)

Check for
updates

Using Blockchain for IOT Access Control
and Authentication Management

Abdallah Zoubir Ourad'®), Boutheyna Belgacem!®™) and Khaled Salah?(®™=)

1 Universitit Passau, InnstraBe 43, 94032 Passau, Germany
abdallah.ourad@uni-passau.de, be@sec.uni-passau.de
2 Khalifa University, Al Zafranah, Abu Dhabi, United Arab Emirates
khaled.salah@kustar.ac.ae
https://web.sec.uni-passau.de
https://www.kustar.ac.ae

Abstract. Securing Access to IOT devices is a challenging task as IoT
devices are resource-constrained devices in terms of processing, storage,
and networking capacity. Because of their fast spreading and deployment,
significant disadvantages are seen in today’s authentication and access
control schemes. This paper proposes a blockchain-based solution which
allows for authentication and secure communication to IOT devices. Our
solution benefits greatly from the intrinsic features of blockchain and
also builds on existing authentication schemes. Specifically, our proposed
blockchain-based solution, architecture, and design allow for accountabil-
ity, integrity, and traceability with tamper-proof logs. The paper provides
overall system design and architecture, and details on testing and imple-
mentation of a realistic scenario as a proof of concept.

Keywords: Internet-Of-Things - Blockchain - Smart contract
Authentication *+ Access control

1 Introduction

Internet-Of-Things concept can be defined as a system of connected comput-
ing devices in various fields and forms that can be deployed everywhere. These
devices can communicate with other devices, gather, share, and process informa-
tion to deliver a certain service [12]. According to experts from CISCO, Ericsson
and other companies, by the year 2020, we will have over 50 billion devices
connected to the INTERNET [3,18]. IOT devices are functioning in all fields
nowadays: house appliances, medical area, personal accessories, etc. To allow
such functionality, these devices must have certain characteristics. They should
posses the abilities of operating using low energy and communicating with other
heterogeneous devices. Also, They should maintain stable connection with the
back-end if existed and be able to receive patches when necessary.
Authentication and access control are key concepts to securely manage com-
puter resources and networks. Based on the previously mentioned characteris-
tics, these concepts should be redefined in the context of IOT. Authentication

© Springer International Publishing AG, part of Springer Nature 2018
D. Georgakopoulos and L.-J. Zhang (Eds.): ICIOT 2018, LNCS 10972, pp. 150-164, 2018.
https://doi.org/10.1007/978-3-319-94370-1_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94370-1_11&domain=pdf

Using Blockchain for IOT Access Control and Authentication Management 151

techniques and access control policies need to take the limited resources draw-
back into consideration. Likewise, when it comes to IOT conditions, classical
approaches for access control like ABAC (Attribute-based access control) and
RBAC (Role-based access control) are proven to be inflexible, unscalable and
difficult to upgrade [6,13].

In addition, the centralized perception of authentication where all devices
have to contact a certain entity creates a major drawback. Building a sys-
tem that depends on a trusted third party implies the assumption of a TTP
that is always available and authentic. This creates a bottleneck around the
trusted party which affects availability. Also, the model fails when the central-
ized entity is compromised. Additionally, the TTP can tamper records without
accountability. Such disadvantages in the IOT design can be overcome using the
blockchain technology.

Blockchain is known as the underlying technology for Bitcoin [9]. It can be
defined as a growing chain of records. By design, the blockchain inherits effective
characteristics in which the blocks of records are decentralized, tamper-proof and
can be accessed by all nodes equally. This concept can be extended to all types of
applications that require a trusted third party to validate records or transactions.
Blockchain made it possible to replace the trusted third party with a transparent
untampered block of records that is available via a distributed form, hence, the
trust is moved from a single entity to a decentralized community of blockchain
nodes.

An effective method that utilizes blockchain concept is the smart-contract.
Smart-Contract was first defined in 1996 as a self-operating or self-executing
program [16]. This method was reintroduced in Ethereum blockchain to facilitate
the development of blockchain automated applications.

Events and logs are Ethereum blockchain features. An event is a reply
(returned value) from the smart contract to the user interface interacting with
it. The main goal of using events and logs is to ease the communication between
smart contracts and programs communicating with them.

