
Smart Contract Programming Languages
on Blockchains: An Empirical Evaluation

of Usability and Security

Reza M. Parizi1(&), Amritraj1, and Ali Dehghantanha2

1 Department of Software Engineering and Game Development,
Kennesaw State University, Kennesaw, GA 30060, USA

rparizi1@kennesaw.edu, amritra@students.kennesaw.edu
2 Department of Computer Science, University of Sheffield, Sheffield, UK

a.dehghantanha@sheffield.ac.uk

Abstract. Blockchain is a promising infrastructural technology that is finding
its way into a growing number of domains like big data, finance, and medical.
While blockchain has come to be thought of primarily as the foundation for
Bitcoin, it has evolved far beyond underpinning the virtual currency. As it
becomes progressively popular, the need for effective programming means
would be more demanding. Blockchain programming as a core means provides
accounts of the ‘code is law’ that specifies agreements between parties and
allows its stakeholders to still trust the platform to execute the agreed-upon
contract (known as smart contract) as expected. Although it seems straightfor-
ward in theory, it is hardly the case when it comes to real-life situations. There
have been several instances that show smart contracts are riddled with issues and
vulnerabilities in code, causing damages. What’s for sure is lacking is that the
existing languages are not living up to the point to be able to unleash the full
potential of the blockchain, as often have resulted in buggy code with a steep
learning curve for developers. This denotes that the current research on contract
development is not sufficient and is still in a stage of infancy. In order to
advance the state of the research in this area, an evaluation of the current
state-of-the-art practices in a thorough and experimental manner is required.
Thus, the objective of this paper is to give a comprehensive analysis of such
domain-specific programming practices from critical points of usability and
security to provide a working guideline for newcomers and researchers.
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1 Introduction

Blockchain [1] is a new trend rising fast from the community and the enterprise world.
A blockchain is theoretically an incremental list of records called blocks which are
linked together and secured using cryptography, forming a chain in the process. Copies
of this chain are stored across several peers on a network who can all see the chain and
its contents. To add a new block, a peer must find a key to a random pattern generated
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using cryptography and verify the block itself. As soon as a peer adds a new block, it
also broadcasts this addition to all the other peers on the network, so they can update
their copies of the blockchain.

Blockchain has already disrupted a wide range of industries including Finance,
Cloud computing, Privacy, Security etc. Also, in the recent years, an interesting new
application of blockchain has surfaced, i.e. Smart contract [2]. Smart contracts are
self-executing contracts where the terms of the agreement between multiple parties are
directly written into lines of code. The code and the agreements contained therein exist
across a blockchain network. Smart contracts allow trusted transactions and agreements
to be carried out among disparate, anonymous parties without the need for a central
authority, legal system, or an external enforcement mechanism. They render transac-
tions traceable, transparent, and irreversible. Recognition of the unique challenges of
smart contract programming has inspired developers to create domain-specific lan-
guages, such as Solidity [3] to ease development.

Although it is a promising domain, Smart contracts, in its first decade has been
plagued by unfortunate incidents. In June 2016, vulnerabilities in the DAO code was
exploited to empty out more than 2 Million (40 Million USD) ether [4]. The attack took
advantage of the reentrancy problem in the ‘splitDAO’ function of the code. Since, the
program was not designed carefully, a call to the function that behaved as a regular call
was modified into a recursive call and used to make multiple withdrawals when only
one was to be authorized.

Also, in November 2017, a developer [5] whilst fixing a bug that let attackers steal
32 million USD from a few multi-signature wallets accidentally left a second bug in the
system that allowed one user to become the sole owner of every single multi-signature
wallet. Realizing the mistake, the developers tried to fix damages by deleting the
program instead of returning the funds to their original owners. This act of deletion of
the program simply locked all the funds in those multi-signature wallets permanently.
Unlike most cryptocurrency hacks, however, the money was not deliberately taken
instead, it was permanently locked by accident and lack of understanding of the
program.

