Chapter 2 ®
Model Predictive Control Tools Guca i
for Evolutionary Plants

Andrea Cataldo, Ivan Cibrario Bertolotti and Riccardo Scattolini

Abstract The analysis and design of control system configurations for automated
production systems is generally a challenging problem, in particular given the
increasing number of automation devices and the amount of information to be man-
aged. This problem becomes even more complex when the production system is
characterized by a fast evolutionary behaviour in terms of tasks to be executed,
production volumes, changing priorities, and available resources. Thus, the control
solution needs to be optimized on the basis of key performance indicators like flow
production, service level, job tardiness, peak of the absorbed electrical power and the
total energy consumed by the plant. This paper proposes a prototype control platform
based on Model Predictive Control (MPC) that is able to impress to the production
system the desired functional behaviour. The platform is structured according to a
two-level control architecture. At the lower layer, distributed MPC algorithms con-
trol the pieces of equipment in the production system. At the higher layer an MPC
coordinator manages the lower level controllers, by taking full advantage of the most
recent advances in hybrid control theory, dynamic programming, mixed-integer opti-
mization, and game theory. The MPC-based control platform will be presented and
then applied to the case of a pilot production plant.

A. Cataldo (X))

CNR-STIIMA, Istituto di Sistemi e Tecnologie Industriali Intelligenti per il Manifatturiero
Avanzato, Milan, Italy

e-mail: andrea.cataldo @stiima.cnr.it

1. C. Bertolotti
CNR-IEIIT, Istituto di Elettronica e di Ingegneria dell’ Informazione e delle Telecomunicazioni,
Turin, Italy

R. Scattolini
Dipartimento di Elettronica Informazione e Bioingegneria, Politecnico di Milano, Milan, Italy

© The Author(s) 2019 39
T. Tolio et al. (eds.), Factories of the Future,
https://doi.org/10.1007/978-3-319-94358-9_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94358-9_2&domain=pdf
mailto:andrea.cataldo@stiima.cnr.it
https://doi.org/10.1007/978-3-319-94358-9_2

40 A. Cataldo et al.

2.1 Scientific and Industrial Motivations

The configuration of the control system represents a key phase during the design and
management of large scale complex production systems characterized by strongly
interacting and possibly spatially distributed subsystems (such as power networks,
transport networks, data traffic networks, and irrigation networks). The increasing
amount of information to be managed and the need of flexibility and reconfigura-
bility in industrial production contexts have a direct impact on control systems to
deal with typical manufacturing problems such as routing, scheduling, and plan-
ning. Therefore, also the control systems must be flexible and scalable to cope with
the selection of different control policies, plug-and-play operations, changes in the
demand, modified conditions in the factory environment (e.g. addition or removal of
sensors and actuators), self-reconfiguration after the malfunctioning of parts of the
system.

Model Predictive Control (MPC) [1, 2] is widely used to control continuous
industrial processes, such as chemical and petrochemical plants or pulp industry.
However, its application in the discrete manufacturing industry is still in its infancy,
although great advantages could be achieved in the design of the overall production
system architecture in terms of scalability, adaptivity to changing environments,
robustness to communication limitations and faults, asynchronous communication,
reconfigurability with respect to the addition, replacement or removal of subsystems.
These properties bring to the analysis and identification of most suitable distributed
and hierarchical Model Predictive Control methodologies to be applied to flexible and
time variant production systems, characterized by a very fast evolution concerning
the whole product and process life cycle, from the ramp-up to the end-of-life.

This work proposes a two-layer control architecture based on MPC solutions to
support the design and management of control system configurations for manufac-
turing plants. The lower layer of the architecture is dedicated to control the single
piece of equipment and to consider the possible dynamic mutual influences and over-
all constraints, for example on the maximum admissible energy consumption. The
higher layer is in charge of coordinating the whole system guaranteeing the fulfil-
ment of operational and production constrains. The proposed control architecture
has been implemented into a prototype control platform.

This chapter is organized as follows. The state of the art related to MPC is discussed
in Sect. 2.2. The proposed solution is introduced in Sect. 2.3 and then further detailed
in Sect. 2.4. The industrial case and the experiments can be found in Sect. 2.5, whereas
the conclusions are drawn in Sect. 2.6.

2.2 State of the Art

Model Predictive Control (MPC) is the most popular and widely used advanced
control technique in view of its ability to cope with linear and nonlinear models
and to consider state, input, and output constraints directly in the design phase. In

2 Model Predictive Control Tools for Evolutionary Plants 41

addition, the parameters that characterize the controller working function can be
easily tuned, starting from empirical models of the system to be controlled, models
obtained with simple experiments on the plant like step or impulse responses. For
these reasons, there are nowadays thousands of applications of MPC (e.g. [3]) and
strong theoretical results have been developed [4].