Figure1 demonstrates a sample scenario for an Ethereum Smart Contract
Application. First, the client requests access for a certain resource/asset from
the smart contract. Second, the smart contract checks if the asset is free then
books the fee from the client. For this example, the client is paying via Ethereum
crypto-currency. Third, the smart contract reserves the resource for the current
client. Fourth, The client uses the resource as approved. Finally, if everything
went according to the contract rules, the smart contract charges the client as
agreed. It is important to note that the smart contract acts fully autonomously
and the owner is not involved in any steps.

The rest of the paper is organized as follows. Section 2 will review various
implementations of IOT authentication solutions. Then, Sect. 3 will explain the
detailed design of the proposed solution. Section4 will clarify the implementa-
tion phases, elements, technologies and techniques. After that, Sect.5 will illus-
trate the tests performed on this paper’s approach, and the outcome results and

152 A. Z. Ourad et al.

A

o

Smart Contract

3. Book)

resource |l|

Resource Owner
R

Asset, Resource

Fig. 1. A sample Ethereum smart contract scenario.

evaluation. Finally, the paper is concluded with the lessons learned and future
plans that will help improving this solution in Sect. 6.

2 Related Work

This section presents different existing approaches to solve the problem of
authentication management and access control in IOT devices. Section 2.1 will
discuss traditional approaches used for authentication and access control in addi-
tion to their advantages and disadvantages. Solutions presented in Sect. 2.2 are
distinguished by the fact that they all use blockchain as a backbone for their
ideas.

2.1 IOT Authentication Traditional Models

A basic approach is to authenticate to each device directly using a combination
of (username, password). This method provides decent access control because
each authenticated user has his roles and permissions specified and stored on
the device by the admin (owner). However, since the user must authenticate
to each machine independently, this method produces an overhead and doesn’t
scale. This technique can be seen in classic IOT devices like IP cameras and
Internet accessed home utilities.

Authenticating using single-sign-on protocols is a more advanced solution.
For instance, when oauth2 is deployed as an authentication method, users try
to access a device by authenticating to a trusted oauth2 provider. This trusted
third party can be GOOGLE, FACEBOOK, etc. If they successfully authenticate
and have the required permissions, the trusted entity grants access. All devices

Using Blockchain for IOT Access Control and Authentication Management 153

managed by the same individual can be accessed by authenticating to the trusted
entity [14]. Figure?2 illustrates an abstract of the Oauth2 protocol flow in the
context of IOT. First, when the user tries to access the IOT device resources,
the device act as the oauth2 client and sends an authorization request to the
user. Second, the user grants the client the authority to communicate with the
authorization server i.e. the oauth2 provider. Then, the IOT device contacts the
oauth2 provider to access the user’s information in order to check if such user is
allowed to use its resources [14].

Abstract Protocol Flow

1. Authorization Request

User
(Resource Owner)

2. Authorization Grant

IOT device 3. Authorization Grant :
(Client) Authorization|

4. Access Token Server

5. Access Token

> Resource
6. Protected R ce Server

Service API

Fig. 2. An abstract for Oauth2 flow.

Using such approach saves time and effort since the user accesses multiple
entities by authenticating to a single entity. Also, the oauth2 provider is usually
a trusted third party with a high reputation which eases the integration of such
solution [14].

On the other hand, trusting a centralized entity increases the threat of hav-
ing a single point of failure which threatens the availability of the presented
approach. Moreover, if the user’s account or the centralized entity were compro-
mised, the whole system is affected. An essential attack vector that may lead
to this model’s failure is phishing which has a high successful rate. In addition,
spear phishing campaigns are getting more intensive, precise and sophisticated
nowadays which may even trick the educated users [2]. According to Symantec
Latest Intelligence Report for June 2017, 76% of organizations came forward of
being phishing victims in 2016 [11].

The approaches discussed so far present a valid implementation for 10T
authentication. However, they suffer from some drawbacks that may affect scala-
bility, performance and availability. The following approaches have the potential
for an IOT authentication management and access control solution that uses
blockchain technology.

