l‘)

Check for
updates

Algebraic Service Composition
for User-Centric IoT Applications

Damian Arellanes®) and Kung-Kiu Lau

School of Computer Science, The University of Manchester,
Manchester M13 9PL, UK
{damian.arellanesmolina,kung-kiu.lau}@manchester.ac.uk

Abstract. The Internet of Things (IoT) requires a shift in our way of
building applications, as it is aimed at providing many services to soci-
ety in general. Non-developer people require increasingly complex IoT
applications and support for their ever changing run-time requirements.
Although service composition allows the combination of functionality
into more complex behaviours, current approaches provide support for
dealing with one IoT scenario at a time, as they allow the definition
of only one workflow. In this paper, we present DX-MAN, an algebraic
model for static service composition that allows the definition of com-
posite services that encompass multiple workflows for run-time scenarios.
We evaluate our proposal on an example in the domain of smart homes.

Keywords: IoT applications + Algebraic service composition
Scalability - Exogenous connectors + End-user development -+ DX-MAN

1 Introduction

The Internet of Things (IoT) promises a new era in which every physical world
object and all living entities will be interconnected through innovative dis-
tributed services. Thus, the scale of IoT applications will go beyond human
mind expectations.

IoT applications are mainly aimed at providing value to society in general.
People with no development expertise are able to control, manage and customize
their own applications [6,11]. For this reason, IoT requires a shift in our way of
building applications: a developer must be able to create a generic application
that encompasses multiple scenarios, in order to accommodate as much as pos-
sible the run-time user requirements. Thus, users will be able to autonomously
choose a behaviour among the alternative ones.

Although some scenarios are simple, many others require the combination
of a huge number of services. Hence, service composition is crucial for building
complex ToT applications. However, designing a generic composite that accom-
modates multiple IoT scenarios is not trivial, since user requirements may vary
from one scenario to another. Moreover, the dynamism of IoT applications causes
an increase in the number of possible scenarios as the number of services grows.

© Springer International Publishing AG, part of Springer Nature 2018
D. Georgakopoulos and L.-J. Zhang (Eds.): ICIOT 2018, LNCS 10972, pp. 56-69, 2018.
https://doi.org/10.1007/978-3-319-94370-1_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94370-1_5&domain=pdf

Algebraic Service Composition for User-Centric IoT Applications 57

Current composition approaches do not fulfill the demands of IoT applica-
tions that require user-centric compositions of a huge number of services. This
is because their semantics allows the definition of only one workflow at a time.
Thus, tackling a new scenario would require an entirely new workflow or the
modification of an existing one. This paper proposes DX-MAN, an algebraic
model for static IoT service composition, which enables the development of com-
posite services that encompass many workflows so as to accommodate multiple
run-time scenarios.

The rest of the paper is structured as follows. Section 2 presents the related
work. Section 3 presents a motivating example. Section4 describes our model
for algebraic IoT service composition. Section5 presents examples to show the
feasibility of our model. Section 6 presents a discussion of our results as well as
challenges related to this research. Finally, Sect.7 presents the conclusions and
the future work.

2 Related Work

Current composition approaches include orchestration, nested orchestrations,
choreography, data flows and nested data flows.

Orchestration [13,22] and choreography [8,26,27] have been used for many
years in Service Oriented Architecture (SOA) and are now gaining attention for
IoT applications. Orchestration defines a central coordinator for the invocation of
operations in services. In order to eliminate the performance bottleneck caused
by the central coordinator or to support multiple administrative domains, a
number of sub-workflows can be defined in nested orchestrations [7,16]. On the
other hand, a choreography realizes a workflow through the collaborative and
decentralized exchange of messages between the services involved. Regardless
of the underlying mechanics, (nested) orchestration and choreography allow the
definition of only one workflow at a time.