The above incidents show that even the most experienced developers can leave
behind security vulnerabilities and bugs that are exploitable and failure prone. Thus,
there is still a steep learning curve for developers when it comes to contract pro-
gramming. This steep learning curve makes it even more difficult for new developers to
write correct and safe contracts. As of current date, the state of empirical studies in the
domain of smart contract development is still in infancy. Hence, the objective of this
paper is to take this initiative by providing an empirical evaluation of smart contract
programming languages, in order to shed light on future directions of its development
research, education and practices. To this end, we assessed the usability and security
vulnerability aspects of three domain-specific languages namely Solidity, Pact and
Liquidity (see Sect. 2). The results demonstrated that although Solidity is the most
usable language for a new developer to program smart contracts, it is the least secure
language to vulnerabilities. While, Liquidity and Pact demonstrated better security
results, implying it is harder for new developers to leave behind bugs and security
vulnerabilities when working with Pact and Liquidity, but they show less usability
compared to Solidity.
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The remainder of this paper is organized as follows. Section 2 gives an overview of
the smart contract programming languages and state-of-the-art practices for building
smart contracts; Sect. 3 presents and describes the details of the experiment and its
evaluation results; Sect. 4 presents the related work; and lastly, Sect. 5 reports the
conclusion and future work.

2 Smart Contract Programming Languages

In this section, we discuss widely used smart contract programming languages namely
Solidity, Pact, Liquidity. We have also discussed sample contracts implemented with
each of the mentioned programming languages to provide an insight into real-world
contract development.

2.1 Solidity and the EVM

Solidity [3] is a statically-typed programming language with a similar syntax to
ECMAScript (JavaScript) built for writing smart contracts. It is the primary choice
language for implementing smart contracts on the Ethereum [6] platform.

Ethereum is an open source, decentralized platform for building smart contracts. It
facilitates the development and execution of complex applications such as financial
exchanges and insurance contracts on a distributed platform. The core of Ethereum is
the Ethereum Virtual Machine (EVM), which executes code of random algorithmic
complexity. Solidity is designed for developing smart contracts that run on the EVM.
Solidity contracts are first compiled to bytecode which is ultimately executed on the
EVM.

Like other blockchains, Ethereum includes a peer-to-peer network protocol. The
Ethereum blockchain database is maintained and updated by several nodes connected
to the network. Every node on the network runs the EVM and executes the same set of
instructions.

The Ethereum platform itself is featureless or value-agnostic. It is up to organi-
zations and developers to decide what it should be used for. However, certain appli-
cation types benefit more than others from Ethereum’s capabilities. Specifically,
Ethereum is suited for applications that automate direct interaction between peers or
facilitate coordinated group action across a network. For instance, applications for
coordinating peer-to-peer marketplaces, or the automation of complex financial con-
tracts. When it comes to programming on Ethereum, there are some key points to
notice from the Ethereum Design Rationale document [7].

Sample Contract Implementation. In Fig. 1, we show a smart contract for an
imaginary cryptocurrency, we named ‘SampleCrypto’. SampleCrypto can only be
issued by its developer and can be transferred to a receiver with his/her address.

Smart Contract Programming Languages on Blockchains 77



2.2 Pact

Pact [8] is a programming language for writing smart contracts to be executed by the
Kadena [9] blockchain. Pact empowers developers to implement robust, performant
transactional logic, executing mission-critical business operations quickly and safely.

Pact is immutable, Turing-incomplete and favors a declarative approach over
complex control-flow. This makes bugs harder to write and easier to spot. Pact smart
contracts are designed to enforce business rules guarding the update of a
system-of-record: complex, speculative application logic simply does not belong in this
critical layer.

Sample Contract Implementation. We present an example Pact code [8], imple-
menting a simple “account balance” smart contract, with functions to create accounts
and transfer funds, in Fig. 2. A detailed description of the above contract including
information on Installing the module, Keyset Definition, Module Definition,
Table Creation and finally, Invoking the ‘accounts’ module can be found at [8].

