: the time
instances of bandwidth allocation and the type of bandwidth allocation, which
are stored in memory for the duration of a time window of length tw. A decision
of an attack being detected is simply taken when the number of repetitions
reaches a predefined threshold called counter threshold - n. The length of the
window tw is chosen such that tw > n · tI , where tI the duration of the inactivity
timer of the attacked state. The upper limit of tw is set according the memory
and storage capacities of the device on which it is implemented.

Evaluation. Figure 4 shows the performance of the described detection algo-
rithm using a ROC curve, as calculated with the SECSIM simulator. A threshold
of n = 3 could be a suitable choice resulting in around 40% true positive detec-
tion ptp and less than 0.2% false positive detection pfp.
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3.2 Bandwidth Monitoring Detection

The Bandwidth monitoring detection mechanism uses a simple idea of tracking
the bandwidth usage of each mobile terminal in a given sliding time window,
and calculating a cost function to estimate the likelihood of a terminal per-
forming a signalling attack. It’s based on previous analyses which showed that
signalling storms are inefficient bandwidth users. The mechanism monitors two
input parameters: the total time that the terminal spends while allocated band-
width within a given time window tw (denoted with tD, and tF respectively for
DCH and FACH states in 3G UMTs), and the time which the mobile termi-
nal is allocated bandwidth but does not transfer any data in a time window tw
(denoted with tDi and tFi). Whenever resources are de/allocated, the detector
calculates the ratio tFi+tDi

tF+tD
, which is then rolled in time using the Exponential

Weighted Moving Average (EWMA) algorithm as:

C[k] = α
tFi[k] + tDi[k]
tF [k] + tD[k]

+ (1 − α)C[k − 1], (3)

where k ∈ N > 0 is the index of the state change, 0 ≤ α ≤ 1 is a weight parameter
and C[0] = tFi[0]+tDi[0]

tF [0]+tD[0] is the initial cost value. As defined, C is between 0 and
1 with values closer to 1 indicating higher probability of an attack.

Decision Making. For decision making, we define two thresholding rules, and
a rule based on the cost function. Observing the cost C, and having calculated
an average Cavg over all historical C values, a simple rule of C ≥ βCavg can be
used to detect an attack. A second rule is using an upper threshold θ+ above
which we make a decision of an attack. This rule helps in detecting attacks with
very small attack rate, for which the cost function rule cannot be used, because
βCavg > 1. A second threshold is defined as lower threshold θ− below which
we assume a normal behaviour of the mobile terminal. The θ− rule helps in
protecting mobiles with normal behaviour of high activity, which are assigned a
low value of Cavg. Setting up these thresholds should be based on offline traffic
analysis by the mobile operators.

Evaluation. The performance of the Bandwidth monitoring detection algo-
rithm is depicted with the ROC curve on Fig. 4, which combines the pfp and ptp

metrics. Values in the top-left corner of the graph are most desirable, as it pro-
duces the highest true positive and lowest false positive detection probabilities.
The simulation results suggest that α = 0.3 is the most suitable value, producing
95% true positive and 0.04% false positive detection.

3.3 Dynamic Timer Mitigation

Mobile networks today use a fixed value for the inactivity timer with possible
manual corrections for specific situations, which we consider to not be the opti-
mal approach. While it plays an important role in controlling radio resource
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Fig. 4. ROC curves of the counter detector (left), and bandwidth detector (right).

allocation, being a trade-off parameter between the bandwidth reuse and num-
ber of connections, this section examines if it could possibly play a similar role
controlling the impact of a signalling attack on the network. For this, we propose
a dynamic inactivity timer which is set as a function of the network load, and
use the model described in Sect. 2 to study its performance.

One possible approach is to increase the timer linearly with the load on the
signalling server, after a signalling load threshold value θ is reached:

t0(λs) =

{
tmin
0 λs ≤ θ,
(tmax

0 −tmin
0 )

λmax
s −θ · (λs − θ) + tmin

0 λs > θ,

where λmax
s is the maximum allowed load on the signalling server, θ is a load

threshold and tmin
0 and tmax

0 are the minimum and maximum values that the
timer can take. In real operating network, these parameters need to be estimated
from statistical observations.

Results. Using the model in Sect. 2 we select a data plane model with m = 20
non-sharing data channels, such as in 3G UMTS Rel. 99, modelled as M/M/m/m
Markov chain [35]. The rest of the parameters are selected as follows: λn

0 =
1, pn

0 = 0.9, pa
0 = 0.1, pn

b0 = 0.9, pa
b0 = 0.3, λe = 0.05, t0 = 2 s (static), tmax

0 =
60 s, tmin

0 = 2 s, λmax
s = 5 calls/sθ = 3 calls/s.

Figure 5 shows the comparison of a static and dynamic inactivity timer for
varying network load. The dynamic timer activates when the threshold load θ
is reached and manages to lower the resulting network load, compared to the
static approach. Although the timer can play a control role, it cannot completely
mitigate a signalling storm. One downside of using this approach is increasing the
portion of normal calls that don’t get a service. Therefore, the timer controls the
trade-off between the signalling load in the network and the number of unserviced
normal calls.
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Fig. 5. Signalling server load for static and dynamic inactivity timer.

4 Conclusions

This paper has briefly explained the ongoing research in the field of mobile net-
works security, looking at in particular, signalling related attacks. It introduced
a generic mathematical model of the radio access part of a network, which can
be used to model different mobile technologies, and different user patterns. The
model was afterwards used to examine an attack mitigation technique using a
modified inactivity timer. The two proposed attack detection mechanisms were
implemented in a simulation environment and their evaluation showed satis-
factory results of 95% true positive and 0.04% false positive detection. Recent
work has used the Random Neural Network [13] for attack detection [2] and we
expect that further results will become available with similar machine learning
techniques.
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