A data-driven workflow, or data flow, allows the combination of data streams
from different IoT sources. It is basically a graph where nodes represent com-
putation and edges represent data paths: a node receives data, then performs
some computation and finally passes data on. Although data flows are increas-
ingly popular for IoT applications thanks to the emergence of mashups [5,14,24],
they allow the creation of one workflow at a time; and this is also true in nested
data flows [12].

Like orchestration, data flows are considered as exogenous composition mech-
anisms because a workflow is defined with no knowledge of the services involved
[18]. Reo [19,23] is a declarative language for data flows, which also has the
notion of exogenous connectors. Unlike DX-MAN, the composition of two Reo
connectors yields a more complex connector, but not a service. Of course, a Reo
connector can be transformed into a service, but this would require an extra step
as it is not part of Reo semantics. More importantly, Reo allows the creation of
one workflow at a time, like other data flow approaches.

Automatic service composition [1,9,10,22] consists of discovering, selecting
and combining services at run-time, in order to construct a workflow that fulfills

58 D. Arellanes and K.-K. Lau

a given specification [17,25,28]. It does not provide new composition seman-
tics, but it is built on top of existing ones: data flows [9], orchestration [22],
choreography [1], or any combination thereof [10]. Therefore, automatic service
composition also allows the definition of only one workflow at a time.

Other approaches [11,15,29] do not provide any composition constructs,
because they are only frameworks or software tools for end-user development.
Some of them provide support to define only one straightforward workflow at a
time, typically a sequential one.

3 DMotivating Example

To motivate our approach, this section introduces a running example. The exam-
ple is in the domain of smart homes and is based on the case study presented
in [22]. It consists of two independent services shown in Fig.1: (i) a Windows
service for opening and closing windows and (ii) a Climate service to turn dehu-
midifiers on and off. For simplicity, we only show two operations per service. The
distribution of services over IoT nodes is out of the scope of this paper.

open dehumidifierOn
close dehumidifierOff
Windows Climate

Fig. 1. Services involved in our motivating example.

Imagine a user requires different workflows at run-time depending on climatic
conditions. Automatic service composition is the best approach currently avail-
able to generate workflows on the fly. However, it allows the definition of only
one workflow at a time, since it is built on top of existing composition semantics.

For example, on a sunny day the user may want to open the windows and
turn the dehumidifier off. The workflow depicted in Fig.2 is generated by an
automatic composition mechanism so as to accommodate this user requirement.
Suppose it suddenly starts raining so the user decides to close the windows and
turn the dehumidifier on. Thus, the automatic composition mechanism would
need the generation of the entirely new workflow shown in Fig. 3.

WFO|.—>Windows.openACIimate.dehumidiﬁerOﬁﬂ@

Fig. 2. Workflow for a sunny day.

Of course, the user can express all his needs in a single step. The workflow
generated by the automatic composition mechanism for this scenario is shown in

Algebraic Service Composition for User-Centric IoT Applications 59

WFO|.—>Windows.cIoseﬂCIimate.dehumidiﬁerOn %@I

Fig. 3. Workflow for a rainy day.
sunny Windows.open— Climate.dehumidifierOff
WFO0 -
@Y Lywindows.close—p Climate.dehumidifierOn

Fig. 4. Workflow for a sunny and rainy day.

Fig. 4, and it includes the scenarios depicted in Figs. 2 and 3. If the user changes
his mind again, a new workflow would be needed.

It might seem that nested workflows are an alternative solution to this prob-
lem, as shown in Fig.5. However, their composition semantics also allow the
definition of only one workflow at a time. Thus, individual nested workflows are
required whenever user requirements change.

sunny Windows. open sunny limate.dehumidifierOff
WFO : }—»@ —@
rainy indows. close rainy limate.dehumidifierOn

WF1

Fig. 5. Nested workflows for a sunny and rainy day.

