
285© Springer Nature Switzerland AG 2019 
Y. Tshomba et al. (eds.), Visceral Vessels and Aortic Repair, 
https://doi.org/10.1007/978-3-319-94761-7_25

Preoperative Assessment 
of the Spinal Cord Vasculature

Alexandre Campos Moraes Amato 
and Noedir Antonio Groppo Stolf

25.1	 �Introduction

Spinal cord ischemia is a rare and devastating 
complication of aortic aneurysm repair that has 
a great impact on quality of life and surgical suc-
cess. Given the difficulty in predicting paraplegia 
in patients with aortic pathologies, new strategies 
are being studied to prevent spinal cord injury 
after aortic surgery.

Surgical repair of thoracoabdominal aneu-
rysms was first described in 1955, and, despite 
improvements, the risk of spinal cord ischemia 
remained substantial, between 4% and 11%, with 
a mortality risk ranging from 3% to 17%, even at 
centers with extensive experience [1–3]. There-
fore, the search for a better treatment option is 
still ongoing. One such improvement was the 
development of thoracic endovascular aortic 
repair (TEVAR). Because the technique does not 
require aortic cross-clamping, has shorter surgery 

times, and involves less invasive procedures, it 
lowered the incidence of spinal cord ischemia to 
1–5% [4–7], a rate that is nevertheless high.

Understanding the spinal cord (SC) vascular 
supply is key when treating patients with aortic 
diseases; however, the SC vasculature is com-
plex and difficult to study because it consists of 
very small vessels running in intricate, three-
dimensional planes with highly variable anatomy 
[8]. Current noninvasive imaging techniques can 
identify the artery of Adamkiewicz (AKA, also 
known as arteria radicularis magna) and show 
spinal cord vasculature; however, their sensitivity 
and specificity are insufficient, with several fac-
tors affecting their detection capability [9, 10]. 
Conversely, angiography, formerly considered 
the gold standard method, is too invasive for cur-
rent clinical routine use, hence the need for post-
processing of images using three-dimensional 
multiplanar reconstruction to enhance detection 
of critical closure sites.

25.2	 �Anatomy

Blood supply to the medulla comes from the 
intercostal and lumbar arteries, which split three 
times before reaching the spinal cord, and from 
the subclavian and hypogastric branches. Except 
for the hypogastric arteries, which originate from 
the iliac arteries, the others arise from the aorta. 
After the first branch, the spinal branch, which 
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divides into anterior and posterior radicular arter-
ies, the intercostal artery bifurcates into the dor-
sal and vertebral branches. Only at some spinal 
levels do the anterior and posterior radicular 
arteries penetrate the dura mater, reaching the 
spinal cord. Only some of the original segmental 
branches persist into adulthood (2–14, mean = 6). 
The anterior spinal artery (ASA), which is a key 
component of the vascularization of the spinal 
cord and anterior and lateral funiculi, is basically 

an anastomotic channel between the ascending 
and descending branches of neighboring anterior 
radicular arteries (Fig. 25.1) [11]. The last bifur-
cation of the spinal branch provides a constant 
supply of oxygenated blood to the anterior and 
posterior spinal cord, nerve roots, and dura mater.

Generally, the largest of the anterior radicular 
arteries, with its characteristic “hairpin” shape, is 
referred to as the great anterior radicular artery or 
artery of Adamkiewicz (AKA) (Fig. 25.2) [11]. 
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Fig. 25.1  Schematic drawing of the blood supply to the spinal cord [11]
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The posterior radicular artery follows a pattern 
similar to the anterior radicular artery but gives 
rise to two longitudinal anastomotic channels, the 
posterolateral spinal arteries. Arteries that supply 
the spinal cord are divided into a central system 
supplied by the sulcal arteries and a peripheral 
system, the pial plexus, from which the perfo-
rating branches originate (Fig. 25.2) [8, 12–14]. 
The AKA usually originates from a left poste-
rior intercostal artery at the levels of T9–T12 
(Fig. 25.6) [9].

The venous drainage of the spinal cord is no 
less controversial and characterized mainly by 
the great posterior radicular vein, identified by its 
“coat hook” appearance, the posterior spinal vein, 
and the anterior spinal vein [27]. The anatomic 
significance of venous drainage preoperative 

planning of aortic surgery lies in its differentia-
tion, in the image exams, from the arterial system 
(Fig.  25.3). Posteriorly, there is just one poste-
rior spinal vein, as opposed to two posterolateral 
arteries, which is often larger than the anterior 
median vein [28].

