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Abstract. Elasticity is an essential attribute of cloud data center, which is critical
for operating resources in face of peaks and valleys of business. At present, the
automatic scaling technique of virtual machines is widely studied, but barely for
physical machines. Despite lack of flexibility, we all know that physical server
can perform faster and more efficiently than virtualized instances, especially in
Network Function Virtualization (NFV) systems. Some virtual network functions
(VNFs) actually require high performance computing, which is a hard task for
virtual machines. Besides, good management of bare metal resources can be
significant for the data center power cost and human maintenance cost. Accord‐
ingly, we think that auto-scaling of physical machine is worth studying. This paper
proposes a bare metal automatic scaling scheme based on workload prediction,
and finally make tests on an open source NFV platform. The new scheme obtains
good result on computation intensive VNFs scenario, including complete the
scale in minutes, guarantee for the continuity of VNF processing business, and
can cope with the load fluctuation better.
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1 Introduction

MEC offers storage and computational resources at the edge, reducing latency for mobile
end users and utilizing more efficiently the mobile backhaul and core networks.

Network Function Virtualization (NFV) will leverage modern technologies such as
those developed for cloud computing, which provides an analysis of the MEC orches‐
tration considering standalone services, service mobility, joint network and service
optimization as well as a comprehensive study of current orchestrator deployment
options. That is to say there is always an edge data center behind the NFV system [1],
and this kind of cloud data center usually consists of several servers, the workload time
series for the whole cluster appear to be large fluctuation. Only auto-scaling of virtual
machines cannot meet the needs of all. Some specific use-cases, for example, in the high-
performance computing clusters, computing tasks that require access to hardware
devices which cannot be virtualized [2], and for the database hosting (some databases
run poorly in a hypervisor), single tenant dedicated hardware for performance, security,
dependability and other regulatory requirements. When the cloud infrastructure rapidly
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deployment, it’s necessary for auto-scaling of bare metal resources. But managing that
large number of physical servers is a hassle, if all by human operations, to ensure the
quality of service (QoS) is an obvious challenge. Cloud computing itself has the char‐
acteristics of independent, safe, reliable, elastic, durable and others, so the automatic
scaling of bare-metal resources is necessary.

Amazon Web Services (AWS) developed the first virtual machine auto-scaling tech
in the industry, which is a solution for the holiday’s 5 times shopping rush to normal
flow. Moreover, the automatic scaling technique was applied to more areas, such as
some of the virtualization resources of cloud computing. Accordingly, we consider how
to make the bare-metal resources become more elastic for the ever-expanding data
center. Traditional redundancy allocation can cause wasting of resources, so the main
thing to do is to narrow the gap between allocating resources and actual needs.

However, there is no unified operating platform for bare metals currently, and we
can only manage through some access and configuration tools such as IPMI, Cobbler or
Ansible. Moreover, making all these processes automated is not easy, which requires a
complete and elaborate workflow to complete, including new machines discovery, nodes
deployment, as well as balance workloads to new online machines.

Besides, in advance allocation of resources can greatly improve quality and reduce
the response latency of applications. Therefore, it is critical to find resource bottlenecks
in time. We adopt Zabbix [3, 4] as a monitor, which is powerful and easy to expand. A
recent survey classifies auto-scaling techniques into several major categories [5],
including static policies, threshold-based polices, reinforcement learning, control theory
and time-series analysis. For our design, we combine threshold rules and time-series
analysis to make a suitable auto-scaling schedule algorithm. Based on the above tech‐
niques, we present an automatic horizontal scaling [6] algorithm for bare metal resources
and made a series of experiments on this.

The second section introduces our related work. The third section describes details
of our design framework, including core algorithm and related platform configurations.
The fourth section describes detailed experiment steps and data comparisons. Finally,
we conclude at the fifth section.

2 Related Work

NIST explained “rapid elasticity” as “capabilities can be elastically provisioned and
released, in some cases automatically, to scale rapidly outward and inward commensu‐
rate with demand” [7]. The purpose of elasticity as defined in [8] is to provide perform‐
ance, cost, increase infrastructure capacity, energy. All of these can be related to user
load.