154 A. Z. Ourad et al.

2.2 Blockchain Based Authentication Models

AuthO introduced a method to authenticate to a server via Ethereum blockchain
using a challenge-response method. The drawback discovered in authO approach
is the need of a 3rd party authentication server. It is a hybrid solution that
combines the decentralization of blockchain with the centralization of a trusted
third party. The problem of “Single Point of Failure” or “Single Point of Trust”
will reappear with this approach. According to AuthO, the centralized server
holds an essential role since it is involved in 62.5% of the whole operation. This
increases the dependency on a centralized entity which contradicts the benefit
of using blockchain technology [10].

Blockstack is presenting the concept of a new decentralized INTERNET.
This network contains applications for authentication and storage. The system
utilizes a user’s keypair to authenticate in a similar manner to PKI. When a
users is authenticated correctly, a unique JSON Web Token is created. The
JWT permits access to all pre-authorized resources via the one authentication
process validated previously.

On the downside, blockstack has many requirements to operate. The goal
of this system is to shift to a newly decentralized network therefore, the first
requirement is to use a blockstack browser. If not, then blockstack app should
be installed on the user’s machine. In addition, the system built an additional
two layers on top of blockchain - peer network layer and storage layer -
which increases the operational overhead. Finally, the entities interaction is based
on a new domain name protocol called the Blockchain Name System as a
replacement for traditional DNS [7]. BNS is one of many novel implementations
that are aiming to replace classic domain name system. More examples include
NameCoin and Ethereum Name Server [1].

3 Proposed Systems Design and Architecture

The paper offers a blockchain based solution with distinct system architecture. It
addresses the drawbacks of current solutions. Also, it should be portable and run
on any network with minimum dependencies unlike blockstack. It is targeting
IOT devices that lack strong processing power. It is also presenting the idea
of Oauth implementation via smart contract to login once and control all the
authorized devices without the need to login separately for each IOT device.
In addition, the IOT devices can run smart contracts to become self profiting
devices.

Section 5.1 will discuss the costs of this solution. Section 5.2 will go over the
tests operated on a running prototype in addition to the test outcome. Tests
will include performance experiments and crafted attacks against them. Then,
Sect. 5.3 will evaluate in terms of availability, scalability, decentralization, tamper
proof and performance advantages and drawback.

There are many advantages for using Ethereum blockchain as a platform
for this solution. Ethereum has a stable development framework with existing

Using Blockchain for IOT Access Control and Authentication Management 155

incentive for miners to solve challenge hashes. Also, Ethereum light client pro-
tocol can run on IOT devices with low processing power and memory which is
essential for the proposed solution [8].

One Time Authentication: Authenticate once Directly to the
Blockchain then Access the Resource Using Smart Contract Tokens:
In this scenario, the user authenticates to the smart contract which verifies
his/her identity. The smart contract then determine if the user is allowed to
access the resources. The authentication is performed in an isolated phase. When
succeeded, the user can interact with the device in any preferred method e.g., ssh,
http, https, etc. This accomplishes decentralized authentication in an efficient
way. The evaluation of this solution will be discussed in Sect. 5.

3.1 Assumptions

To implement such solution, the following assumptions must be taken into con-
sideration:

— The user owns one or more 10T devices.

— The user’s Ethereum keystore is not compromised i.e. the private key is pro-
tected.

— The user has an Ethereum account.

— The user and the IOT device are connected to the Ethereum blockchain

— The user will deploy his smart contract.

The system can budge the last assumption with full functionality. A central-
ized smart contract that authenticate users to their respective IOT devices can
be created. However, since one of the goals of this paper is to avoid depending
on a central entity. It is more suitable to ask users to deploy their own smart
contracts so they can achieve full control of their own systems. This will shape
a system of decentralized smart contracts running on a decentralized blockchain
where each user owns his/her smart contract.

3.2 System Architecture

The message sequence diagram shown in Fig. 3 illustrates the steps of the authen-
tication process as follows:

1. The user Authenticates to the smart contract using his Ethereum wallet
address.

2. If the user is valid, the smart contract broadcasts an Access token and the
sender’s ethereum address. The user and the IOT device receive the broad-
casted information from the smart contract.