MPC algorithms are usually designed and implemented according to a centralized
approach, where all the information collected by the sensors are sent to a unique
central station that computes the values of the commands to be transmitted to the
plant actuators. This centralized structure guarantees the optimality of the control
action and is suitable for many industrial plants. However, the implementation of a
centralized structure becomes too demanding in terms of computational burden and
transmission of information because of the growing complexity of the systems and of
the increasing amount of information to be managed. For these reasons, and also to
deal with large scale complex systems, many distributed versions of MPC, also called
DMPC (Distributed MPC), have been proposed in recent years. The survey papers
[5, 6] and the book [7] thoroughly describe the most recent methods. In DMPC, local
MPC regulators are used to control parts of the system and exchange information
according to a flat structure (i.e. single-level structure), in order to coordinate their
actions.

Another way to handle the control of large scale complex systems is to resort to
multilayer hierarchical control structures, instead of a flat one. At the lowest layer,
a local MPC controller is designed for each subsystem, while at the higher layer
an MPC controller (also named supervisor) coordinates and assigns high-level tasks
to groups of subsystems [5]. The hierarchical control structure can be effective and
provides a common framework to solve routing, scheduling, and planning problems.

Standard real-time protocols (e.g. Modbus [8]) are typically chosen to implement
inter-module communication, as well as communication with the plant environment,
in industrial applications. As outlined in [9] and further asserted in [10, 11], choosing
the Modbus protocol offers significant advantages. For instance, it guarantees the
resiliency of traditional fieldbus solutions. At the same time, it enables the improved
bandwidth, open connectivity, and standardization of Ethernet-based networks.

About platforms and tools available for the MPC design and implementation,
there are different industrial solutions implementing proprietary MPC algorithms,
so they do not allow modifying the structure of the control algorithm but only set the
related parameters to characterize the control behaviour. On the contrary, some tools
(e.g. HYSDEL [12], YALMIP [13]) allow to design and implement MPC algorithms,
starting from the system modelling through logic propositions, translating them into
linear expressions Mixed Logical Dynamical (MLD) model [14], and then running
the control algorithm.

42 A. Cataldo et al.

2.3 Problem Statement and Proposed Approach

The reference production system consists of production resources (e.g. machine
tools), storage spaces (e.g. buffer slots), transport systems (e.g. conveyors), and pal-
lets that are used to move the work-in-progress parts. Two relevant industrial prob-
lems related to system control are investigated: Production scheduling and Pallet
routing.

The Production scheduling problem is related to the design of a control algorithm
for the production scheduling and buffer management of a multiple-line production
plant. Itis assumed that the machines can operate at different speeds corresponding to
different energy demands. The controller must be tuned to optimally move the pallets
from a source node to one of the available machines and to decide the processing
speed through the minimization of a suitable cost function.

The Pallet routing problem deals with controlling the movement of the pallets
along the network of machines and transportation system to optimize an objective
function, while coping with problems such as traffic, starvation, bottleneck and dead-
lock.

The proposed approach exploits distributed and hierarchical MPC algorithms (see
Sect. 2.2) to design a flexible and scalable genomic MPC-based Control Platform.
This platform can assist and support industrial production system designers to dis-
tribute and integrate specific advanced model predictive control solutions into the
production system architecture, in order to impress to the whole automated pro-
duction system an adaptable behaviour. The term genomic control comes from the
analogy with the DNA model, in which the combination and the specific integra-
tion of control kernels (nucleotides) into the production system architecture (helical
structure) defines the automated production system as a whole. Control kernels will
be hosted within a virtual execution environment to guarantee their isolation and
platform independency, while preserving their real-time execution characteristics.

Among open-source virtualization products, Xen [15] can be mentioned as a rel-
evant Virtual Machine Monitor (VMM) for the x86, x86_64, and IA64 architectures.
Even though Xen has not been designed with real-time execution in mind, the research
community is actively working to overcome this limit [16, 17]. More specifically,
the RT-Xen project [18] aims at developing a fully real-time, Xen-based hypervisor.
However, the existing open-source virtualization products are characterized by two
main shortcomings:

e Due to their focus on data centres and server farms, most existing virtualization
products were not specifically designed for real-time execution. For this reason,
detailed real-time performance data are usually not publicly available and it is
unclear if, and to what extent, any real-time software hosted in a Virtual Machine
(VM) instead of a physical processing node will still satisfy its timing requirements.

e The scientific literature (e.g. [19]) has shown that the isolation of different
applications hosted on the same processing node might be less than perfect. This
is also true for VMs and especially for what concerns undue timing interferences,
which are of paramount interest for real-time execution.