4 DX-MAN

We propose DX-MAN (Distributed X-MAN) [3] to mitigate the impact of change
of run-time user requirements. It is a multi-level service composition model [4]
inspired by algebra and the X-MAN component model [20,21], where services
and exogenous connectors are first-class entities. Figure 6 illustrates the DX-
MAN constructs which we further describe in this section.

A DX-MAN service is a distributed software unit that exposes a set of oper-
ations through a well-defined interface. It can be deployed in any IoT node such
as a Cloud, an edge device or a sensor. Distribution semantics are out of the
scope of this paper, but we refer the reader to another paper on that matter [3].

An atomic service is the most primitive kind of DX-MAN service. It is formed
by connecting an invocation connector with a computation unit (see Fig. 6). The
invocation connector provides access to the operations implemented in the com-
putation unit, and the computation unit is not allowed to call other computation
units. The atomic service interface has all the operations implemented in the
computation unit. Formally, an atomic service AS € S, where S is the type of
services, is a set of operations defined as follows:

AS = {op; | i € N} (1)

60 D. Arellanes and K.-K. Lau

@) Composition @) Adaptation @) Invocation O Computation

Connector Connector Connector Unit
" Composite [] Atomic Q
service service H H
(a) Atomic (b) Composition (c) Composite (d) Adaptation
Service Connector Service Connectors

Fig. 6. DX-MAN constructs.

Exogenous connectors are architectural elements that define explicit control
flow and encapsulate a network communication mechanism, in order to coordi-
nate the execution of an IoT application from outside services. So, services are
unaware they are part of a larger piece of behaviour.

Our notion of algebraic composition is inspired by algebra where functions are
composed hierarchically into a new function of the same type, using the operator
o. The resulting function can be further composed with other functions, yielding
a more complex one.

Algebraic service composition means that a composition connector is used as
an operator (o) to hierarchically compose >1 services, atomic or composite, into
a (composite) service. As it is constructed from sub-service interfaces, the com-
posite interface has all the sub-service operations. Like an algebraic function, a
composite service is a generalization of a particular problem because it implicitly
contains multiple workflows whose formation is constrained by the composition
connector being used. Formally, a composite service C'S € S, where S is the type
of services, is a set of services defined as follows:

CS={S;|ieNASES} (2)

DX-MAN provides composition connectors for sequencing, branching and
parallelism. A sequencer connector (SEQ) allows the invocation of sub-service
operations in a user-defined order. A sub-service operation can be associated
with >0 orders. Sub-service operations with no given order are never invoked,
and when no sub-service operation has an order assigned, an empty workflow
is thrown at run-time. Any sub-service operation can be invoked any number
of times within a workflow. Thus, a sequencer connector defines a composite
service that contains an infinite number of sequential workflows. Figure 7 shows
an example of a composite service constrained by a sequencer connector.

A selector (SEL) connector chooses the sub-service operations to be invoked,
according to user-defined conditions which are evaluated concurrently. A sub-
service operation can be associated with exactly zero or one condition. Sub-
service operations with no condition associated are never invoked. When no

Algebraic Service Composition for User-Centric IoT Applications 61

'S4 opll [op31
SEQ™ D)
o1 os
—
I
op11 [op21 J}|[op31] opil opl2” op2l op3l op32
[order] [order] [order] [order] [order]
S1 S2 S3
@>0p32>@) ‘Contains © Composition (1 operation
@>op31—>0p32—>(@) Connector
@>0p31-—>0p32—»-0pll-—>0p12—>(@) :f:ggrmVIPC%SIte Dé‘ts?\r}?é%
.+op12+op12+op12»© c ined
ontaine
@>0p11l-—>»0p12—»0p21-—»0p31l-—»0p32—>(@) Workfloes

Fig. 7. Sequencer connector.

sub-service operation has a condition associated or all conditions hold false, an
empty workflow is thrown at run-time. A selector connector defines a composite
service that contains 2/ UiZ7' Sl workflows. For example, Fig. 8 shows a composite
service that contains 32 possible branching workflows as there are five sub-service
operations. We do not show all possible workflows because of space constraints.