2.3 Liquidity

Liquidity [10] is a high-level typed smart-contract language for Tezos [11]. It is a fully
typed functional language, it uses the syntax of OCaml [12] and strictly complies with
Michelson [13] security restrictions. A formal verification framework for it is under
development, to prove the correctness of smart-contracts written in Liquidity.

Fig. 1. SampleCrypto implementation in Solidity
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The Liquidity language provides three key features: (1) full coverage of the
Michelson language: anything that can be written in Michelson can be written in Liq-
uidity. (2) local variables instead of stack manipulations: values can be stored in local
variables. The only restriction is that local variables do not survive to Contract.call,
following the philosophy of Michelson to force explicit storage of values to limit reen-
trancy bugs. (3) high-level types: types like sum-types and record-types can be defined
and used in Liquidity programs. Liquidity’s contract format can be found in [10].

Sample Contract Implementation. The following contract [14], shown in Fig. 3, is a
simple voting system that requires a user to have at least 5 tz to submit a vote.

The contract will display an error message “Not enough money, at least 5 tz to
vote” if the user attempts to vote with a balance lower than 5 tz.

In Table 1, we have summarized the smart contract programming languages dis-
cussed in this section. The table lists the major platform that supports or plans to
support these languages. We have also listed some of the key features of these lan-
guages in the designated column.

Fig. 2. Account balance smart contract in Pact
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3 Empirical Evaluation

The goal of our empirical study is to determine the usability and security vulnerabilities
of the smart contract programming languages discussed in the previous section. Our
study was designed around the scenario in which the formal descriptions of three smart
contracts were provided to human test subjects to implement using an assigned smart
contract programming language while assessing the usability and analyzing the types of

Fig. 3. Smart contract with Liquidity

Table 1. Summary of smart contract programming languages

Programming
languages

Major
platforms

Key features

Solidity Ethereum • Statically typed
• Supports inheritance, libraries and complex user-defined
types

Pact Kadena • Turing-incomplete safety-oriented design
• Human-readable, on-ledger code
• Atomic execution (transactions)
• Module definition and import
• Unique “key-row” + columnar database metaphor
• Expressive syntax and function definition
• Single-signature and multi-signature public-key
authorization

• Type inference
Liquidity Tezos • High-level types: types like sum-types and record-types can

be defined and used in Liquidity programs
• Full coverage of the Michelson language: Anything that can
be written in Michelson can be written in Liquidity,

• Local variables instead of stack manipulations
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bugs and security vulnerabilities that developers can leave behind in the contracts. We
therefore, designed our experimental study based on the following research questions
(referred to as RQ’s):

RQ1. How do the languages under study stack up in terms of usability to new
contract developers?

RQ2. What are the common security issues left behind in the contract by new
developers?

3.1 Experimental Planning

Conducting an empirical study involving human subjects can lead to several challenges
and pitfalls. Guidelines exist in the literature [15] to help researchers to carry out such
type of studies. These guidelines helped us to design our experiment, especially
because a frequent problem with controlled empirical studies is that, due to their cost
and complexity, they are often limited in size.

We have divided our experimental planning into four parts, namely test subjects,
test contracts, measures, and experimental design. We discuss the experimental setup
in the sub-sections below:

Test Subjects. We sent email invitations to undergraduate students and graduate
research assistants in the College of Computing and Software Engineering (CCSE) at
Kennesaw State University (KSU), US to participate in our study. The email described
the aim and objective of our experiment (which is to perform an empirical evaluation of
smart contracts programming language based on usability and security), location, time,
expected length of the experiment and an RSVP link. We received a response from a
total of 15 undergraduate students and Graduate research assistants within the men-
tioned deadline. Each subject had prior experience with at least one general purpose
programming language and object-oriented concepts.

Test Contracts. We prepared formal descriptions of three test contracts in the form of
scenario paragraphs for the test subjects in our experiment. The three contracts were
selected after a careful evaluation of several smart contracts from various online
sources that are prone to security vulnerabilities when implemented by new developers.
The prepared formal descriptions were carefully checked for completeness and
ambiguity.