Due to the elasticity demand of physical server resources on NFV system, this paper
probes into the automatic scaling of the bare metal resources. Here we use OpenStack
[9] powered cloud as NFV infrastructure. It is well-known that OpenStack is an open
source cloud platform, which has an excellent distributed architecture. A normal Open‐
Stack cluster can be divided into the control nodes, network nodes, computing nodes,
storage nodes. And there is also an Ironic project, which can help us manage bare metal
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resources. Better is, there is also a Tacker [10] project, which provide a NFV MANO
conception implementations.

In addition, among many monitors we choose Zabbix, not only because it is one of
the main monitoring tools of today’s operation and maintenance staffs, but also its easy
extendibility. Based on monitoring health status of cluster hardware, Zabbix can also
make the upper application quality check, which feedback VNF response latency in time.
Besides, Zabbix can also automatically discover and register new nodes. We use custom
monitoring strategies, which are more suitable for both bare metal and NFV scenarios.
In order to ensure the stability and smoothness of the upper services, Zabbix collects
monitoring data periodically, which can be used to identify obvious features and predict
loads of next moment.

We also present an auto scaling algorithm, which fully consider characteristics of
bare metal resources, and also make full use of historical workload data for prediction.
All these enable clusters to save as much resources as possible. Due to the process of
bare metal provision is very time consuming, we need to do a good job in multi-stage
pretreatment in advance, for example, packaging VNF image in advance, making some
buffered servers, all these can make the new machine launch for work faster.

3 Architecture Design

3.1 Workflow of the Framework

Figure 1 shows our workflow, which based on a NFV Management and Orchestration
(MANO) framework. The right part of this figure is a user request process, user requests
which hit the same ASG will be dispatched to different servers by a load balancer.
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Fig. 1. Bare metal auto-scaling workflow on NFV MANO platform

Workload predictor uses historical data collected by Zabbix monitor as input sample,
to make a workload prediction with our model, and then outputs a predict workload for

Efficient Bare Metal Auto-scaling for NFV in Edge Computing 69



next moment. This prediction will be send to auto-scaling controller, which will make
a schedule decision with our design policy and send to VNF Manager (VNFM). VNFM
is responsible for the lifecycle management of VNF. A VNF Manager can manage one
or more VNFs, this is the ability to automate VNF including deployment, expansion,
scaling, offline. VNFM can receive TOSCA templates from Orchestrator and transform
them to VIM-understood profiles, and then handle bare metal instances though those
profiles.

Topology and Orchestration Specification for Cloud Applications (TOSCA) is a
service modeling language which can be used to model and deploy service function
chains (SFCs). By defining TOSCA templates, which can be instantiated using concrete
types, here we use this template to define VNF profiles. Orchestrator is responsible for
NFV resources and is the basis of the upper software resource arrangement and manage‐
ment, this arrangement ability can be flexible adjustment of the VNF instances according
to the requirements of the business. It’s the core of the automatic ability.

Virtualized Infrastructure Manager (VIM) is a cloud platform, which is responsible
for physical and virtual resource management. It can manage infrastructure resources,
and schedule servers to different regions. Besides, our bare metal conductor will handle
scaling actions in time.

3.2 Bare Metal Provision

According to our design, there are mainly three stages on bare metal provision, basically
are as follows:

Machine Discovery: SNMP or INTEL RSA can be used to discover new electrically
charged bare metals and report their information to conductor. Also, zero-conf provides
a really good alternative for general bare metal discovery scenario, which does not rely
on dedicated switches.

OS Installation: Nova uses Ironic driver to install operating system for the bare metals,
and the images are provided by OpenStack glance service. This process is also the most
time-consuming phase, average requiring approximately 20 min.

Software Configuration: Here we use tools like Ansible, Chef and puppet. Due to the
new launched node will report its metadata to the controller voluntarily, and then auto‐
matically register to the corresponding cluster. We configure Zabbix agent and some
service synchronize operations.