3. The user crafts a package that contains (Access token, User IP, Access dura-
tion and the ethereum public key). This package is signed using the ethereum
private key then sent with the corresponding public key. The package can be
encrypted if wanted. However, It is not required for the protocol to operate.
Integrity is what matters in this scenario hence the signing of the message.

156 A. Z. Ourad et al.

4. When the IOT device receives the package, it verifies its content. If succeeded,
the device grants access to the user from the sender’s IP for the duration
specified. Otherwise, if any of those checks fails, the request is dropped. The
verification phase is described in Sect. 4.2.

A
J v

user Smart Contract IOT device

1. Authentication Request

2. Event(Access token + Sender Address)

<

3. send(Token+IP+Duration+Puhblic_K)Signed + Public_K

4. Access Granted

Fig. 3. The second solution authentication scenario.

The smart contract completes its authentication task in the first step. It is
noted that the IOT device needs to perform many verification steps. However,
as discussed in Sect. 5, this solution runs successfully on a standard raspberry
Pie 3 Model B. More details on the technical specifications of the smart contract
and the IOT server are explained in Sect. 4.

4 Implementation and Deployment

Implementing the proposed solution can be compartmentalized to the separate
phases that can be built individually then integrated accordingly. This will facil-
itate the developing process. Also, debugging will be easier once challenges are
faced. The presented solution will be explained in two subsections. The first
subsection will explain the Smart contract functionality and how it performs
authentication as the first phase. The second subsection discusses the authenti-
cation interaction between the user and the IOT device after the first phase is
successfully executed.

4.1 Phase 1: Smart Contract

As mentioned in Sect. 3, the first phase occurs when the user authenticates to the
smart contract to prove he/she is a legitimate user. Pseudo-code below describes

Using Blockchain for IOT Access Control and Authentication Management 157

the source code of the smart contract. This version of the smart contract only
considers the admin user as a legitimate user. In other words, the user who
deployed this smart contract on the blockchain is the admin user. Adding more
users can be achieved by adding an addUser() method to the smart contract.

The Smart Contract of the Proposed Solution:

contract Login2

Declare Private owner, hash, token_raw, random_number
//begin constructor:

owner = msg.sender;

End Constructor

Private Function login_admin()

IF msg.sender == owner
set random_number = random(1,100);
set hash = keccak256(msg.sender,now,random_number) ;
trigger even LoginAttempt(msg.sender, hash);

Endif

End Function

End Class

(Source code is available on: https://github.com/sasukeourad/OTA)

When users want to authenticate, they use their Ethereum client to call
method login_admin. The login_admin function requires no parameters and it
is protected from public usage i.e. only authorized users can call it because a
modifier performs the verification of the sender’s Ethereum address. If a verified
user calls this function, login_admin creates a random hash using function rand.
Then, login_admin creates a token by hashing the user’s ethereum address, block
time and the random hash created in the latest step. After that, an event is
initiated to send the token and the authenticated user’s address back to the IOT
device and user to proceed with phase 2.

4.2 Phase 2: User-IOT Interaction

When phase 1 is completed successfully, the user and the IOT device receive an
authentication token and the Ethereum address of the authorized user. Phase 2
connects the two entities together. Note that this solution assumes that the user
knows the address - ip or domain name - of the IOT device. In case this wasn’t
true, the device address can be sent by event LoginAttempt.

User Side Implementation Flow: First, by using nodejs and web3
Ethereum client, the user’s script connects to the Ethereum blockchain lis-
tening for events coming from the deployed smart contract in phase 1. When the
event arrives, the user’s script accesses the keystore directory that contains the
user’s secret keys and extracts the private key. Note that the script needs the

https://github.com/sasukeourad/OTA

158 A. Z. Ourad et al.

key pass in order to perform such action. Then, the script extracts the public
key from the private key. The public key is hashed using keccak256 algorithm.
The last 40 bytes of the resulting hash is the Ethereum address of the user.
This Ethereum address is compared with the one received from the smart con-
tract event. This is the formal method to obtain an Ethereum address from a
keystore directory. Note that the public key usage is minimized and replaced
by the Ethereum address since the address is shorter and easier to use. This
is achieved using keythereum to access the private key and elliptic to derive
the public key. Those nodejs libraries can be found online [4,17]. Figure 4 shows
a message sequence diagram for the process of extracting Ethereum addresses
from keystores [4,17].