84 S opll [op31
g op12 | op32 SEL <
op21

[op31] opll opl2 op2l op3l op32

S3 W Contains

Composition [Operation

@ Connector
""" iComposite [JAtomic
Service Service

ca3) Sy opll Contained
O @ x| >@ | Vanions
[c94), p31 [c14] 0p31

Fig. 8. Selector connector.

A parallel connector (PAR) allows the parallel invocation of sub-service oper-
ations. A sub-service operation can be invoked multiple times in parallel within
a workflow; to do so, the user needs to specify the number of jobs for each sub-
service operation. When no sub-service operation has jobs assigned, an empty
workflow is thrown at run-time. A parallel connector defines a composite ser-
vice that contains infinite parallel workflows. Figure 9 shows a composite service
constrained by a parallel connector.

Although they do not compose services, adapters can also constrain workflows
by applying additional control structures over an individual service. A looping
adapter can be used to iterate a number of times over a sub-workflow, while a

62 D. Arellanes and K.-K. Lau

54 opll | op31
PAR ## op12 | op32 PAR #
op21 —
H '
{| Cop11]| [op21]| [op31] opil opl2 op2l op3l op32
[#]obs] [#jobs] [#]obs] [#]obs] [#]obs]
st 2 53 Contalns

opll— p]_]_

op12— Dl Composition ’
.—»Eopn»@ @i OConnector [] Operation

p31 """ iCom
‘‘‘‘‘ posite [JAtomic
op32— 0p32 "Service Service

Contained
21
hggﬂ}’@ ."j p3l}>© Workflows
Fig. 9. Parallel connector.

user-defined condition holds true. A guard adapter invokes a sub-workflow only
if a user-defined condition is true.

Selection trees are abstract templates that allow the selection of workflows
at run-time. They are implicitly created from a composite service during design-
time. Figures 7, 8 and 9 show examples of selection trees for a sequencer connec-
tor, selector connector and parallel connector, respectively. In the next section,
we present examples that show how to choose workflows using selection trees.

5 Examples

This section presents two examples of using DX-MAN for user-centric IoT appli-
cations. The first example describes how a one-level composite service accommo-
dates the run-time user requirements described in our motivating example (see
Sect. 3). The second example describes how a two-level composite service enables
more complex workflows by hierarchically composing services. For both exam-
ples, we distinguish between developers and users. Developers design, deploy and
execute DX-MAN services, while users choose the workflow they need at run-
time. To do so, we developed a platform prototype [2].! Composite services and
selection tree instances are defined using JavaScript Object Notation (JSON)
documents. Due to space constraints and clarity, we omit the JSON documents
used for the examples. Instead, we show a graphical representation of composite
services and selection trees.

5.1 One-Level Composition

At design-time, the developer uses a sequencer connector SEQ0O to compose
the services Windows and Climate into a composite service C0 which contains
infinite sequential workflows (see Fig. 10). At run-time, the user only chooses the
workflow he needs from the composite CO.

! https://gitlab.cs.man.ac.uk/mbaxrda2/DX-MAN.

https://gitlab.cs.man.ac.uk/mbaxrda2/DX-MAN

Algebraic Service Composition for User-Centric IoT Applications 63

~n
Q Composition Invocation :
OConnector OConnector [Operation
co SEQ0 T open o
i Composite [J Atomic —y EXplicit
close Service Service El‘yxml
dehumidifierOn
}\ * dehumidifierOff
: 2
=
open dehumidifierOn open close dehumidifierOn dehumidifierOff
[order] [order] [order] [order]
close dehumidifierOff
Windows Climate
“™--“Contains

.—»CIimate.dehumidiﬁerOffﬂ@ \

.—»Windows.openaclimate.dehumidiﬁerOffa@
@ —>Windows.open—»Climate.dehumidifierOn —Windows.close 4>©
@ —»Windows.close—pClimate.dehumidifierOn 4>©

Fig. 10. DX-MAN architecture for the scenarios of our motivating example.

