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Abstract. Several policies initiatives around the digital economy stress
on one side the centrality of smartphones and mobile applications, and
on the other call for attention on the threats to which this ecosystem is
exposed to. Lately, a plethora of related works rely on machine learning
algorithms to classify whether an application is malware or not, using
data that can be extracted from the application itself with high accuracy.
However, different parameters can influence machine learning effective-
ness. Thus, in this paper we focus on validating the efficiency of such
approaches in detecting malware for Android platform, and identifying
the optimal characteristics that should be consolidated in any similar
approach. To do so, we built a machine learning solution based on fea-
tures that can be extracted by static analysis of any Android application,
such as activities, services, broadcasts, receivers, intent categories, APIs,
and permissions. The extracted features are analyzed using statistical
analysis and machine learning algorithms. The performance of different
sets of features are investigated and compared. The analysis shows that
under an optimal configuration an accuracy up to 97% can be obtained.

1 Introduction

Digital Single Market (DSM) strategy1, and other policy initiatives recognize the
potentialities of digital business for innovation and growth. Smarthphones and
mobile applications are considered a basic component in this ecosystem. This
is not only because lately the 50% of web page traffic is generated by mobile
devices as reported in [1], but also mobile networks enable users to interact with
digital services at any time and almost at any place. Thus, service providers offer
to users both web based applications and their mobile counterpart.

However, to exploit DSM capacities in mobile environments various chal-
lenges should be faced. Among them security, privacy and trust is of high con-
cern. This is of especially importance for mobile applications that users can
install either from trusted official sites (i.e., Google Play) or through third
1 https://ec.europa.eu/commission/priorities/digital-single-market en.
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party applications stores. Note that even if mobile applications are inspected
(e.g., through Google bouncer), for security flaws before publishing, it is rather
impossible to be completely sure about the quality of any given application
from a security and privacy perspective as adversaries always find new ways and
techniques to bypass the underlying protection mechanisms. Furthermore, third
parties stores do not follow the same security policies as Google play and hence
is most probable to be used as a vehicle for malware distribution.

However, lately systems’ security have been highly enhanced by introducing
different solutions [2,3] either at operating system or at application layer works,
malware detection as a part of it is still an on-going and challenging research
problem. Various research works [4,5] have shown that not only malicious soft-
ware (malware) can get access to private information but also goodware might
try to invade to users’ digital space as it is considered the main asset for digital
business in this new era, and consequently can threaten their private sphere. So
a major question, considering the vast number of available mobile applications
(apps), is whether users can be informed if a given app can act maliciously to a
certain degree. To do so it is of high importance to:

1. understand mobile applications characteristics that can be used for such a
classification

2. provide a solution capable of analyzing the large scale landscape and learn to
identify potential problems and unknown patterns in the fly.

In this context, anomaly detection solutions with emphasis on machine learn-
ing (ML) have been considered as an alternative option, to traditional ones,
recently. This is because (a) humans are incapable of identifying (common) pat-
terns in a high frequency data, (b) cyber domain is currently supported by big
data meaning that high volume of data can be used for developing the appropri-
ate base line behaviours, and (c) ML assisted tools the last decades have been
used successfully in diverse domains such as text processing, health-care, finance,
etc.

We believe that a well-defined model relying on the advantages of ML can be
a promising ally for improving and enhancing the current level of cyber security
protection/identification solutions. Currently, related works e.g., [6,7] demon-
strate promising outcomes, however, additional analysis should be accomplished
in order to identify the optimal parameters to achieve high accuracy and vali-
date the outcomes of other related works. In this mind-set, we envision a ML
assisted framework for mobile apps classification based on their intrinsic proper-
ties that is capable of (a) demonstrating ML based solutions capacities; currently
it is not straight forward to compare different ML approaches and validate their
outcomes, and (b) detecting malware with high accuracy.