Table 2 gives a brief description of the three test contracts chosen for our experi-
ment. Each test subject had to implement these three contracts in a randomly assigned
smart contract programming language, as described in detail in the experimental
design.

Measures. To quantify usability, we used a built-in timer (as part of the helper pro-
gram in the experiment environment) to measure the average times of implementation
of each contract in an assigned programming language for each test subject (in min-
utes). The longer the subjects took to implement a contract, the lower would be the
usability of the language to a new developer. To arrive at more solid results, we
additionally asked the subjects to answer a questionnaire regarding the usability of the
assigned smart contract programming language at the end of the experiment in the exit
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questionnaire. We asked the subjects to rate the usability of the language on a scale of
1.0–10.0, 1.0 being extremely difficult to use and 10.0 being extremely usable. We also
asked them for their comments on the language, such as what did they find easy? What
did they find difficult?

We used a two-facet method to capture and analyze security vulnerabilities in the
implemented smart contracts. Firstly, we ran the implemented contracts against six
known security vulnerabilities including, Callstack Depth Attack Vulnerability, Reen-
trancy Vulnerability, Assertion Failure, Timestamp Dependency, Parity Multigeniture
Bug 2 and Transaction-Ordering Dependence (TOD) with the help of ‘OYENTE’ [19,
20] tool. OYENTE is an automated security analysis tool for revealing the
above-mentioned security vulnerabilities in smart contracts. Secondly, we analyzed the
implemented contracts manually to check for further vulnerabilities that were not
covered by the tool including DoS (Denial of Service) with (Unexpected) revert and
DoS with Block Gas Limit in Solidity [21]. The more these vulnerabilities surface in a
contract (from both automated and manual parts), the less secure the underlying con-
tract programming language would be.

Experimental Design. We prepared 15 envelopes each of which contained the formal
description of the three smart contracts and the smart contract programming language
that these contracts need to be implemented with. Each envelope was also assigned an
Envelope ID number which helped us to keep track of the language the contracts need
to be implemented in. The envelopes were prepared such that only 5 envelopes would
contain the language Li (where Li ε {Solidity, Pact, Liquidity}). Hence, out of our 15
test subjects, only 5 random chosen subjects would implement the test contracts in a
language Li. We made sure that we assigned test subjects computers such that no two
subjects who had to implement the contracts in the same language sit alongside each
other. Each language was to be implemented on an online compiler, i.e. we used Remix
[22] for Solidity, Try-Pact [23] editor/compiler for Pact, and Liquidity online
editor/compiler [14] for Liquidity.

Table 3 summarizes the organization of our experiment. As shown in the table,
there were 5 test subjects who worked on implementing the given three smart contracts
in the assigned smart contract programming language.

Table 2. Summary of the test contracts for our study

Test contract Description Reference

Contract 1:
HoneyPot

A contract to keep a record of balances for each address
that puts currency in it and allow these addresses to get
them later

[16]

Contract 2: Bank
Account

A contract to deposit/withdraw money into a user’s bank
account

[17]

Contract 3: King of
the currency

A simple contract in which the highest bidder becomes
the leader of a group

[18]
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3.2 Experimental Execution

To avoid fatigue, we decided to conduct our experiment in two sessions. The first
session was a background and demo session. During this session, each subject received
a starter pack consisting of their subject ID, a statement of consent, a background
questionnaire, instructions regarding the experiment, a printout of the demo slides and
an exit questionnaire. Before commencing with the demo, each subject was required to
fill in the questionnaire based on their background and programming experience and
sign a statement of consent to participate in our experimental study.

After the statement of consent and background questionnaire were signed, com-
pleted and collected, we proceeded with a small presentation on the basics of smart
contracts programming to familiarize the subjects with the same. Next, we conducted a
Q&A session with the subjects to answer any of their questions and concerns. When all
the questions were answered and any confusions cleared, we asked the test subjects to
take a 45-min break to refresh themselves. We also asked them to keep their starter
packs with them in case they needed to review the slides during the break.