For example, on a sunny day the user chooses the workflow depicted in Fig. 2
in Sect. 3, by assigning execution order as shown in Fig. 11. Suddenly, it starts
raining so the user chooses the workflow illustrated in Fig. 3 in Sect. 3, by assign-
ing execution order as shown in Fig. 12. Thus, there is clearly no need of creating
an individual workflow or a new composite service whenever user requirements
change, but only defining an instance of the respective selection tree.

Windows.open

Climate.dehumidifierOff

open close dehumidifierOn dehumidifierOff
[0]

Fig. 11. Choosing a workflow for a sunny day.

Windows.close

Climate.dehumidifierOn
open close dehumidifierOn dehumidifierOff
[0] [1]

Fig. 12. Choosing a workflow for a rainy day.

As another example, on a cold day the user may want to only close the
windows. To do so, the user assigns the execution order shown in Fig. 13. Again,
without the need of creating an individual workflow or a new composite service.

64 D. Arellanes and K.-K. Lau

open

close dehumidifierOn dehumidifierOff
[0]

Windows.close

Fig. 13. Choosing a workflow for a cold day.

5.2 Two-Level Composition

In the previous subsection, we presented a one-level composition as a solution for
our motivating example. Nevertheless, DX-MAN allows more complex workflows
by hierarchically composing services into multi-level structures.

=

Q

C1

A
Guao ©

lightsOn

lightsOff

open

close

dehumidifierOn

dehumidifierOff

co

@o

SEQO "

open

close

dehumidifierOn

%

5

dehumidifierOff

5
Q Q
lightsOn open dehumidifierOn
lightsOff close dehumidifierOff
Energy Windows Climate

v,

i": Composite
Service

Adaptation
© Connector

Invocation
o Connector
Explicit
— Control
Flow

bntains

@ > Energy.lightsOn 4>©

@ > Energy.lightsOff —»-

@ > Energy.lightsOn —»-

condition?

condition?

no

N

= Windows.open4>CIimatedehumidiﬁerOff—»?—»@

condition?

no

— Windows.openaCIimate.dehumidiﬁerOffA»?—» Energy.lightsOn —»(@)
no

Fig. 14. Two-level DX-MAN architecture.

[J Atomic
Service

Composition
© Connector

[] Operation

=2 Wlndows.closeaCI|mate.dehumldlﬁerOnﬂ?—>Energy.l|ghtsoff4>©

Suppose there is an atomic service energy for turning lights on and off. The
developer uses a sequencer SEQ1 to compose the existing composite C0 and the
atomic service energy into a new composite C'1. He also adds a guard adapter to
invoke C0 if a user-defined condition holds true. Figure 14 shows the resulting
two-level DX-MAN composition, and Fig. 15 shows the respective selection tree.

Algebraic Service Composition for User-Centric IoT Applications 65

lightsOn lightsOff

[order] [order] [order]|[condition]

open close dehumidifierOn dehumidifierOff
[order] [order] [order] [order]

Fig. 15. Resulting tree from the two-level DX-MAN architecture.

Unlike nested workflows, a DX-MAN composite service enables an entirely
new world of alternative workflows as shown in Fig. 14. For example, the user may
want the following workflow before sleeping: turn the lights off and, if it all the
lights were successfully turned off, close the windows and turn the dehumidifier
off. To choose that workflow from C1, the user assigns the execution order shown
in Fig. 16. A condition is represented as a JSON document and specifies the name

of the parameter, the operator (only “==" and “|=" are supported at this stage)
and the value to compare with. For example, the condition for GUAO would be
{ “parameterName”: “lightsStatus”, “operator”: “==",“value”: “off ’}.

?