2 Model Predictive Control Tools for Evolutionary Plants 43

For these reasons, in the design of the execution environment, special attention is
paid to analyse the configuration parameters of the virtualization software, as well
as their effect on the real-time characteristics of the system. Secondly, it is necessary
to carry out a preliminary evaluation of the degree of isolation provided by the
virtualization software with respect to concurrent execution of multiple VMs on the
same processing node.

Each control kernel is equipped with a specific standardized software communica-
tion interface to exchange data with the external environment (i.e. hardware devices
in a production system). The same interface also takes care of the internal communi-
cation between control kernels. Following the analysis reported in Sect. 2.2, Modbus
has been chosen for internal communication between MPC modules.

The careful deployment of control kernels in a virtual execution and communica-
tion environment further improves flexibility because it makes control kernels mostly
independent on the physical characteristics of the system without sacrificing their
real-time performance.

The obtained control solutions are optimized on the basis of key performance
indicators like flow production, peak of absorbed electrical power and total energy
consumed by the plant, so that such control algorithms are able to imprint to the
production system the desired functional properties. This is especially useful for
contemporary automated production systems that are often characterized by a fast
and evolutionary behaviour.

2.4 MPC-Based Control Platform

As anticipated, the proposed MPC-based control platform is structured in a two-layer
software control structure.

The lower layer manages a set of atomic control kernels (i.e. MPC modules)
that are deputed to implement specific MPC functionalities. Such control kernels
are selectively distributed and then integrated into the industrial production system
hardware devices (e.g. hardware controllers, sensors and actuator drivers) by the
automation plant designer to control individual pieces of equipment in the produc-
tion system. In particular, an innovative MPC algorithm for nonlinear systems has
been developed. The common approach to deal with nonlinear systems is to con-
sider simpler models obtained through linearization procedures, so that the resulting
optimization problems to be solved on-line are quite simple and compatible with
computational limitations, although the neglected nonlinearities can lead to poor
performance. Alternatively, purely nonlinear MPC algorithms require a heavy com-
putational effort and pose difficult optimization problems. An MPC algorithm has
been developed to overcome these limitations, by considering the model of the sys-
tem linearized along the planned trajectories. This method is an evolution of the
approach presented in [20] with enhanced properties with respect to the original one.

The higher layer supports the design, evaluation and implementation of the pro-
duction system automation architecture and the related control functionalities. In

44 A. Cataldo et al.

particular, this software layer implements an MPC plant coordinator taking full
advantage of the most recent advances in hybrid control theory. The software imple-
mentation is based on a workbench suitable to support the automation engineer to
formalize and implement the flexibility and reconfigurability concepts of an evolu-
tionary production system by converting automatically them into a specific selection
and combination of control kernels. Furthermore, innovative solutions based on MPC
for manufacturing systems described by Mixed Logical Dynamical (MLD) models
have been developed. MLD enables the description of the dynamics characteriz-
ing event-driven systems and gives a mathematical formulation of the logical and
operational constraints to be considered by using Boolean variables.

The control platform has been implemented in C++ programming language
and named Dynamic Control Platform for Industrial Plants (DCPIP). The Object-
Oriented programming paradigm [21] has been chosen to support modularity and
guarantee easy maintainability. Moreover, the internal data architecture is dynamic,
i.e. the platform dynamically builds the necessary data structure, according to the pro-
duction system structure, to cope with the specific plant to be controlled. Indeed, the
platform contains a block library where a certain number of specific and predefined
operating machine control modules (the so-called kernels) are stored.

DCPIP offers specific structural and functional characteristics to deal with the
control kernels and with the higher software level pertaining to the coordinator control
algorithms.

The MPC controller was developed in MATLAB, making use also of the YALMIP,
HYSDEL and CPLEX software tools. The MPC algorithm is managed by the DCPIP
control environment by launching the following computation phases:

Building of the optimization problem (model of system and cost function).
The state of the system to be controlled is acquired (Input).

Solving of the optimization problem.

Application of the calculated control action.

The DCPIP can be interfaced with either a real plant or a virtual plant that can be
modelled as discrete event simulator. No change is required in the DCPIP if the sim-
ulator accurately represents the real plant from the point of view of the Input/Output
variables.