After the break, we commenced the second session of our experiment. This session
was for the practical implementation of test contracts. Each test subject was handed a
sealed envelope with an envelope ID number on it (this helped us to keep track of the
smart contract language that the envelope’s contracts need to be implemented in). Each
envelope had a formal description of the three test contracts and the language in which
the subjects were assigned to implement these contracts. After all the envelopes were
handed, we matched the subject ID’s with envelope ID’s to keep a track on our
experiment. We then asked the subjects to open their envelopes and read all the
problem statements thoroughly, we then conducted a second Q&A session to remove
all doubts and confusions regarding the problem statements and the programming
languages that they were assigned. When this was over, we asked them to implement a
simple warm-up “Hello world” exercise in the language they were assigned. Finally,
when all the subjects were done with the warm-up exercise, we asked them to begin
working on their problems and started a timer for each subject.

The subjects were given two hours to implement all the contracts, and we asked
them to remain seated even if they finished their task before the time limit. To be
considered “finished”, we required them to be certain that their test contracts compiled
successfully on the online compilers mentioned earlier.

Including presentation and break, the duration of the experiment was three hours
and forty-five minutes. The experiment was completed under “exam conditions”, i.e.,
subjects were not allowed to communicate with others, or consult with other sources to
avoid introducing biases into the experimental findings. Finally, after the end of the
experiment, each subject was asked to fill in the exit questionnaire before leaving.

Table 3. Organization and assignment of envelopes and languages in the experiment

Subject ID Envelope ID Language

01, 04, 07, 10 and 13 03, 06, 09, 12 and 15 respectively Solidity
02, 05, 08, 11 and 14 01, 04, 07, 10 and 13 respectively Pact
03, 06, 09, 12 and 15 02, 05, 08, 11 and 14 respectively Liquidity
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3.3 Experimental Results and Analysis

Following the experimental execution process described in the preceding section, we
collected the required experimental data and carefully analyzed all the data collected to
arrive at conclusions. We now present these results in response to our research
questions.

RQ1: How do the languages under study stack up in terms of usability to new
contract developers? The data collected for measuring the usability of smart contracts
programming languages is shown in Tables 4 and 5. Table 4 summarizes the average
implementation times of each test smart contract with a given smart contract pro-
gramming language (i.e. Solidity, Pact and Liquidity). We found that the average
implementation time of each contract was significantly lower in case of Solidity as
compared to Pact and Liquidity.

We observed the data extracted from the experiment to be consistent across all three
test contracts and languages for all test subjects, i.e. each test subject who implemented
the three test contracts with Solidity did so faster than every test subject who imple-
mented the contracts with Pact or Liquidity. Similar observation was made in case of
Liquidity and Pact, i.e. each subject who implemented test contracts with Liquidity did
so faster than every subject who implemented the contracts with Pact.

In Fig. 4, we represent the average implementation times of each test contract
(shown in Table 4) with each smart contract programming language in our experiment.
We made an interesting observation for Test Contract 1, i.e. the average implemen-
tation times of test contract 1 with Solidity and Liquidity were almost similar, i.e.
DtLS1 < 1 min (where DtLS1 = Average implementation time of test contract 1 with
Liquidity - Average implementation time of test contract 1 with Solidity = 55 s). But,
this time difference increased significantly (i.e. DtLS2 = 3 min 14 s and DtLS3 = 8 min
37 s) with the increased complexity of test contracts 2 and 3 as compared to test
contract 1. We made another anomalous observation for implementation times of test
contract 2 and 3, i.e. In case of Solidity, the average implementation time of test
contract 3 is lower than average implementation time of test contract 2. On the other
hand, this is not the case for Pact and Liquidity, as the average implementation time of
test contract 3 is higher with these languages when compared to the average imple-
mentation time of test contract 2. But, since, the average implementation time of test
contract 2 and 3 is lower with Solidity when compared to average implementation
times with Pact and Liquidity, this observation has negligible value.