In this work we set up the foundations for developing such a framework with
emphasis on Android OS. More specifically, the proposed architecture relies on
reverse engineering any given app for extracting through static analysis app’s
features such as activities, services, broadcasts, receivers, intent categories, APIs,
and permissions that retrofit ML algorithms to characterize whether or not the
examined app is malicious. We analyze the effectiveness of two well-known ML
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i.e., k-NN and SVM to detect malware using different set of features over a data
set of 2620 applications, equally divided among malware and goodware, and we
provide a comparison with other related works. Further, we study the efficacy
of applying a statistical analysis to the extracted features, which transform the
initial set of features in a smaller dimensional space. We discuss the relevance of
the different features using various selection approaches in order to identify the
optimal parameters. Results indicate that we can reach accuracy up to 97%, by
using optimal features with low overhead.

The rest of this paper is structured as follows. We briefly describe the related
works in Sect. 2 and we introduce our ML based approach for malware detection
in Sect. 3. We present the experimental evaluation and discuss our outcomes in
Sect. 4. Finally, we conclude our work and we present possible future develop-
ments in Sect. 5.

2 Related Work

In this section we overview related works that rely on ML algorithms for detect-
ing malware targeting the Android platform using as features data that can be
extracted by static analysis of the app. We review, only the most relevant results
to the approach proposed in this paper. This means that we consider only works
that rely on features such as Application Programming Interfaces (APIs), system
calls, permissions.

Applications Programming Interfaces and System Calls: A major group of
Android malware detection techniques, are using systems calls or/and API calls.
System calls have been used extensively for malware detection on personal com-
puters [8–10]. So similar approaches have been introduced for detection malware
in Android. More specifically, authors in [11] introduce a solution for detecting,
among the others, polymorphic malware by monitoring system calls. Authors,
assess the effectiveness of SVM algorithm over a dataset of 150 apps and and indi-
cate accuracy up to 90%. Similarly, in [12] authors describe a malware detection
tool called MALINE. In their solution they use as features system calls frequency
as well as the corresponding call graphs. MALINE for the classification relied on
SVM, Random Forest, LASSO and Ridge Regularization. Depending on the fea-
ture selection and the employed classifier accuracy results ranges between 85%
to 97%. SafeDroid [13] provides another solution for Android malware detection
that uses APIs as a feature, instead of relying on system calls, for retrofitting
ML. It consists of the features extraction and the classification reporting services.
SafeDroid considers in its analysis 743 APIs that are most frequent to malware
apps, and demonstrates detection accuracy 99%, 98% and 97% for Random For-
est, K-NN and SVM respectively. In a more coarse grained approach introduced
in [14] authors make an analysis of ML classifiers efficiency for detecting malware
using as a feature APIs packages. Authors have evaluated their idea using three
well known algorithms i.e., SVM, J48 and Random Forest, over 205 benign and
207 malware apps. Result indicate that detection accuracy can be as high as
92% for SVM and Random Forest, while for J48 reaches up to 89%.
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Permissions: Permissions are an important factor for the proper operation of
any given app, and reflect the access to sensitive resources as they have been
defined by Android OS. For that reason, permissions have been considered as an
alternative source of features for detecting malware in Android. Authors in [15]
assess the accuracy of seven well known classifiers using as a feature app’s per-
mission on a data set consisted of 200 malicious and 200 benign Android apps.
In this setup, authors demonstrate for SVM accuracy up to 95%, while for the
remaining classifiers the accuracy levels are 88.6% for C4.5, 91,6% for JRip, 82.5
for Naive Bayes (NB). Permission risk rank solution introduced in [16] studies
to what extend Android malware can be detected based on the permission they
define in app’s manifest. To do so authors first select the riskiest permission set
(i.e.,, the most relevant from a statistical point of view) by employing statistical
techniques such as T-test, and Principal Component Analysis (PCA) and sec-
ondly evaluate ML classifiers using the riskiest permission. Authors demonstrate
accuracy as high as 99% for SVM, Decision Tree, and Random Forest under spe-
cific configuration using a high volume data set. In the same mind-set, the APK
Auditor [17] relies on logistic regression, while evaluates its performance using a
dataset of 6900 malware and 1850 benign apps. Results indicate accuracy up to
88%. Similarly, authors in [18] rely on different approaches (Gain Ratio Attribute
Evaluator, Relief Attribute Evaluator) to select the optimal features to use for
detecting malware with the support of machine learning algorithms. Authors
evaluate their solution over a data set of 3784 apps, however, they do not report
which of them was malware. The demonstrated results show accuracy up to 94%.