The control kernels represent software modules that are dynamically generated
during the DCPIP start-up to provide specific control and communication function-
alities. Since the Object-Oriented paradigm is used for the DCPIP implementation,
then the generic kernel can be described in terms of a class object that are instantiated
according to the specific plant to be managed. The control kernels needed to design
the DCPIP are:

Task_Manager

Line_Supervisor / Plant_j_Line_Supervisor
Machine / Machine_j

Controller / Controller_j

Interface_vs_ext / Interface_vs_Txt_file / TCP_IP

IS
[

2 Model Predictive Control Tools for Evolutionary Plants

Plant_j_Line_Supervisor

Plant j supervisor Data

[l
]
m e

= Co lle
Plant supervisor Data ontroller_1
Plant Control algorithm

¢I

Data for Control algorithm Machine 1
Control algorithm Machine 1

]
I
]
I
]
|
]
' -
- Szt Controller_n
'

] Virtual Control algorithms

] -memberName Data for Control algorithm Machine n
] Control algorithm Machine n
i
1
i
1
i

Main_Cycle
-memberName Data Machine 1

Reset Data Machine 1

i
]
i
]
:
. e |
Virtual Reset Data function '

-memberName Data Machine n
Reset Data Machine n

Interface_vs_Txt_file

£
R/W Tt file functions

]
i
d -memberName
|
|
----------------- =t —————
-memberName ! Interface_vs_TCP_IP

" RIWTCP_IP functions
Port, IP

Fig. 2.1 Kernels architecture

A hierarchy of the different kernel classes is shown in Fig. 2.1 and further details
are presented in the following subsections.

The control software platform has to communicate the Input/Output process and
monitoring variables not only via text files but also via fieldbus (i.e. TCP). This
is very important in order to distribute the control platform on different devices
(controllers and PCs) connected to each other in a network. This allows to allocate
the control platform, the optimization process, the simulator of the plant and the plant
controllers all on different devices and to use different software technologies to run
such software components (i.e. Virtual Machines).

A kernel hierarchic architecture (including plant supervisor, machine controllers,
and communication software modules) requires the implementation of a cross-
communication between all the software components, in order to be able both to
exchange data with the plant simulator/real plant and to coordinate the different
control kernels according to specific supervisor algorithms run into specific control
kernel themselves.

46 A. Cataldo et al.

2.4.1 Main_program

This kernel contains the software instructions needed to dynamically start the whole
CP data structure configuration:

e Instantiation of the interface between the control architecture and the external
process environment.

e Instantiation of the pointer to the kernel Line_Supervisor. This software module is
responsible for the management of the data structure of the configured resources
in the Plant or Simulator.

e Start of the Task_Manager main cycle. This software program schedules the acti-
vation of the different control algorithms for each configured resource in the Plant
or Simulation model.

2.4.2 Task_Manager

The Task_Manager kernel contains all the variable and methods for the execution of
each kernel. In particular, it starts the dynamic kernel generation, performs the control
platform Main Cycle that scans the Input variable coming from the PLC/Simulator,
runs the control algorithms contained in the kernels and updates the Output variables
to be sent to the PLC/Simulator. It must be highlighted that the Input acquisition and
the Output updating are carried out by means of the communication functionalities
implemented in dedicated kernels.

2.4.3 Line_Supervisor / Plant_j_Line_Supervisor

The Line_Supervisor kernel implements the control algorithm of the plant supervisor
controller. In particular, it communicates with each machine control kernel (horizon-
tal or cross communication) besides with the PLC/Simulator by means of the I/O
data exchanged via text files or TCP protocol.

This class takes advantage of the object-oriented paradigm because the classes
derived via inheritance from Line_Supervisor (Plant_j_Line_Supervisor) can imple-
ment specific control algorithms for the considered industry sector (Petro-chemical,
Pulp&Paper, Wood, Steel, Automotive, etc.) by means of on virtual functions.

2.4.4 Machine / Machine_j

The Machine kernel contains variables declaration and relative methods to perform
the data structure management of the generic machine that must be controlled. The

2 Model Predictive Control Tools for Evolutionary Plants 47

Machine_j kernels represents the specific machine control algorithm implementation.
This means that the machine control strategies must be implemented in such kernels.

2.4.5 Controller / Controller_j

The Controller kernel contains the control algorithm of the corresponding machine
to be controlled. Each machine is characterized by its own control functionalities,
therefore the Controller class has some virtual functions that are specialized in the
derived class controllers Controller_j.

2.4.6 Interface_vs_ext / Interface_vs_Txt_file/TCPIP

The Interface_vs_ext kernel implements the communication of the Machine_j con-
troller and Line_Supervisor controller kernels with the external environment, e.g.
all the Input/Output data exchanged between the kernels and the PLC/Simulator.
This class has methods to execute the Read/Write functions on the Input/Output
data, according to the different communication methods (e.g. text file and TCP pro-
tocol). Furthermore, this class is virtual because there are different communication
channels and further communication protocols could be defined and added to the
control platform structure. The Interface_vs_Txt_file and Interface_vs_TCPIP ker-
nels implement the specific communication methods, being classes derived from the
parent class Interface_vs_ext. The Read/Write functions are specialized according
to the relative communication channel (Text files or TCPIP protocol).