3.3 Monitor Configuration

Zabbix makes a good monitor for cloud data center, it is competent for large-scale
cluster, can support IPMI and network equipment monitoring, besides, it is easy to
extend, which is very suitable for NFV platform. According to [11], CPU accounts for
60% of the host’s power consumption, and can basically represent machine energy
consumption. We also use CPU load as default workload. Workloads of each processor
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can be detected by Zabbix agent periodically. Here we configure our Zabbix monitoring
items: average CPU load of each physical server, average response latency of each VNF,
and Power status of each physical server.

In Eq. (1), we define the workload of an ASG is the sum of workload of every
processor in it.

Load(t) =

m∑

i=1

Load(t, i) ∗ CoreNum(t, i) (1)

Another monitoring item is used to reflect the real-time service quality of VNFs. In
Eq. (2), we define the average VNF responding latency of an ASG is the average latency
of VNFs on every active server in the same group.

Latency(t) =

m∑

i=1

Latency(t, i)

/
m (2)

Auto-Registration: when a new machine is in the provision stage, it will be config‐
ured with a Zabbix agent, this agent can then be found by Zabbix server in local area,
and then the machine will be registered to the corresponding auto-scaling group (ASG).

3.4 Workload Prediction Model

There are many forecasting models currently, including time series model, differential
equation model, gray prediction model and so on. Differential equation model is based
on the assumption of local rule independence, and the solution of it is difficult to obtain.
And gray prediction model can be highlighted only when its prediction sequence has an
exponential growth characteristic.

We choose autoregressive and moving average (ARMA) model [12], a time series
prediction model, to predict the workloads of ASGs, and then convert to the schedule
of bare-metal resources by schedule program.

In Eq. (3), we show an AR (3) as special shape, which is using a linear combination
of the workloads of the previous three moments, to describe the workload predictions
for the next moment. This equation is a result of what we screened through experiments
(Fig. 2).

Loadpre(t + 1) = 0.8Load(t) + 0.15Load(t − 1) + 0.05Load(t − 2) (3)

Loadpre(t + 1) = 0.5Load(t) + ⋅ ⋅ ⋅ + 0.5tLoad(1) (4)

Exponential smoothing prediction model is a special weighted moving average
method, [13] which predicts the future workload by assigning a larger weight to the
workload near the forecast period and making the weight from the near-far-decreasing
exponential law. In Eq. (4), the mathematical expression of is shown in Table 1.
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Fig. 2. Bare metal provision

Table 1. Related symbols and descriptions

Parameters Meanings
m Running server number of an ASG
n Shutdown server number of an ASG
k Total prediction times of an ASG
Load(t,i) Average load of server i at time t
Load(t) Predict average load of an ASG at time t
Loadavg(t) Predict total load of an ASG at time t
Loadpre(t) Predict total load of an ASG at time t
CoreNum(t,i) Core number of running server i at time t
CoreNumoff(t,j) Core number of an off-server j at time t
CoreNum(t) Working processor number of an ASG at time t
CoreNummin(t) Min predict core number of an ASG at time t
CoreNummax(t) Max predict core number of an ASG at time t
Latency(t,i) Average VNF response latency of server i
Latency(t) Average VNF response latency of an ASG
MinLoad Low average load threshold of an ASG
MaxLoad High average load threshold of an ASG

Mean Absolute Error (MAE), Mean Square Error (MSE) and Mean Absolute Percent
Error (MAPE) are three models usually used to evaluate prediction accuracy. The
smaller obtained result is, the more accurate the prediction is. In this paper, we use MSE
method to achieve better prediction accuracy, and Eq. (5) shows its mathematical
expression.

MSE =

√∑k

t=1
[Loadpre(t) − Load(t)]2

/
k (5)
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Table 2 shows the workload prediction MSE of Eqs. (3) and (4). We have a one-
week statistical analysis of the load data and forecast data from our testbed. Comparing
their mean squared errors of the two models, we can see that both models got good
experiment results, and especially, the AR model obtained better prediction accuracy
and is more stable.

Table 2. Mean squared error of prediction models

Sun Mon Tue Wen Thu Fri Sat
AR 0.081 0.079 0.120 0.083 0.181 0.168 0.125
MA 0.102 0.092 0.107 0.101 0.239 0.156 0.164

3.5 Auto-Scaling Control Logic

First, we consider scale in and scale out as the following ways, that’s a little bit different
from usually on virtual machines.