Energy.lightsOff

lightsOn lightsOff yes| all lights off? no
[0] [all lights 0ff?] s Windows.Close

i

Climate.dehumidifierOff

open close dehumidifierOn dehumidifierOff
[0] [1]

Fig. 16. Choosing a workflow before sleeping.

6 Discussion

We presented a preliminary version of DX-MAN in another paper [3]. In this
paper, we present additional semantics that allows the selection of workflows at
run-time. We also present a comparison between DX-MAN and current compo-
sition approaches in the context of user-centric IoT applications.

Developers can use current composition semantics (e.g., orchestration or
choreography) to define a workflow that accommodates as many run-time sce-
narios as possible. However, it is impossible for them to predict all possibili-
ties during the design-phase and, even if they try, the resulting workflow would
potentially require a lot of computing resources, because it becomes larger, more
complex and cumbersome as the number of possible scenarios increases. This is

66 D. Arellanes and K.-K. Lau

in fact highly likely in IoT applications where the number of available services
is always growing.

Although automatic service composition mechanisms could mitigate the ever
changing run-time user requirements, their overhead increases exponentially as
the number of available services grows [9]. Thus, they are only suitable for a small
number of services and straightforward workflows. A large number of services
would require a user to wait hours (or even days) before getting a responsive
application. For that reason, current automatic composition mechanisms are not
yet ready to tackle the imminent scale of user-centric IoT applications.

Even though it is focused on static composition, DX-MAN provides semantics
to enable multiple workflows at run-time. In some cases, it may be necessary to
change a DX-MAN composition at run-time so as to support even more scenar-
ios. This can be done using automatic composition or dynamic reconfiguration
techniques on top of DX-MAN semantics.

In contrast to other composition approaches, DX-MAN does not entail much
composition overhead, since there is no need to deploy individual workflows,
but only a composite service from which a workflow is chosen (not created) at
run-time. In fact, IFTTT or any similar tool can be used on top of DX-MAN to
choose a workflow, according to a set of user-defined rules.

At this point, the reader may notice that there are clearly many challenges
for future work. We discuss some of them below.

Automatic Service Composition. We believe that our work opens new opportu-
nities for automatic service composition, as this technique can be applied on top
of DX-MAN semantics. Services (with all their implicit workflows) can be com-
posed to find more possible workflows at run-time, rather than attempting to
construct only one workflow at a time. We are particularly interested in decen-
tralized approaches for automatic service composition, since decentralization is
crucial to unleash the full potential of IoT.

Self-adaptive Behaviour. Self-adaptive mechanisms can built on top of DX-MAN
to autonomically choose a workflow out of the alternative ones, e.g., based on
QoS requirements. A DX-MAN composite service can mutate so as to accom-
modate changes in the context. However, changing a composition at run-time is
not trivial, specially when the response time is critical for the user.

Workflow Validation at Run-Time. As a sequencer connector currently allows
the invocation of any operation in any order, there is a need for avoiding invalid
sequences (e.g., opening a window three consecutive times). At this stage, it is
up to the user to decide which workflows are valid.

Concurrency. DX-MAN only provides support for basic concurrency in paral-
lel invocations. However, many IoT scenarios require active services that can
be operating on their own (e.g., using a scheduler). Extending DX-MAN with
concurrent capabilities requires further investigation.

Algebraic Service Composition for User-Centric IoT Applications 67

Data flows at Run-Time. In DX-MAN, data flow is orthogonal to control flow.
Current DX-MAN semantics only allow one data flow for every possible workflow
within a composite service. For that reason, at this stage DX-MAN can only be
used in scenarios where data flow is unimportant, e.g., actuator triggering. In
more complex IoT scenarios, different data flows per workflow will be required.
Nevertheless, determining data flows at run-time according to user requirements
is a challenging task.