2.5 Testing and Validation of Results

This section presents how the control platform (Sect. 2.5.2) was customized for a
reference industrial case (Sect. 2.5.1) to run a set of experiments (Sect. 2.5.3).

2.5.1 Industrial Case

The reference industrial case is a de-manufacturing pilot plant (Fig. 2.2) implemented
in the lab of CNR-STIIMA (ex CNR-ITIA) [22-24]. The system was designed for
testing and repairing of printed circuit boards (PCBs) and it consists of four cells and
a transport line based on transport modules, in particular:

48 A. Cataldo et al.

Fig. 2.2 De-manufacturing pilot plant

e Cell M1 consists of a robot cell able to load/unload the PCBs on a pallet that is
then placed on the transport line to be moved towards other machines.

e Cell M2 consists of a testing machine where PCBs are tested in order to identify
the specific faults.

e Cell M3 consists of a reworking machine where PCBs are repaired by replacing
failed components.

e Cell M4 that is able to unload the PCB from the pallet. Then the PCB is sent to
the recycling area of the plant.

e 15 Transport Modules TMi (with i ranging from 1 to 15), connected together to
compose a modular and flexible transport line.

The typical sequence of operations performed by the de-manufacturing plant
consists of the following steps:

e The board is loaded on a pallet by M1.

e The transport line moves the pallet to M2 where the board is tested and possible
failures are identified to decide whether the board is sent to M3 or M4.

e If a repair is needed, then the pallet with the board is sent first to M3 and back to
M2 to test it again.

o If the board is properly working, then it is sent back to M1 where it is unloaded
from the pallet and stored in the warehouse. Otherwise the board is sent to M4.

e After the board is removed, the pallet is ready to load a new board and start a new
cycle.

The Transport Modules enable to move the pallet and stop it in specific positions
based on the transport line topology, on the configuration of each module in terms of
mechanical structure, on the automation system instrumentation (i.e. actuators and
sensors), and on specific low level control system functionalities. Thus, the pallet
can be moved from a specific position to another one called Buffer Zone (BZ;;), or
in general Node N, where BZ; ; represents the j-th stop position on the i-th transport
module [25]. If these Buffer Zones are considered from a mathematical point of
view, then the plant can be seen as a graph whose nodes represents all the possible

2 Model Predictive Control Tools for Evolutionary Plants 49

Testing
(M2)

N32

Load/unload
Board (M1)

: v i u2e,3c
Discharge Board B BZ12, B BZ13.3 : BZ14, ¥
5

3! (Ma)

Fig. 2.3 Pilot plant graph representation

positions the pallets can take and the arcs define the possible movements between
those positions. Each machine can be seen as a special node that must be visited by
the pallet for a minimum amount of time (i.e. the processing time). The resulting
reachability graph is depicted in Fig. 2.3. This kind of graph can also be automatically
generated thanks to artificial intelligence (Al) techniques as discussed in [26].

2.5.2 De-manufacturing Pilot Plant Control Platform
Implementation

The extended automation system architecture involving the control platform
(Sect. 2.4) and the Plant/Simulator of the industrial case were designed according
to the functional structure depicted in Fig. 2.4. A specific MPC algorithm has been
developed [27] for the de-manufacturing pallet transport line [28].

The following software components of the control platform are hosted on a PC:

e DCPIP (see Sect. 2.4). Such control system acquires via text file the Input from
the Hard Disk of the PC, elaborates it and writes the corresponding Output via text
file on the same Hard Disk.

50

A. Cataldo et al.

PC

DCPIP

MATLAB

4 MPC_Mat_Controller

SIMULATED PLANT

SIMIO

DMLine

User Extensions

LLCSim
RW_TxtFile_Row v

Hard Disk

YALMIP

CPLEX

RW_TxtFile_Column

WIN32-TGT_L

LineSupervisor

N\
N\

Custom Function Blocks \

! IDE_SocketCFB.dI

& socketclient_nb
7 (socketserver_nb)

CjCSmpl.dil

read_file
read_file_int

write_file
write_file_int
run_control

IsaGRAF Pc
Automation
Collaborative heeTerL
e | [Modue1 8| N
LLPC
LineSupervisor L5
4T PC
o1]
WIN32-TGT_L
Modules_15 —
[Modues 15] [voaums_15]

Fig. 2.4 Extended automation system architecture

REAL PLANT

2 Model Predictive Control Tools for Evolutionary Plants 51

e MATLAB where the Model Predictive Controller is implemented and run (see
Sect. 2.4).

e Simulated Plant, implemented using SIMIO commercial tool. The simulator rep-
resents the real plant from the point of view of the Input/Output variables and
performs the plant dynamics, by reading via text file the control actions that are
sent by the control environment and calculates the relative process variables.

e Plant Target WIN32-TGT-L consists of the low-level controller of the plant that
communicates with the software control environment the same way as the Simu-
lated Plant.