Even though there is a single identifiable 
artery supplying the spinal cord at the thoracic 
level, it is not the only source of medullary blood 
supply. Griepp et al. refined the anatomic concep-
tualization of the collateral circulation network 
for spinal cord blood supply [29] (Fig. 25.4), pro-
viding details of its vascular redundancy. There 
is an axial network of small arteries in the spinal 
canal, paravertebral tissues, and paraspinal mus-
cles that anastomose with each other and with 
the nutrient arteries of the spinal cord. Inputs 
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Fig. 25.2  Spinal arterial anatomy showing the artery of Adamkiewicz [11]
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Fig. 25.3  Spinal venous anatomy [11]

Fig. 25.4  The aorta is seen giving off segmental arteries 
which course around the vertebral body to supply the 
paraspinal muscles and, in the midline, the anterior spinal 

artery. The image shows the extensive anastomotic net-
work for spinal cord blood supply
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into this network include the segmental vessels 
(intercostal and lumbar arteries), subclavian 
arteries, hypogastric arteries, and their branches 
(Fig.  25.5) [30, 31]. In addition to these mul-
tiple inputs, there is also an extensive network 
of epidural arterial and small vessels that supply 
the paraspinal musculature (Fig. 25.4). All these 
vessels are interconnected and have anastomoses 

with the subclavian arteries, cranially, and the 
hypogastric arteries, caudally [31].

This network of collateral vessels can pro-
vide compensatory flow to the spinal cord in the 
event of occlusion of large caliber vessels [31] 
and increase cord nutrient flow from one source 
when another is reduced. Conversely, flow can be 
decreased if an alternate low resistance pathway 
is opened, such as when arterial steal occurs [29]. 
According to Adamkiewicz’s partial flow theory, 
the bloodstreams of the radicular arteries reach 
the medullary surface in two streams, one run-
ning cranially and one caudally [13].

25.3	 �Imaging Acquisition 
Techniques

The importance of identifying and localizing 
the artery of Adamkiewicz prior to thoracic and 
thoracoabdominal surgery to prevent spinal cord 
injury was demonstrated by Kieffer et al. in the 
1980s [32] using angiography. Arterial and poste-
rior radicular arteries and spinal artery branches 
with calibers greater than 200–400 μm have been 
demonstrated angiographically [13]; however, 
this procedure is invasive, and its risks, includ-
ing the risk of embolization [33], are currently 
considered unacceptable [34].

Computed tomography angiography (CTA) 
and magnetic resonance angiography (MRA) are 
minimally invasive imaging techniques currently 
used to assess spinal cord blood supply [28]. There 
is growing evidence that the artery of Adamkie-
wicz can be identified by these noninvasive tech-
niques [15–21, 33, 35–40]. AKA detection rates 
range from 67% to 100% with MRA [28]; how-
ever, this imaging technique is not routinely used 
for the preoperative assessment of patients with 
aortic diseases. Conversely, CTA is performed 
routinely, but AKA detection rates vary widely 
from 18% to 100% [28] depending on post-pro-
cessing technique, type of scanner, and operator 
experience. In addition, atherosclerotic disease 
and atherosclerotic risk factors may hinder SC 
blood supply visualization [9]. AKA identification 
rates are higher in studies using multiple detection 
techniques [18, 19, 41] (Fig. 25.6).
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Fig. 25.5  Network of collateral vessels: subclavian, 
hypogastric, intercostal, and lumbar arteries
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Even though magnetic resonance does not 
involve exposure to ionizing radiation and has 
a small risk for complications [28], it is not tol-
erated by all patients due to the long scan times 
[42]. The ability to discriminate between arterial 
supply and venous drainage is a clear advantage 
of MRA, while the proximity to skeletal struc-
tures is irrelevant, but special acquisition proto-
cols, particularly fast acquisition techniques that 
use a strong bolus, in addition to good skill and 
dedication in image post-processing, are required 
for optimal results [28].

25.4	 �Influence of Artery Detection 
or Presence of Artery 
on Postoperative Spinal Cord 
Ischemia

A retrospective study using a risk model for the 
analysis of a database with 2235 patients from 
19 European centers revealed 38 (1.7%) cases 
of symptomatic spinal cord ischemia. This study 
indicated that endovascular closure of intercos-
tal arteries combined with occlusion of collateral 
vessels supplying the spinal cord is a risk fac-
tor for symptomatic spinal cord ischemia. The 
mathematical algorithm employed identified that 
intraoperative hypotension and simultaneous 
closure of at least two spinal cord vascular ter-
ritories were relevant in the development of isch-
emia and that extensive coverage of intercostal 

arteries alone is not associated with symptomatic 
spinal cord ischemia [30]. Also, Murakami et al. 
suggested that the AKA is not the only source of 
SC blood supply [43]. Nevertheless, retrospec-
tive analysis of 457 patients and their in-hospi-
tal complications revealed that paraplegia and 
paraparesis were significantly associated with a 
length of the covered aorta >20 cm [44], which 
supports the importance of segmental arteries for 
SC blood supply. Yingbin et al. demonstrated the 
importance of identifying the AKA for selecting 
long endografts in cases of thoracic aortic dis-
section [45].