7 Conclusions and Future Work

Users may want to customize their own IoT applications. However, current com-
position approaches allow the definition of only one workflow at a time. This is
not desirable for IoT applications where run-time user requirements are always
changing. Although automatic composition is a promising technique to tackle
this problem, it is still based on existing composition semantics, thus allowing
the definition of only one workflow at a time. For that reason, we need to accom-
modate run-time user requirements as much as possible during the design phase.
In this paper, we presented DX-MAN as a solution for this issue.

The algebraic nature of DX-MAN is suitable to mitigate the impact of change
in run-time user requirements. We showed with a small example how DX-MAN
allows the definition of (general) composite services that contain multiple work-
flows. Users only choose the workflow they need out of the alternative ones,
rather than resort to the cumbersome and inefficient task of creating individual
workflows at run-time.

In the short term, we plan to extend the DX-MAN semantics, in order to
enhance the flexibility of composite services. Additionally, as workflows are cho-
sen using JSON documents at this stage, we would like to allow the selection of
workflows in a more interactive way (e.g., using a visual tool or voice commands).
We are in fact currently working on a visual Web editor to fill this gap.

We believe that DX-MAN opens new research directions to tackle the chal-
lenges that user-centric IoT applications pose. Given the novelty of DX-MAN, in
what creative ways can you define composite services during the design-phase,
in order to accommodate as much as possible run-time user requirements?

References

1. Ahmed, T., Tripathi, A., Srivastava, A.: Rain4Service: an approach towards decen-
tralized web service composition. In: IEEE International Conference on Services
Computing (SCC 2014), pp. 267-274 (2014)

2. Arellanes, D., Lau, K.K.: D-XMAN: a platform for total compositionality in
service-oriented architectures. In: 7th IEEE International Symposium on Cloud
and Service Computing (SC2 2017), pp. 283-286 (2017)

3. Arellanes, D., Lau, K.K.: Exogenous connectors for hierarchical service composi-
tion. In: 10th IEEE International Conference on Service Oriented Computing and
Applications (SOCA 2017), pp. 125-132 (2017)

68

4.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

D. Arellanes and K.-K. Lau

Arellanes, D., Lau, K.K.: Analysis and classification of service interactions for the
scalability of the internet of things. In: IEEE International Congress on Internet
of Things (IEEE ICIOT 2018) (2018)

Blackstock, M., Lea, R.: WoTKit: a lightweight toolkit for the web of things. In:
3rd International Workshop on the Web of Things (WoT 2012), pp. 1-6 (2012)
Brambilla, M., Umuhoza, E., Acerbis, R.: Model-driven development of user inter-
faces for IoT systems via domain-specific components and patterns. J. Internet
Serv. Appl. 8(1), 14 (2017)

Chafle, G., Chandra, S., Mann, V.: Decentralized orchestration of composite web
services. In: 13th International World Wide Web Conference (WWW 2004), pp.
134-143 (2004)

Cherrier, S., Ghamri-Doudane, Y., Lohier, S., Roussel, G.: D-LITe: distributed
logic for internet of things services. In: International Conference on Internet of
Things and 4th International Conference on Cyber, Physical and Social Computing
(ITHINGSCPSCOM 2011), pp. 16-24 (2011)

. Ciortea, A., Boissier, O., Zimmermann, A., Florea, A.M.: Responsive decentralized

composition of service mashups for the internet of things. In: 6th International
Conference on the Internet of Things (IoT 2016), pp. 53-61 (2016)

Dar, K., Taherkordi, A., Vitenberg, R., Rouvoy, R., Eliassen, F.: Adaptable service
composition for very-large-scale Internet of Things systems. In: 11th Middleware
Doctoral Symposium (MDS 2011), pp. 1-2 (2011)

Ghiani, G., Manca, M., Paterno, F., Santoro, C.: Personalization of context-
dependent applications through trigger-action rules. Trans. Comput. Hum. Inter.
(TOCHI) 24(2), 14:1-14:33 (2017)

Giang, N.K., Blackstock, M., Lea, R., Leung, V.C.M.: Developing [oT applications
in the fog: a distributed dataflow approach. In: 5th International Conference on
the Internet of Things (IOT 2015), pp. 155-162 (2015)