The software configuration of the real plant consists of:

e Soft PLC (i.e. PLC algorithms running on PC and implemented in ISaGRAF
platform) used to implement the plant low level control functionalities.

e PC, used as controllers of specific plant devices (Robot cell M1 and reworking
machine M3).

For what concerns communication, a CAN-based Modbus adaptation layer (called
Modbus CAN) has been designed and implemented. The protocol was successfully
analysed with the help of a model checker, to prove several properties of interest
related to correctness and communication error tolerance.

In order to evaluate and improve VM-based execution in a realistic scenario, close
to typical industrial automation applications, the measurements have been carried out
on a setup based on Modbus TCP communications between a master node and a slave
node. In this setup, the master node coincides with the execution environment under
test and is based upon a Tecnint Leonardo PC BOX industrial embedded PC. The
slave node has been built using a standard personal PC that mimics the behaviour
of a typical Modbus slave. Performance evaluation was based on round-trip time
measurements of Modbus TCP frame exchanges. As aresult, the Xen credit scheduler
was modified to improve the real-time behaviour of virtual machines dedicated to
real-time execution.

2.5.3 Experiments

Several experiments have been carried out to assess the performance of the proposed
approach. The obtained experimental results show a satisfactory behaviour in terms of
the number of pallets that can be loaded on the transportation line and of the average
time required to move the pallets from the initial node to their final destination.
Notably, the computational load required to solve on line the optimization problem
required by the solution of MPC is fully acceptable for the considered case.

The results obtained addressing the Production scheduling and Pallet routing
problems (Sect. 2.3), extensively described in [27, 29], show that the developed
algorithms, based on the MLD representation of the systems considered in the two
cases, are highly flexible, so that they can be easily adapted to different problems.

52 A. Cataldo et al.

Table 2.1 Task priority Master Slave

assignment for Modbus TCP -

protocol stacks Ethernet receive task +4 +3
LWIP main task +3 +2
Modbus TCP receive helper +2 n/a
Application +1 +1
Idle RTOS task 0 0

Moreover, it is easy to obtain different behaviours of the controlled manufacturing
system by properly tuning easy-to-understand parameters of the algorithm, such as
the cost function and the constraints defining the on-line optimization problem to be
solved in MPC. The MPC-MLD approach also enables to cope with dynamic changes
of the production environment, such as minimum production and maximum absorbed
power requirements in the Production scheduling problem, or local malfunctioning
of the transportation line in the Pallet routing problem. Finally, the important issue
related to the computational load required to solve on-line MILP problems has not
resulted to be a real bottleneck both in the considered simulation environment and
in the real application of these methodologies to a complex pilot plant (see [27]).

For what concerns virtual execution and communication, the experiments have
been focused on developing and analysing an appropriate priority assignment scheme
for the various tasks involved in the Modbus master and slave protocol stacks. The
main goal of the analysis has been to determine a priority assignment scheme that
minimizes communication jitter, based on previous experience on jitter analysis
gained on similar applications [30]. As it can be seen in Table 2.1, jitter reduction
has been achieved by favouring application-level message processing with respect
to the lower layers of the protocol stacks.

Afterwards, the performance of Modbus TCP communication has been evalu-
ated and compared with a plain data exchange through a direct TCP connection. The
experimental results presented in [30] show that the real-time characteristics of Mod-
bus TCP communication are affected by the underlying TCP segment acknowledge
mechanism. More specifically, this mechanism induces a significant communication
jitter that, as a result, may hinder the applicability of this method in demanding
real-time systems. It is also worth noting that the dependency between segment
acknowledgment and jitter is not straightforward and depends on multiple factors,
e.g. the above-mentioned priority assignment, the protocol stack architecture, and the
traffic initiator (resulting in an asymmetry between the timing behaviour of master
requests and slave responses). Further experiments carried out on the same testbed
have also provided additional insights on the overhead of the Modbus protocol stack
layer with respect to a streamlined, custom TCP-based protocol. This information can
be profitably used, for instance, in the design of other similarly distributed embedded
systems.