Other Features and Possible Combinations: One of the earliest works
that combines APIs and permissions was introduce in a solution named
DroidAPIMiner [7], in which well-known classifiers were assessed over on a
dataset of 20000 and 3987 benign and malware apps. In this set-up authors
demonstrate accuracy up to 99% in the case of K-NN, while other ML classifiers
perform accuracy around 96%. In the same direction, authors in [19] combine also
APIs and permissions assessing the performance of Random Forest, SVM, and
Neural Networks. Authors evaluate their approach using a dataset of 5000 good-
ware and 1260 malware apps, and demonstrate accuracy up to 94% for all the
classifiers depending on the setup. An extended set of features, such as intents,
permissions, system commands, suspicious API calls, were used as input to ML
in [20]. Authors accomplish an assessment different classifiers using an extended
data set consisted of 18.677 malware and 11.187 benign apps correspondingly;
their analysis indicates an F-score up to 0.96. In an earlier work Drebin [6]
presents a holistic approach for malware detection based on SVM by using a the
broadest set of features (Hardware components, Requested Permissions, App
components, Filtered intents, Restricted API calls, Used permissions Suspicious
API calls, Network addresses) in comparison with other related works. In the
same mind set, as the other related works, Drebin evaluates its performance on
the biggest public available dataset (consists of 123453 benign and 5560 malware
apps). Drebin results shows accuracy 94% in the case of SVM.
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Fig. 1. High level architecture for feature extraction

3 Methodology

3.1 Overview

Any ML based approach for malware detection for Android platform consist of
three phases: (a) apps collection, (b) feature extraction, and (c) apps’ classifica-
tion. This procedure is a standard textbook process [21] and is followed in any
solution that builds on the advantages of ML.

So, similar to other ML approaches, to study the effectiveness of ML on
malware detection for Android OS, firstly a collection of goodware and malware
apps should be developed. To compile the appropriate datasets, we follow two
different approaches. Briefly, we built a specific tool for downloading and getting
access to a numerous of goodware from Google play, while for malware we made
a literature research for public available data sets, as currently there is no central
repository available that can be used to download them.

Secondly, towards a large scale analysis framework for ML based detection
we develop the appropriate tools to automate and parellelize the experiments;
especially for extracting the features of interest. Figure 1 illustrates the high level
approach for extracting the features.

More specifically, we decompile any given app using the apktool2 in order
to get access to app’s (original) resources, that is, among the others: (a) the
manifest, (b) resources (images, fonts), (c) the source code, and (d) libs. In this
work we focus on (a) app’s manifest and (b) source code as they contain the
core information for app’s execution, however, we are planning to incorporate
the remaining resources in our model in a future work. Our tools are able to
distinguish the resources and analyze them in order to extract the features of
interest and compile the corresponding vectors required in the third phase.

Thirdly, the classification phase takes place in order to identify whether a
give app is a goodware or malware using the extracted features. In this last
phase, apps’ classification procedure relies on the data set of features extracted
in the second phase to retrofit ML both for training and testing.