Scale-out: when VNFM triggers scale out for an ASG, according to the need to
increase the number of servers, first to find are the configured but shutdown servers in
the same group, power them up to fit the need. But if no enough off machines left, it will
then request for filling the gaps in demand by triggering provision process of bare metal
in the resource pool. Scale-in: when VNFM triggers scale in action, it just chooses the
right nodes and turn them off.

Notice that here requires all VNFs should be either a stateless type or can be auto‐
matically migrated. Stateless VNFs use a shared data layer, so they don’t need to manage
their own data. This is much easier and can be easily switched to meet the changing
requirements [14].

In fact, the bare metal pool has a garbage collection mechanism. When there is not
enough resource in it, it will find some shutdown servers in ASGs by Least Recently
Used (LRU) policy [15] and then reset PXE as the first boot device.

In the Fig. 3, there are 3 statuses for a bare metal, those are UP, DOWN and EMPTY,
which represent the basic status of active, shutdown, and released. Besides, there are
generally 4 actions for a bare metal, those are ON, OFF, DEPLOY and RELEASE. Due
to the DEPLOY action is very time-consuming, scale out always try to trigger ON action
at first, but if there is no resource in ASG, it will request from bare metal pool, and
DEPLOY new instances. Based on the above rules, a practical workflow carried out in
stages. That is about how to deal with specific overload and low load.
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Fig. 3. State transition diagram of a bare metal

Stage One: real-time acquisition of prediction samples from Zabbix’s monitoring
data. Workload predictor will retrieve sample data every 30 min (according to physical
machine acceptable interval, also avoid fluctuations). We use data of latest previous p
moments as input, and output predict results of next moment [16]. Equation (3) describes
a predict workload, it’s the sum of all processor workloads in an ASG.

Stage Two: in this threshold judgment phase, according to the real-time load of each
server, when the average load of an ASG occurs overload or low load situation, that
ASG needs to be expanded or constrained according to its current state. We use the
predict workload to adjust the number of working processors, according to Eq. (6) we
can get the average value of predict load at time t + 1. Equations (7) and (8) shows the
range of predict processor num. In Eq. (9) shows that conditions whether we need to
adjust core number or not. We take the ideal situation, where MinLoad equals 0.75,
MaxLoad equals 1.75.

Loadavg(t + 1) = Loadpre(t + 1)
/

CoreNum(t) (6)

CoreNummin(t + 1) = Loadpre(t + 1)
/

MaxLoad (7)

CoreNummax(t + 1) = Loadpre(t + 1)
/

MinLoad (8)

CoreNummin(t + 1) ≤ CoreNum(t) ≤ CoreNummax(t + 1) (9)

Stage Three: Scaling decision phase, when the condition described by inequality (9)
is not satisfied, there should be an adjustment of that ASG. if the right condition of the
inequality is not satisfied, that is, the ASG will be in a low load state and current resources
will exceed real needs. The target of the processor resource to be adjusted is the result
shown in the formula (8), the surplus processor quantity is the result shown in formula
(10). Similarly, if the condition of the left side of the inequality is not satisfied, that is,
the ASG will be in an over load state and current resources will do not meet real needs.
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The target of the processor resource to be adjusted is the result shown in formula (7),
insufficient core number is the result shown in formula (11).

Δlowload = CoreNummax(t + 1) − CoreNum(t) (10)

Δoverload = CoreNummin(t + 1) − CoreNum(t) (11)

SORT([CoreNum(t, 1),… , CoreNum(t, i),…CoreNum(t, m)], ASC) (12)

SORT([CoreNumoff (t, 1),… , CoreNumoff (t, j),… , CoreNumoff (t, n)], DESC) (13)

Stage Four: in scheduling phase, the method of sorting allocation is adopted. If it
will be in low load state, running servers in that ASG will be sorted by core number in
ascending order according to formula (12), and the servers are selected sequentially until
selected core number satisfies the result shown in formula (10). However, if it will be
in overload state, off servers in that ASG will be sorted by core number in descending
order according to formula (13), and the servers are selected sequentially until selected
core number meets the result shown in formula (11). When the result cannot be satisfied,
requests of remaining amount should be sending to the bare metal pool. Similarly, do
sorting for bare metals according to formula (13), and select bare metals sequentially
until it meets the demand, if resources in bare metal pool still cannot meet needs, then
alert for datacenter resource shortage and wait for free resources in queue.