From Keystore to Ethereum address

Keystore Private key Public key Ethereum Address
(Directory) (Buffer) (Buffer) (Oxethereum_address)
Keythereum + Account password
Elliptic N
L4
keccak256(Public key) then take last 40 bytes
Keystore Private key Public key Ethereum Address
(Directory) (Buffer) (Buffer) (Oxethereum_address)

Fig. 4. The process of deriving the Ethereum address from the user’s ethereum keystore

After assuring that the Ethereum address received from smart contract is
the user’s address. The script starts crafting the authentication message. The
message can be described as following:

message = [token + src_ip + Auth_dur + Pubk] (1)
Where:

token: is the token received from the smart contract.

— src_ip: is the ip address the user will connect from.

— Auth_dur: is the duration for the authentication validity before it is revoked
and another authentication is required.

— Pubk: is the public key of the user’s ethereum account.

Finally, the message is signed using the private key of the user’s ethereum
account. The following authentication package is sent to the IOT device:

message + Signature + Pubg (2)

Using Blockchain for IOT Access Control and Authentication Management 159

I0T Side Implementation Flow: The IOT device script starts in a similar
manner to the user script. It connects to the smart contract deployed in phase
1 and listens for the desired event. When the event occurs, the script gets the
authentication token and the Ethereum address of the authenticated user. The
script waits for the user’s authentication package to arrive. If the package arrived,
the verification phase starts. If any of the verification steps fail to succeed, the
authentication package is dropped to minimize the workload on the IOT device
processing power. The process moves to the next step only if the current step is
verified.

Verification Phase Steps:

1. Is the authentication package and message in the correct format as shown in
Egs. 1 and 27

2. Is the message signature valid? This is checked using the public key in Eq. 2

3. Is the public key in the authentication package in Eq.2 similar to the one in
the message in Eq. 17

4. Is the token in the message similar to the token from the smart contract?

5. Is the source ip in the message similar to the source ip of the authentication
package sender?

6. By hashing the public key in the message and taking the last 40 bytes ... Is
the result similar to the Ethereum address from the smart contract?

If all those phases were verified, the user is authenticated. Otherwise,
the authentication package is dropped. According to BigO standards, the IF-
statement adds a linear execution complexity to the program depending on the
input. It is denoted as:

O(kn) = O(n) 3)

Where k is a constant.

5 Testing and Evaluation

After implementing the prototype of the proposed solution, this section discusses
the tests performed to assure their security and functionality. Also, the system
is evaluated against the other solutions discussed in Sect.2. In addition, the
cost required to establish the communication between the user and the smart
contract is covered. Note that generally, only “setter” functions will cost the user
since they require miners to modify the blockchain where the “getter” functions
don’t cost any time or money.

To modify smart contract attributes, a transaction should be made in the
Ethereum blockchain. The fee is calculated in GAS and paid in Ether. When
the smart contract is deployed, the owner has the choice to set the value of the
amount of gas required. A higher gas price means this transaction is mined first.
It is a trade-off between priority and cost. In December 2017 the price of “21K”
gas used is $0.01. This gas amount translates to 2 gwei which is the standard

160 A. Z. Ourad et al.

speed to perform a transaction. This cost is arguably acceptable since it provides
a decentralized authentication platform in addition to a tamper-proof block of
records. Otherwise, the alternative solution would be to trust a centralized entity
with your data where the threats of single point of failure and losing sensitive
data increase. A third option is to manage a self-owned decentralized database
which costs more for maintenance and management.

The fluctuating value of Ethereum price can raise a challenge for smart con-
tract users. Since the deployment test of this paper’s smart contract and accord-
ing to Fig.5, Ethereum value has peaked for certain interval then returned to
the normal price. The fluctuating price of cryptocurrencies is a drawback that
affects smart contract usage stability. However, this is planned to be solved in
the future consensus algorithms proposed by Ethereum.