The implemented MPC takes into account the graph-based representation of the
plant (Fig. 2.3). Figure 2.5 shows how the control platform works if two pallets are
concurrently moved along the plant that is managed as if it consists of multiple feeder

2 Model Predictive Control Tools for Evolutionary Plants 53

Testing
(m2)

N32

Load/unload
Board (M1)

ui3z| fusza

(M4)

Fig. 2.5 Pilot plant test path definition

lines. One line feeds the reworking machine M3 and is composed of four buffer nodes
(Ns, No, Ny, Nj,); the other line feeds the testing machine M2 and is composed of
one buffer node (Nj¢). Therefore, the approach proposed in Sect. 2.3 can be applied
in this part of the pilot plant that is equivalent to a generic plant with two operating
machines working with different processing time and two feeder lines with different
length.

2.6 Conclusions and Future Research

Motivated by the advanced capabilities of MPC in the process industry and the
increasing demands of high performing controllers, this work has applied MPC also to
the discrete manufacturing industry by developing a new optimization-based control.
We focused on the buffer management and the production scheduling of a multiple-
line production plant, aiming to provide optimal scheduling strategies with respect to
production requirements. Experimental results show that the algorithm can be highly
adapted to obtain different behaviours, by means of simple and easy-to-understand
parameters of the cost function. Moreover, such algorithm allows to dynamically
change the minimum production and the maximum energy available and to choose,
if present, which possible constraint should be violated if necessary [29]. All these

54 A. Cataldo et al.

features can be hardly achieved with standard controllers or with simple scheduling.
The activities related to real-time communication led to a better understanding of the
TCP acknowledgment mechanism in the context of Modbus TCP communication
[30], as well as the definition of a CAN transport layer for Modbus [31].

The research activity related to the design of hierarchical control systems for the
manufacturing industry has been described in a number of journal and conference
papers. Specifically, the Production scheduling problem, together with the method-
ology adopted for its solution, has been the object of the paper [29], and related
results have been reported in [32]. The results obtained in the Pallet routing problem
have been extensively described in [27, 28]. Finally, an innovative methodology to
compute the energy consumption of manufacturing systems has been proposed in
[33].

Concerning future developments of the activity, the computational effort is obvi-
ously one of the main obstacles to the diffusion of Model Predictive Control in
manufacturing systems, and many improvements are still required to design efficient
control algorithms. Distributed optimization methods must be developed, in partic-
ular for MLD models, in order to be able to control larger and larger systems and
to provide new and efficient solutions. Another important topic of future research
concerns the possibility to customize the algorithms and the creation of libraries of
models to reduce the development times.

Acknowledgements This work has been funded by the Italian Ministry of Education, Universi-
ties and Research (MIUR) under the Flagship Project “Factories of the Future—Italy” (Progetto
Bandiera “La Fabbrica del Futuro”) [34], Sottoprogetto 2, research project “Genomic Model Pre-
dictive Control Tools for Evolutionary Plants” (IMET2AL).

References

Camacho EF, Bordons Alba C (2007) Model predictive control. Springer
. Maciejowski JM (2002) Predictive control with constraints. Pearson Education Limited, Pren-
tice Hall

3. QinSJ, Badgwell TA (2003) A survey of industrial model predictive control technology. Control
Eng Pract 11:733-764

4. Rawlings JB, Mayne D (2009) Model predictive control: theory and design. Nob Hill Publish-
ing, Madison, WI

5. Scattolini R (2009) Architectures for distributed and hierarchical model predictive control—a
review. J Process Control 19:723-731

6. Christofides P et al (2013) Distributed model predictive control: a tutorial review and future
research directions. Comput Chem Eng 51:21-41

7. Maestre JM, Negenborn RR (2013) Distributed model predictive control made easy. Springer

8. Modbus-IDA (2006). Modbus application protocol specification V1.1b. http://www.modbus-
ida.org/

9. Ballarino A et al (2014) On the performance of an automation solution based on IEC 61499 and
OPC UA. In: Proceedings of the 17th IEEE conference on emerging technologies and factory
automation (ETFA), pp 1-6

10. McConahey J (2011) Using Modbus for process control and automation, part 1. Appl Autom
Al12-Al14

DN =

http://www.modbus-ida.org/

2 Model Predictive Control Tools for Evolutionary Plants 55

11.

12.

13.

14.