Table 4. Summary of the implementation times of the test contracts

Language Average
implementation
time (Contract 1)

Average
implementation
time (Contract 2)

Average
implementation
time (Contract 3)

Total average
implementation
time

Solidity 13 min 26 s 20 min 07 s 19 min 14 s 52 min 47 s
Pact 17 min 31 s 31 min 16 s 33 min 32 s 82 min 19 s
Liquidity 14 min 21 s 23 min 21 s 27 min 51 s 65 min 33 s
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Additionally, Fig. 5 represents the total average implementation times of all three
test contracts implemented with each smart contract programming language in our
experiment, i.e. Solidity, Pact and Liquidity. The figure shows that the total average
implementation time of all test contract with Solidity is 52 min and 47 s. The total
implementation time increased by 24.2% to 65 min and 33 s with Liquidity and almost
by 56% to 82 min and 19 s with Pact as compared to total average implementation time
with Solidity.

Finally, Table 5 summarizes the results from the exit questionnaire which was
completed by the test subjects at the end of the experiment. The table represents the
average usability score as graded by the test subjects to their respective assigned
language for the experiment. The higher the average usability score (see Sect. 3.1 -
Measures) the more usable the language is to a new developer.
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Fig. 4. Average implementation times of all contracts with Solidity, Pact and Liquidity
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Fig. 5. Total average implementation times of all contracts with Solidity, Pact and Liquidity
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Summarizing the overall usability results of our experiment, we see that the average
implementation times of each contract are such that - tSC1 < tLC1 < tPC1 for test contract
1, tSC2 < tLC2 < tPC2 for test contract 2 and tSC3 < tLC3 < tPC3 for test contract 3
respectively (where, tSCi, tLCi and tPCi are the average implementation times of test
contract ‘i’ with Solidity, Liquidity and Pact respectively and i ε {1,2,3}). This leads to
the subsequent result regarding the total implementation times of all 3 test contracts, i.e.
TS < TL < TP (where, TS, TL and TP are the total average implementation times of all 3
test contracts). Additionally, from the results of the exit questionnaire in Table 5 we see
– US > UL > UP (where, US, UL and UP are the average usability scores of Solidity,
Liquidity and Pact respectively). For a language to have higher usability, we require it
to have faster implementation times and high usability scores in the exit questionnaire.
Hence, it is clear from the results presented in this section that the usability of
Solidity > Liquidity > Pact for a new developer.

RQ2: What are the common security issues left behind in the contract by new
developers? We analyzed the implemented test contracts for security vulnerabilities
using the ‘OYENTE’ tool and methods described in Sect. 3.1. While we couldn’t find
any security vulnerabilities for Liquidity and Pact implemented contracts similar could
not be said for Solidity implemented contracts. The results of our security analysis are
summarized in Table 6.

For test contract 1, we found that all implemented contracts by the test subjects
were vulnerable to Reentrancy attacks. Similar results were found for test contract 3,
where all the implemented contract were prone to DoS with (unexpected) revert vul-
nerability [21]. Meanwhile, for test contract 2, only one of the implemented contract
was vulnerable to Reentrancy vulnerability.

A Reentrancy attack occurs when a function ‘x’ calls a function ‘y’ in an external
contract, which makes a reentrant call to ‘x’. If x’s call to ‘y’ occurs while the contract
is in an inconsistent state, then the reentrant call may make invalid assumptions about
the initial state of the contract. This reentrancy vulnerability was recently exploited to
steal over $40 million [24]. This problem is difficult and error-prone to avoid in

Table 5. Average usability score from the exit questionnaire of the test subjects

Language Average usability score by test subjects

Solidity 8
Pact 4.5
Liquidity 5.5

Table 6. Security issues found in the implemented test contracts

Contract Solidity Pact Liquidity

Contract 1 Reentrancy vulnerability - (5/5 contracts) None None
Contract 2 Reentrancy vulnerability - (1/5 contracts) None None
Contract 3 DoS with (Unexpected) revert - (5/5 contracts) None None
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Solidity, this is because one shall reason about reentrant call anytime an external call is
made from a function. Since, sending money always results in an external call when
using Solidity, this becomes a frequent vulnerability. In general, external calls from
function ‘x’ in contract C may invoke additional calls on C to any function, not just ‘x’,
via an intermediate external invocation. This is more problematic than internal-only
calls because the external contract is likely to assume C is in a consistent state.