The mechanism of spinal cord ischemia after 
thoracic endovascular aortic repair (TEVAR) has 
not been fully clarified and appears to be multi-
factorial [3, 33]. Spinal cord perfusion depends 
on the gradient between arterial pressure and 
cerebrospinal fluid pressure [33].

25.5	 �Spinal Cord Visualization 
Technique

For AKA visualization [9, 21, 46], axial images 
are scrolled over at a large magnification and 
examined for the presence of two enhanced 
spots in the spinal cord, corresponding to the 
ASA and AKA, while tracing their cranial-
caudal trajectory. Next, three-dimensional mul-
tiplanar reconstruction is used, enabling the 
simultaneous visualization, in three windows, 
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of three oblique planes at 90° in relation to each 
other (Fig. 25.7). The entire spinal cord can be 
visualized by moving the crosshair. A video 
illustrating the technique is available at http://
vascular.cc/aka.html, and an AKA identification 
prediction model can be seen here https://vascu-
lar.pro/aka-model.

The crosshair is placed on the spinal cord at 
the level of the last thoracic vertebrae, and a sag-
ittal view is displayed in the upper left window. 
By adjusting the position and angle of the cross-
hair to cover most of the spinal cord longitudi-
nally in the upper left window and adjusting slice 
thickness using the maximum intensity projec-
tion (MIP) algorithm and “windowing” (apparent 
Hounsfield scale), an oblique coronal or paracor-
onal view of the spinal cord is produced in the 
large window. Tilting the crosshair and scrolling 
over the images along the anteroposterior direc-
tion allows a quick exploration of the entire spi-
nal cord (Fig. 25.9) [21].

The ASA is identified, in the anterior aspect 
of the spinal cord, as a thin longitudinal vessel 
(Fig.  25.8a), whereas the AKA is readily iden-
tified by its “hairpin” appearance, supplying the 

Fig. 25.7  Oblique planes used for AKA localization on 
three-dimensional multiplanar reconstruction

a c

b

Fig. 25.8  OsiriX software window. The green arrow shows the ASA, and the red arrow shows the AKA. (a) Sagittal 
view. (b) Axial view. (c) Coronal oblique view
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anterior spinal artery, in a paracoronal view using 
two-dimensional multiplanar reconstruction 
(MPR) (Figs. 25.8c and 25.9).

The identification of the AKA and ASA is 
based on the following criteria:

•	 Continuity of the AKA traceable to vessels of 
known arterial nature such as the intercostal 
artery or aorta (Fig.  25.10) [16, 19, 20, 36]. 
Continuity with arteries is certainly a highly 
relevant factor; however, this is not always 
achieved and other criteria are needed [16, 19, 
20, 28, 36].

•	 Simultaneous identification of the AKA and 
ASA as two enhanced spots in the ventral 
aspect of the spinal cord on consecutive axial 
scans [19, 20, 28].

•	 Characteristic anatomic relationship of the 
two vessels, i.e., “hairpin” shape (Fig.  25.3) 
[19].

•	 Failure of venous enhancement and visualiza-
tion of the posterior spinal vein and other 
veins surrounding the spinal column (inter-
costal, lumbar, and azygos veins) [28].

The AKA can be identified with computed 
tomography angiography in approximately 70% 
of cases [9, 17–20, 26, 27, 38, 41, 47–50], and 
this imaging modality is routinely used in the 

Fig. 25.9  Three-dimensional MPR oblique view show-
ing the AKA (red arrow) with its typical “hairpin” appear-
ance and the ASA (green arrow)

a b

c d

Fig. 25.10  (a–c) Oblique views showing the three-
dimensional path of the AKA. (d) Continuity of the AKA 
(red arrow) from the aorta (yellow arrow) through the 
intercostal artery (blue arrow) and ASA (green arrow) on 

three-dimensional curved multiplanar reconstruction, 
which reconstructs the course of the vessel from its origin 
in the aorta through the spinal cord

A. C. M. Amato and N. A. G. Stolf



293

preoperative assessment of thoracoabdominal 
aortic aneurysms. The imaging acquisition pro-
tocol for SC blood supply visualization is simi-
lar to standard angio-CT protocols used in most 
centers.

25.6	 �Conclusion

When the risk of intraoperative closure of two 
vascular territories supplying the spinal cord [30] 
is identified in the presurgical planning of aor-
tic aneurysm repair, AKA disruption—or at least 
that of collateral vessels—can be prevented with 
prior knowledge of its location using the method 
described here.

If the AKA identification method proposed 
cannot be applied to a patient, the surgical team 
should then rely on anatomic studies [9] that 
show the existence of a critical area of great 
importance for SC circulation between the levels 
of T9 and T12. This area requires special atten-
tion from the surgeon to preserve the AKA as 
well as if possible the other spinal cord blood 
supply sources.
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