4 Implementation and Evaluation

Experiment should be in real production environment, the biggest advantage of this is
we can validate the stability. But in order to avoid the experiment cost and in a more
controlled environment, we decided to setup a customized test bed, this will cost some
effort on system configuration.

In this platform, we used ten physical servers to test and optimize our auto-scaling
algorithm. Each physical machine has 12 Intel® Core CPUs, 24 GB RAM and 10G
Ethernet, and powered with CentOS7 system. There are two active nodes at initialization
phase, one controller and network node, one compute.

In this paper we use Deep Packet Inspection (DPI) as the experimental VNF, for it’s
a computation intensive network function and this is a typical bare metal scenario.
Figure 4 shows our measuring method, we use a client program to send requests to a
flow receiver and measure the response latency difference between closing and opening
the DPI firewall [17]. We wrote about 2 thousand lines of code (RScript and Python)
for this test bed, including prediction algorithms, auto-scaling control and automation
combination logic.
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We compare the actual performance of multiple scheduling algorithms, assessing
the VNF response rate and the number of physical servers used. Three schedule algo‐
rithms are chosen as the evaluation benchmarks. The four schedulers prediction-based
and with transition state, no-prediction but with transition state, prediction-based but
with no transition state, and no-prediction and with no transition state, represent four
different scaling strategies are denoted by s1, s2, s3 and s4, respectively.

The performance of these schedulers is evaluated mainly from two perspectives,
eager mode and idle mode, which represent two extremes that can highlight our auto-
scaling policies. For the sake of statement, here we define the request density from 0 to
1, meaning density increasing.

First, we show a more comprehensive perspective (from idle mode to eager mode)
in Fig. 5. Each point represents the average workload per processor. We can see that the
CPU loads trend of our proposed auto-scaling scheme is more stable and is the case of
the smallest fluctuations.

Fig. 5. Average workloads per processor

Figure 6 shows that when bare metal resources are insufficient, requests can be
delayed due to the high CPU loads. We can see that s2 and s3 show roughly the same
performance. And our strategy is about 18% less than their average delay. As for the no-
prediction and no transition state scheduler, our strategy is about 29% less than the
average delay. The conclusion is our prediction-based auto-scaling scheme can improve
the quality of service VNF under eager mode.
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Fig. 6. Average VNF latency for eager mode (ms)

Figure 7 shows that when the bare metal resources are sufficient, power resources
may be wasted, due to the adjustment is not timely. We can see that s2 and s3 generally
use the same number of servers, about wasted 16% processor resources than our sched‐
uler. Moreover, the no prediction and no transition state scheduler wasted about 21% of
the power resources than ours. The conclusion is our prediction-based auto-scaling
scheme can reduce power waste under idle mode.
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Fig. 7. Average server counts for idle mode

5 Conclusion

In this paper, we presented a bare metal auto scaling mechanism based on NFV system.
This mechanism uses a method of forecasting and pre-allocating physical resources, to
make VNFs scale in and scale out more smoothly. Compared with traditional way of
relying more on human operations, it provides better QoS. Our work on bare metal auto-
scaling may provide an idea for the NFV platform maintenance, with more intelligent,
green, tight performance. Using this method, we believe that we opened a door for bare
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metal auto-scaling to obtain significant improvements in both cost and execution time.
As the future work we intend to extend the prediction algorithm optimization, there is
still great room for improvement. And we also want to study on the auto-scaling
supporting both virtual machine and physical hosts, in a hybrid mode. This may be a
more normal scenario in practice. In the future, the NFV resource scaling may can be
optimized by the popular machine learning mechanisms [18–21].
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