Figure 6 visually represents the security vulnerabilities in all the implemented
contracts with the Solidity, Pact and Liquidity languages. No security vulnerabilities
were found in the Pact and Liquidity implemented contracts but 11 (approx. 73%)
Solidity contracts were found to be vulnerable out of a total of 15 implemented. Out of
these 11 vulnerable contracts, 6 had Reentrancy vulnerabilities and 5 were vulnerable
to DoS with (unexpected) revert. Only 4 out of 15, i.e. about 27% of Solidity imple-
mented contracts were found to be secure.

While using Solidity it is often difficult for even experienced developers to avoid
certain pitfalls [5], it is no surprise that the implemented Solidity contracts were prone
to security vulnerabilities as the subjects for our experiment can be considered as new
and inexperienced contract developers. Hence, from the results of our experiment and
in response to our second research question: RQ2, we found that contracts implemented
by new developers with Solidity are more prone to security vulnerabilities as compared
to smart contracts implemented with Liquidity and Pact. Even though, no vulnerabil-
ities were found in Pact and Liquidity implemented contracts, this by no means nec-
essarily suggests that Pact and Liquidity contracts are 100% immune to security
vulnerabilities. It just implies that it is harder for new developers to leave behind bugs
and security vulnerabilities when working with Pact and Liquidity as compared to
Solidity.

3.4 Threats to Validity

This section discusses the threats to validity for this experiment. The threats to external
validity primarily answer the question of how representative the human subjects, the

Fig. 6. Security vulnerabilities in all implemented contracts
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test contracts, and used tools are. Some of our subjects were essentially students and
did not have professional smart contract development experience. However, analysis of
the results indicated that subjects had similar programming experience and managed to
implement their contracts in similar times as others in their group. The test contracts
used in our study were not developed by the subjects and may have been unfamiliar to
them. To mitigate this, we had organized Q&A and warm-up sessions. We made sure
to provide sufficient time to our test subjects for the experiment and this was confirmed
in the exit questionnaire, where we asked the subjects if they felt they had been given
enough time for the experiment. All test subjects stated to have had enough time to
complete the experiment. Additionally, the test contracts selected for the experiment
can be considered relatively simple for experienced developers. Hence, it is possible
more complex contracts may yield different results. As no previous human studies have
been done in this area, we believe beginning with reasonable-scale studies and the
lessons learned is prudent to pave the way for larger studies.

The threats to internal validity are implementation effects that could have possibly
biased our test results. We designed the formal descriptions of the chosen test contracts
carefully for intuition. To check the completeness of our description we conducted pilot
research where we provided the prepared formal description to experienced developers
and professors for constructive criticism, fault detection and completeness checking.
Only when all errors were rectified in our formal descriptions, we decided to go ahead
and commence our experiment.

3.5 Discussion

Based on the presented results and comparisons from our experiment, we found that
Solidity is the most usable language to a new developer when it comes to programming
smart contracts. We found from our exit questionnaire, that this was because of
Solidity’s intimacy to general purpose programming languages such as Java or C#,
which are often used by developers and students in professional and academic envi-
ronments respectively.

But unfortunately, when it comes to security vulnerabilities in smart contract
implemented by new developers, Solidity lacks behind as we found it to be most prone
to security vulnerabilities. Although being usable is a huge plus, on the other hand
being prone to security vulnerabilities is a huge downside as these security vulnera-
bilities can be exploited by malicious users to cause financial damages as seen from the
recent attacks on the Ethereum platform [25]. Meanwhile, Liquidity and Pact are still
new languages which lack high usability at this time but seem more secure than
Solidity for now. Ultimately, all the three languages have their pros and cons. The
exciting thing to note here is all the three languages are changing and evolving with
time and research. Hence, our work aims to help contribute towards forming the body
of knowledge for the continuous growth and evolution of this infant domain.
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4 Related Work

Our work is related to assessing and comparing the programming languages for smart
contract development. There are in fact very few numbers of related studies known for
evaluation of smart contract programming languages or platforms. In this section, we
present an overview of all the related work, which has been proposed in the literature in
recent years.