Ethereum Average GasPrice Chart Resetzoom| =
Source: Etherscan.io
Click and drag in the plot area to zoom in
1208

808

608

GasPrice In Wei

08

21. Aug 4.Sep 18. Sep 2.0ct 16. Oct 30. Oct 13. Nov 27.Nov 11. Dec 25. Dec 8.Jan 22.Jan 5. Feb

Fig. 5. Ethereum average gas price

5.1 Costs

Table 1 illustrate the transaction cost, execution cost and the equivalent price in
US dollars for deploying and using the smart contract.

Table 1. Gas cost for running functions

Function Transaction cost | Execution cost | Total cost | Price in USD
Deployment | 275153 170457 445610 $0.212
login_admin | 64089 42817 106906 $0.051

First rows show the price of deploying the smart contract which is only done
once. It is clear that deploying the smart contract is more expensive since it
writes it on the blockchain. On the other side, the login functionality is cheaper.

Using Blockchain for IOT Access Control and Authentication Management 161

The login function can be optimized to cost less. The reason for current price is
that it generates the authentication token by hashing, generating a random num-
ber and retrieving the block hash. These prices represent the cost of using the
traditional proof-of-work consensus protocol. With Ethereum moving to stan-
dardizing the proof-of-authority protocol, these costs will decrease noticeably
since the miners’ work load will decrease too.

5.2 Testing

The testing phase was divided into different subsections. First, manual tests are
performed against the proposed solution to assure its robustness, security and
performance. Manual tests include malicious scenarios in additional to the ideal
test cases. Second, static analysis tools are used to perform automated security
assessment for the smart contracts.

Manual Testing: After running the solution prototype, the ideal scenario was
tested first. A legitimate user calls the smart contract function: login_admin
using his/her MIST Ethereum client. The smart contract sends the authen-
tication token and the user’s Ethereum address to the user and IOT device
simultaneously. According to the test, the first phase was completed in less than
4 s on a private blockchain. Then, the user connects to the IOT device by sending
the authentication package explained in Eq. 2.

Bypassing the verification steps in the IOT authentication script were tested
by performing few malicious attacks as explained below:

— A replay attack failed since the attacker’s source IP needs to be identical to
the source IP in the signed authentication message.

— Modifying the signed authentication message failed since the script verifies
the message signature.

— Injecting the attacker’s own authentication package failed since the public
key should lead to the Ethereum address of the legitimate user.

— A man-in-middle may be able to sniff outgoing authentication packages. How-
ever, integrity is protected since he/she cannot modify the signed authenti-
cation message.

The outcome of the test phase proves that this solution is secure as long as
the user’s keypairs are not compromised. The authentication tokens should be
invalidated and replaced once the authentication is successfully completed. The
next steps are outside the scope of this paper.

When testing the current solution, the test environment varies. First, most
tests are conducted in a private ethereum blockchain. This eases the process of
mining and validating transactions. After that, when the smart contract is tested
in the public Ethereum blockchain test-net, it is recommended to use Rinkeby
instead of Ropsten since it uses Proof-of-Authority instead of Proof-Of-Work
which is used in Ropsten. This will also ease the public testing process.

162 A. Z. Ourad et al.

The proof of work concept is the current method used in Ethereum main net-
work and Ropsten network to confirm transactions. A miner solves a mathemat-
ical puzzle to validate the transaction for an incentive. This approach requires
a lot of processing power to execute. On the other hand, the proof of authority
implemented in the Rinkeby test-net depends on a set of explicitly authorized
nodes instead of miners solving mathematical problems therefore, it is considered
the future of mining techniques where mining doesn’t require as much processing
power [19].

Automated Testing: Static Security Analysis: Security assessment via
static analysis was performed using mythril by ConsenSys. It uses concolic
analysis to detect security issues in smart contracts. It can operate in both
whitebox and blackbox testing scenarios. Since the smart contract source code
is available, whitebox testing was performed on it. Mythril returned no issues.

In addition, a control flow graph is created for the smart contract source code
to assure all possible paths are checked. The graph is created using Ethereum
Laser Symbolic Virtual Machine. Figure 6 shows the starting point of the smart
contract control flow diagram.