3.2 Feature Set

As various features can be used in classification, similar to other related work, we
rely on features that can be extracted from any Android app namely actions, fea-
2 https://ibotpeaches.github.io/Apktool/.

https://ibotpeaches.github.io/Apktool/
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tures, services, categories, APIs, and permissions. However, based on the current
related work analysis there is not any indication which of the available features
are the optimal choices for Android malware detection. So at the classification
phase we employ also a selection feature procedure to identify the optimal ones.
In our approach for each and every feature (i) we assume that there is a vector
Fi of n dimensions, where i is the type of feature. Each dimension of a vector
corresponds to a binary variable which is set to 1 in case that the app contains
an instance of the feature i, otherwise to 0. An app A(j) gain access a subset of
these features sets Fi depending on its capabilities. In a formal way, each vec-
tor Fi is calculated using the formula 1. It should be mentioned that instead of
applying the ML classification directly to raw features the statistical properties
variance and sum are employed in the initial feature set. Table 1 overviews the
features used to retrofit ML for the classification.

Fi = {X0,X1,X2 . . . Xn} (1)

Since it is not known a priori which features are the most relevant feature,
feature selection is a necessary step for any ML assisted detecting framework.
Based on the related work there are not indications which are the dominant
features for detecting malware on Android. The goal is to reduce the dimension
of the data set to improve the classification time but without sacrificing the per-
formance beyond a certain threshold. Most of the feature selection algorithms
can be divided in two broad categories. The first one determines features signif-
icance using a ML algorithm that is to ultimately be applied to the data, while
the second one estimates features dominance by using heuristics based on gen-
eral characteristics of the data. The formers are referred to as wrappers and the
latter as filters. In this paper, we assess both approaches for identifying the opti-
mal features. For the wrapper approach we rely on the ML classifier SVM [21],
and for filter we use the RELIEF algorithm proposed in [22].

Table 1. Used features for ML classification

ID Feature description

1 Variance of actions

2 Variance of features

3 Variance of services

4 Variance of categories

5 Variance of API

6 Variance of permissions

7 Sum of actions

8 Sum of features

9 Variance of services

10 Variance of categories

11 Variance of API

12 Variance of permissions
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3.3 Machine Learning Classification

Various ML algorithms are available in literature that can be used in binary
classification. Recall that our goal is to provide ML based platform capable of
determining whether an app is malware or not with a certain degree. So, in this
preliminary work two well known ML algorithms have been used for assessing
the effectiveness of ML in this domain; the K-Nearest Neighbour (K-NN) and the
Support Vector Machine (SVM). We do not go into details about ML classifiers,
and we refer the interested reader to relevant state-of-the-art sources such as [21].

K-NN: is probably among the most simple ML algorithms that classifies new
instances based on a similarity function e.g., Euclidean, Manhattan, in compar-
ison with instances used in the training phase of classification. Considering a
dataset of instances i.e., the features of the goodware and malware apps in our
case, each instance is classified to belong to a specific class by using the major-
ity of votes from its neighbours, with the case being assigned to the class most
common amongst its K nearest neighbour measured by the distance function.

SVM: is capable of defining a model, based on labeled data, for classifying
a new instance to a specific class. To do so, SVM finds a linear separating
hyperplane, that is the decision boundary, with an optimal margin among the
different classes. A popular kernel, which used in this paper also, is the Radial
Basis Function (RBF) kernel.

4 Evaluation

To test the accuracy and efficiency of the classifiers presented in the previous
section, we performed a comparative analysis of different configurations and
applied them on the collected datasets. There are two aspects to validate with
regard to our work, namely the validity of (a) relevant features, and (b) the
classification model and process itself.

4.1 Data Set Configuration

In our evaluation two data sets were used. The first data set (named Dataset-1)
was balanced and composed by two subsets of 1300 goodware and malware apps
respectively. We used this dataset to identify the optimal parameters i.e., the
most relevant features and evaluate ML accuracy. We assess also the effectiveness
of K-NN and SVM classifiers using an unbalanced dataset (named Dataset-2)
which consist of 31000 goodware and 1300 malware apps, and relying on optimal
parameters that have been selected from the first dataset.