15.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

McConahey J (2012) Using Modbus for process control and automation, part 2. Appl Autom
Al12-A14

Torrisi FD, Bemporad A (2004) HYSDEL-a tool for generating computational hybrid models
for analysis and synthesis problems. IEEE Trans Control Syst Technol 12(2):235-249
Lofberg J (2004) YALMIP: a Toolbox for Modeling and Optimization in MATLAB. In: 2004
IEEE international conference on robotics and automation, Taipei, pp 284-289

Bemporad A, Morari M (1999) Control of systems integrating logic, dynamics, and constraints.
Automatica 407-427

Barham P et al (2003) Xen and the art of virtualization. In: Proceedings of the 19th ACM
symposium on operating system principles, pp 164-177

. Ongaro D, Cox AL, Rixner S (2008) Scheduling I/O in virtual machine monitors. In: Pro-

ceedings of the 4th ACM SIGPLAN/SIGOPS international conference on virtual execution
environments, pp 1-10

Yu P et al (2010) Real-time enhancement for Xen hypervisor. In: Proceedings of the 8th
IEEE/IFIP international conference on embedded and ubiquitous computing (EUC), pp 23-30
Xi S et al (2011) Rt-Xen: towards real-time hypervisor scheduling in Xen. In: Proceedings of
the international conference on embedded software (EMSOFT), pp 39-48

Cereia M, Cibrario Bertolotti I (2009) Virtual machines for distributed real-time systems.
Comput Stand Interfaces 31:30-39

Falcone P et al (2008) Linear time-varying model predictive control and its application to active
steering systems: stability analysis and experimental validation. Int J Robust Nonlinear Control
18:862-875

Ghezzi C, Jazayeri M, Mandrioli D (1991) Fundamentals of software engineering. Prentice
Hall

Colledani M, Copani G, Tolio T (2014) Management in manufacturing. In: Proceedings of the
47th CIRP conference on manufacturing systems

Copani G et al (2012) Integrated de-manufacturing systems as new approach to end-of-life
management of mechatronic devices. In: 10th global conference on sustainable manufacturing,
Istanbul, Turkey

Tolio T, Copani G, Terkaj W (2019) key research priorities for factories of the future—part II:
pilot plants and funding mechanisms. In: Tolio T, Copani G, Terkaj W (eds) Factories of the
future. Springer

Cataldo A, Scattolini R (2014) Logic control design and discrete event simulation model
implementation for a de-manufacturing plant. Automazione-plus on-line J

Terkaj W, Urgo M, Andolfatto D (2017) Answer set programming for modeling and reasoning
on modular and reconfigurable transportation systems. In: Proceedings of the 2017 federated
conference on computer science and information systems

Cataldo A, Scattolini R (2016) Dynamic pallet routing in a manufacturing transport line with
model predictive control. IEEE Trans Control Syst Technol 24:1812-1819

Cataldo A, Perizzato A, Scattolini R (2014) Modeling and model predictive control of a de-
manufacturing plant. In: IEEE multi-conference on systems and control

Cataldo A, Perizzato A, Scattolini R (2015) Production scheduling of parallel machines with
model predictive control. Control Eng Pract 2840

Hu T, Cibrario Bertolotti I (2015) Overhead and ACK-induced jitter in Modbus TCP commu-
nication. In: Proceedings of the 1st IEEE international forum on research and technologies for
society and industry (RTSI)

Cena G et al (2014) Design, verification, and performance of a Modbus—CAN adaptation layer.
In: Proceedings of the 10th IEEE international workshop on factory communication systems
(WECS), pp 1-10

56

32.

33.

34.

A. Cataldo et al.

Cataldo A, Perizzato A, Scattolini R (2014) Management of a production cell lubrication
system with model predictive control. In: IFIP international conference advances in production
management systems, pp 131-138

Cataldo A, Scattolini R, Tolio T (2015) An energy consumption evaluation methodology for a
manufacturing plant. CIRP J Manuf Sci Technol 11:53-61

Terkaj W, Tolio T (2019) The Italian flagship project: factories of the future. In: Tolio T, Copani
G, Terkaj W (eds) Factories of the future. Springer

Open Access This book is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons licence and
indicate if changes were made.

The images or other third party material in this book are included in the book’s Creative Commons

licence, unless indicated otherwise in a credit line to the material. If material is not included in the
book’s Creative Commons licence and your intended use is not permitted by statutory regulation or
exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

	2 Model Predictive Control Tools for Evolutionary Plants
	2.1 Scientific and Industrial Motivations
	2.2 State of the Art
	2.3 Problem Statement and Proposed Approach
	2.4 MPC-Based Control Platform
	2.4.1 Main_program
	2.4.2 Task_Manager
	2.4.3 Line_Supervisor / Plant_j_Line_Supervisor
	2.4.4 Machine / Machine_j
	2.4.5 Controller / Controller_j
	2.4.6 Interface_vs_ext / Interface_vs_Txt_file/TCPIP

	2.5 Testing and Validation of Results
	2.5.1 Industrial Case
	2.5.2 De-manufacturing Pilot Plant Control Platform Implementation
	2.5.3 Experiments

	2.6 Conclusions and Future Research
	References