87 JUMPDEST
88 PUSH1 0x00
90 DUP1

91 REVERT

0 PUSHL 0x60 Not{ULE(4, calldatasize_Login2))

e
92 function_0x09bd5a60
5 PUSH1 0x04 93 CALLVALUE
7 CALLDATASIZE 94 ISZERO

95 PUSH2 0x0067

98 JUMPI
13 PUSH1 0x00 tract(0xff, 0xe0, calldata-togin2_0) == 0x9bdsab:
15 CALLDATALOAD

16 PUSH29 0x01000000(...)
46 SWAP1

(ETCDErET) ULE(4, calldatasize_Login2)

47DIV.
48 PUSH4 Oxfffif
(click to expand +)

Not(Extract{0xff, 0xe0, calldata_Login2_0) == 0x9bd5a60)

65 DUP1
66 PUSH4 0x95032b62 £xtral

71EQ
72 PUSH2 0x008d
75 JUMPI

Fig. 6. Starting point of Login2 CFG

Finally, another metric that can be proposed for future testing is performing
formal method tests on the smart contract to verify that all possible execution
paths are covered and anticipated. Current efforts are documented in [5,15].

5.3 Evaluation

To assure the quality of the proposed solution, the next step is to compare
it to previous solutions presented in Sect.2. The evaluation metric is based on

Using Blockchain for IOT Access Control and Authentication Management 163

Table 2. Comparing and evaluating authentication solutions

Auth/device | Oauth2 | AuthO | Blockstack | Paper sol.
Availability v X X X v
Scalability X X v v v
Decentralization | v/ X X v v
Tamper proof |X X X v v

whether the offered authentication scheme solved problems occurring in the other
authentication mechanisms proposed for the IOT devices.

Table 2 shows a comparison between the proposed solution based on Avail-
ability, Scalability, decentralization and tamper proof. For this comparison, the
evaluation metrics is defined more specifically. Availability is described as remov-
ing the bottleneck and functioning without a single point of failure. Scalability
is used here to explain the added overhead to the usage of the application when
more devices are added. Decentralization is the ability for the authentication
application to run without depending on a central entity that may break the
system if taken down. Tamper proof is the assurance that saved data and trans-
actions cannot be tampered once registered in the logs of the system.

6 Conclusion

In this paper, we have proposed a blockchain-based solution to proved authen-
ticate users to access securely IoT devices. We demonstrated how our approach
overcomes the shortcomings of existing authentication schemes. We showed that
our blockchain based solutions, using Ethereum smart contracts, can provide
tamper proof records and decentralization to improve current approaches. We
designed and implemented our solution considering real life scenarios using avail-
able IoT devices and technologies. Specifically, we showed how to successfully
authenticate legitimate users to access their IOT devices. Also, we showed that
our approach withstood crafted attacks that were attempting to hijack legiti-
mate sessions and brute force credentials. As a future work, we plan to extend
our the proposed approach with a massive scale access and authentication to
include huge number of IoT devices and end users. We also plan to test the app-
roach on real Ethereum blockchain network and measure performance in terms
of cost (or gas) consumption and scalability. We also considering monetization
aspects related to IoT devices and their data, whereby usage is paid through
crypto-token of ether.

164 A. Z. Ourad et al.

References
1. Al-Bassam, M.: SCPKI: a smart contract-based PKI and Identity System (2017)
2. Amadeo, R.: Don’t trust OAuth: why the “Google Docs” worm was so convinc-

11.

12.

13.

14.

15.

16.
17.

18.