For classifiers evaluation we used a 10-fold approach where each collection
of statistical features is divided into ten blocks. Nine blocks from each set of
data are used for training and one block is held out for testing. The training
and testing process is repeated ten times until each of the ten blocks has been
held out and classified. Thus, each block of statistical features is used once for
classification and nine times for training.
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Fig. 2. Features relevance based on a
wrapper approach using the SVM

Fig. 3. Predictor relevance weight on
the basis of the RELIEF algorithm

4.2 Classification Metrics

To evaluate the performance of a classifier one might use different types of met-
rics. For the needs of this paper we rely on accuracy that is defined as the per-
centage of correctly classified instances over the total instances, and is calculated
according to the formula 2.

Accuracy = TP + TN/TP + TN + FP + FN (2)

4.3 Results

At the first step of our approach we should select the dominant features fol-
lowing both a wrapper and a filter approaches as briefly described in Sect. 3).
In the first case we use the SVM, while for the second we rely on RELIEFF
algorithm. Figures 2 and 3 reports on the features with the highest relevance for
both approaches respectively.

More specifically, we employ SVM over every single feature to identify their
importance in malware detection. The values of the optimization parameters
in this specific case are BoxConstraint = 5 and Scaling Factor = 5. According
to this approach the dominant features are the variance and the sum of APIs
and permissions in which accuracy ranges between 70% to 75%. To validate
this outcome we employ also a filter selection approach by using the RELIEFF
algorithm. In that case outcomes demonstrate that the variance of APIs and
permissions, as well as the sum of APIs are the features with the highest rele-
vance. In this point it should be noted that none of the related works identify
the most relevant features that should be used as input to ML. The only work
that select the dominant features is proposed in [16], nevertheless, they focus
only on permissions.

So considering the outcomes of the two feature selection approaches we opt
the variance and the sum of APIs and permissions as the features to be used
for retrofitting ML classifiers, that are the [5, 6, 11, 12] of the Table 1. Using this
set of features we evaluate the performance of both the SVM and K-NN. Our
preliminary results demonstrate (see Fig. 4) accuracy up to 95% for SVM and
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Fig. 4. K-NN and SVM accuracy for the dominant features [5, 6, 11, 12].

up to 97% for K-NN in the case of the extended dataset (Dataset-2). This means
that the dataset size influence the detection accuracy. For both ML algorithms
K-NN and SVM the performance is enhanced approximately to 10%. However,
additional tests should be taken place for validating this outcome. For instance
how the size of malware subset influence the accuracy.

Although some of the related works (i.e., Safedroid [13,16], etc.) report accu-
racy up to 99%, we believe that our approach, relying on statistical features, can
be an alternative option for detecting malware on Android. This is because the
related works use the initial data as input to ML classifiers instead of depend-
ing on statistical transformation, and thus they perform on higher dimensions
that on one side offer higher accuracy. On the other side, such approaches intro-
duce additional processing overhead for the classification. So as there is always
a trade-off between security and performance our initial outcomes demonstrate
a promising solution without sacrificing accuracy. We are planning to provide a
detailed analysis with regard to processing overhead that ML classifiers face in
a future work.

5 Conclusions and Future Work

Apps intrinsic properties can be a valuable ally, among the others, in order
to identify apps that tend to have malicious behaviour. In this paper we have
described the main components for evaluating ML classifiers accuracy for detect-
ing malware on Android platform. In our approach, we rely on the statistical
properties i.e., variance, mean of the initial selected feature set, and we opt
the most dominant features by using the outcomes of Relief algorithm and SVM
classifier. This way, ML classifiers operates on a lower dimension space, and thus
less overhead can be introduced. Our initial results show accuracy up to 97%.

Though our results are promising other related works demonstrate accuracy
up to 99%. For that reason, we foresee additional tests and configurations in order
to reach this level of accuracy without imposing high overhead. Furthermore, the
current analysis should be supported with other features that might be critical
for malware detection such as (a) Cryptographic libraries, (b) application source
code update, and (c) dynamic code loading presence.
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