Glombitza, N., Ebers, S., Pfisterer, D., Fischer, S.: Using BPEL to realize business
processes for an internet of things. In: 3rd International Conference on Ad-Hoc
Networks and Wireless (ADHOCNETS 2011), pp. 294-307 (2011)

Guinard, D., Trifa, V., Wilde, E.: A resource oriented architecture for the Web of
Things. In: Internet of Things (IOT 2010), pp. 1-8 (2010)

IFTTT: IFTTT (2018). https://ifttt.com/

Jaradat, W., Dearle, A., Barker, A.: Towards an autonomous decentralized orches-
tration system. Concurr. Comput. Pract. Exp. 28(11), 3164-3179 (2016)

Jatoth, C., Gangadharan, G.R., Buyya, R.: Computational intelligence based QoS-
aware web service composition: a systematic literature review. IEEE Trans. Serv.
Comput. 10(3), 475-492 (2017)

Johnston, W.M., Hanna, J.R.P., Millar, R.J.: Advances in dataflow programming
languages. ACM Comput. Surv. 36(1), 1-34 (2004)

Jongmans, S.S., Santini, F., Sargolzaei, M., Arbab, F., Afsarmanesh, H.: Orches-
trating web services using Reo: from circuits and behaviors to automatically gen-
erated code. Serv. Oriented Comput. Appl. 8(4), 277-297 (2014)

Lau, K.K., Tran, C.M.: X-MAN: an MDE Tool for Component-Based System
Development. In: 2012 38th Euromicro Conference on Software Engineering and
Advanced Applications, pp. 158-165 (2012)

Lau, K.K., Velasco Elizondo, P., Wang, Z.: Exogenous connectors for software com-
ponents. In: 8th International Conference on Component-Based Software Engineer-
ing, pp. 90-106 (2005)

Lee, C., Wang, C., Kim, E., Helal, S.: Blueprint flow: a declarative service compo-
sition framework for cloud applications. IEEE Access 5, 17634-17643 (2017)

https://ifttt.com/

23.

24.

25.

26.

27.

28.

29.

Algebraic Service Composition for User-Centric IoT Applications 69

Palomar, E., Chen, X., Liu, Z., Maharjan, S., Bowen, J.: Component-based mod-
elling for scalable smart city systems interoperability: a case study on integrating
energy demand response systems. Sensors 16(11), 1810 (2016)
Persson, P., Angelsmark, O.: Calvin — merging cloud and IoT. Procedia Comput.
Sci. 52, 210-217 (2015)
Sheng, Q., Qiao, X., Vasilakos, A., Szabo, C., Bourne, S., Xu, X.: Web services
composition: a decade’s overview. Inf. Sci. 280, 218-238 (2014)
Tausan, N., Markkula, J., Kuvaja, P., Oivo, M.: Choreography in the embedded
systems domain: a systematic literature review. Inf. Softw. Technol. 91, 82-101
(2017)
Thuluva, A., Broring, A., Medagoda Hettige Don, G.P., Anicic, D., Seeger, J.:
Recipes for IoT applications. In: 7th International Conference on the Internet of
Things (I0T 2017) (2017)
Wang, S., Zhou, A., Yang, M., Sun, L., Hsu, C.H., Yang, F.: Service composition
in cyber-physical-social systems. IEEE Trans. Emerg. Top. Comput. (2017)
Zapier: Zapier — The easiest way to automate your work (2018). https://zapier.
com

/

https://zapier.com/
https://zapier.com/

	Algebraic Service Composition for User-Centric IoT Applications
	1 Introduction
	2 Related Work
	3 Motivating Example
	4 DX-MAN
	5 Examples
	5.1 One-Level Composition
	5.2 Two-Level Composition

	6 Discussion
	7 Conclusions and Future Work
	References