19.

ing. https://arstechnica.com/security/2017/05/dont-trust-oauth-why-the-google-
docs-worm-was-so-convincing/

Evans, D.: The Internet of Things. How the Next Evolution of the Internet Is
Changing Everything (2011)

. George V.: A Next-Generation Smart Contract and Decentralized Application

Platform (2018)

Hirai, Y.: Formal Verification of Ethereum Contracts (2018)

Liu, J., Xiao, Y., Chen, C.: Authentication and access control in the Internet of
Things. In: 2012 32nd International Conference on Distributed Computing Systems
Workshops, pp. 588-592 (2012)

Ali, M., Shea, R., Nelson, J.: Blockstack: A New Internet for Decentralized Appli-
cations (2017)

McKinney, J.: Light client protocol (2017)

Nakamoto, S.: Bitcoin: a peer-to-peer electronic cash system (2008)

. Peyrott, S.: An Introduction to Ethereum and Smart Contracts: an Authentica-

tion Solution. https://auth0.com/blog/an-introduction-to-ethereum-and-smart-
contracts-part-3/

Symantec: Latest Intelligence for June 2017. https://www.symantec.com/connect/
blogs/latest-intelligence-june-2017

Minerva, R., Biru, A., Rotondi, D.: Towards a definition of the Internet of Things
(IoT) (2015)

Gusmeroli, S., Piccione, S., Rotondi, D.: IoT access control issues: a capability
based approach. In: Sixth International Conference on Innovative Mobile and Inter-
net Services in Ubiquitous Computing (2012)

Sandoval, K.: Why OAuth 2.0 Is Vital to IoT Security. https://nordicapis.com/
why-oauth-2-0-is-vital-to-iot-security/

Swamy, N., Hritcu, C., Keller, C., Rastogi, A., Delignat-Lavaud, A., Forest, S.,
Bhargavan, K., Fournet, C., Strub, P., Kohlweiss, M., Zinzindohoue, J., Zanella-
Béguelin, S.: Dependent types and multi-monadic effects in F*. SIGPLAN Not.
51, 256-270 (2016)

Szabo, N.: Smart Contracts: Building Blocks for Digital Markets (1996)
theethereum: Accounts, Addresses, Public and Private Keys, and Tokens. https://
theethereum.wiki/w/index.php/Accounts, Addresses, Public_And_Private_Keys,
And_Tokens

Thomson, D.: IoT and the problem of identity. https://www.symantec.com/
connect/blogs/iot-and-problem-identity

Tosh, D., Shetty, S., Liang, X., Kamhoua, C., Njilla, L.: Consensus protocols for
blockchain-based data provenance: Challenges and opportunities. In: 2017 IEEE
8th Annual Ubiquitous Computing, Electronics and Mobile Communication Con-
ference (UEMCON), pp. 469-474. IEEE (2017)

https://arstechnica.com/security/2017/05/dont-trust-oauth-why-the-google-docs-worm-was-so-convincing/
https://arstechnica.com/security/2017/05/dont-trust-oauth-why-the-google-docs-worm-was-so-convincing/
https://auth0.com/blog/an-introduction-to-ethereum-and-smart-contracts-part-3/
https://auth0.com/blog/an-introduction-to-ethereum-and-smart-contracts-part-3/
https://www.symantec.com/connect/blogs/latest-intelligence-june-2017
https://www.symantec.com/connect/blogs/latest-intelligence-june-2017
https://nordicapis.com/why-oauth-2-0-is-vital-to-iot-security/
https://nordicapis.com/why-oauth-2-0-is-vital-to-iot-security/
https://theethereum.wiki/w/index.php/Accounts,_Addresses,_Public_And_Private_Keys,_And_Tokens
https://theethereum.wiki/w/index.php/Accounts,_Addresses,_Public_And_Private_Keys,_And_Tokens
https://theethereum.wiki/w/index.php/Accounts,_Addresses,_Public_And_Private_Keys,_And_Tokens
https://www.symantec.com/connect/blogs/iot-and-problem-identity
https://www.symantec.com/connect/blogs/iot-and-problem-identity

	Using Blockchain for IOT Access Control and Authentication Management
	1 Introduction
	2 Related Work
	2.1 IOT Authentication Traditional Models
	2.2 Blockchain Based Authentication Models

	3 Proposed Systems Design and Architecture
	3.1 Assumptions
	3.2 System Architecture

	4 Implementation and Deployment
	4.1 Phase 1: Smart Contract
	4.2 Phase 2: User-IOT Interaction

	5 Testing and Evaluation
	5.1 Costs
	5.2 Testing
	5.3 Evaluation

	6 Conclusion
	References