The work in [26], compares Ethereum, IBM Open Blockchain (Hyperledger pro-
ject) [27], Intel Sawtooth lake [28], BlockStream Sidechain Elements [29] and Eris [30]
platforms. This study suggests Ethereum to be the primary choice of platform in terms
of scalability, development, documentation and support. As Intel Sawtooth Lake
wasn’t fully implemented at the time, the authors conclude that Ethereum is the better
solution for developers as it had no security issues known at the time.

In another work [31], the authors analyze the usage of smart contracts platforms
from various perspectives. The study examines a sample of 6 platforms, namely Bitcoin
[32], Ethereum [33], Counterparty [34], Stellar [35], Monax [36] and Lisk [37] for
smart contracts by highlighting some of the key differences in terms of type of
blockchain, contract language and volume of daily currency transfers. A sample of 834
contracts was studied for the 2 platforms— Bitcoin and Ethereum, categorizing each of
them by application domain, and measuring the relevance of each of these categories.
They concluded that about 80% of the Ethereum contracts use at least one of the nine
design patterns presented in the paper.

There have also been assessment kind of works that study different blockchain
technologies. Anderson et al. [38] compare three blockchains - Ethereum, Namecoin,
and Peercoin. For Ethereum, the authors briefly analyze the issues that are introduced
by the negligent design of smart contracts. In the case of Namecoin, the focus was, how
the name registration is used and had developed over time. For Peercoin, the interest
was in the use of proof-of-stake. Similarly, Seijas et al. [39] compare a variety of smart
contract platforms. Their work also provides an overview of the scripting languages
used in cryptocurrencies, particularly scripting languages of Bitcoin, Nxt and Ether-
eum. Their work covers technologies that might be used to underpin extensions and
innovations in scripting and contracts, including technologies for verification (e.g.,
zero-knowledge proofs, proof-carrying code and static analysis), as well as approaches
to making systems more efficient, e.g. Merkelized Abstract Syntax Trees.

Studies that analyze the security of Ethereum smart contracts have been growing
recently. For instance, the work proposed in [25] surveys vulnerabilities and attacks on
the Ethereum contracts, while, works [20, 40] propose analysis techniques to detect
these vulnerabilities.

Majority of the work listed in this section mainly compares and analyzes the
various smart contract platforms. There has been a lack of empirical data on how
domain-specific smart contract programming languages might work in tandem with
developers and their comparative quality measures such as usability and security.
Hence, our work took the first step by providing an experimental analysis of three
current domain-specific programming languages. We hope that our proposed work can
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be useful in the process of building a body of empirical knowledge helping developers
and organizations write safer and more secure smart contracts.

5 Conclusion and Future Work

Research on smart contract programming’s evaluation is quite young and there is still a
long road ahead to reach its maturity. This paper realizes an evaluation of the current
languages as a fundamental step towards reaching this maturity and obtaining useful
advances. The given evaluation included an experiment that was performed to compare
the usability and security vulnerability of the three domain-specific languages, namely
Solidity, Pact and Liquidity. The experiment results demonstrated that although
Solidity is the most usable language for a new developer to program smart contracts, it
is the least secure language to vulnerabilities. On the other hand, Liquidity and Pact
show lower usability but seem secure for now. Consequently, our results contribute to
the body of experimental evidence about the usability and security of the smart contract
programming languages, which is currently scarce.

In future, we intend to conduct more experiments in order to improve the gener-
alizability of our results in this paper. There are several points that can be suggested to
be reinforced towards obtaining more solid conclusions for the comparison of smart
contract programming languages. These might include the conduction of experiments
with (i) extra object programs (test contracts) that will comprise larger systems with
varied context parameters such as application domain or size; (ii) more
diversified-background of human subjects; (iii) new upcoming smart contract pro-
gramming languages that are being developed.
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