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Abstract. Cloud computing providers have started offering their idle
resources in the form of virtual machines (VMs) without availability
guarantees. Know as transient servers, these VMs can be revoked at
any time without user intervention. Spot instances are transient servers
offered by Amazon at lower prices than regular dedicated servers. A mar-
ket model was used to create a bidding scenario for cloud users of servers
without service reliability guarantees, where prices changed dynamically
over time based on supply and demand. To prevent data loss, the use of
fault tolerance techniques allows the exploration of transient resources.
This paper proposes a strategy that addresses the problem of execut-
ing a distributed application, like bag-of-tasks, using spot instances. We
implemented a heuristic model that uses checkpoint and restore tech-
niques, supported by a statistical model that predicts time to revocation
by analyzing price changes and defining the best checkpoint interval. Our
experiments demonstrate that by using a bid strategy and the observed
price variation history, our model is able to predict revocation time with
high levels of accuracy. We evaluate our strategy through extensive simu-
lations, which use the price change history, simulating bid strategies and
comparing our model with real time to revocation events. Using instances
with considerable price changes, our results achieve an 94% success with
standard deviation of 1.36. Thus, the proposed model presents promising
results under realistic working conditions.
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1 Introduction

Cloud Computing provides an environment with high scalability and flexibil-
ity and affordable pricing for users. It has emerged as an important community
resource and is considered a new paradigm for the execution of applications with
high levels of security and reliability [2,8]. According to [2], Cloud Computing
is an environment where services and resources are available in a distributed
way and on demand over the Internet. Furthermore, services and resources are
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available in a virtual, abstract and managed platform with resources dynami-
cally scalable in a transparent way to the user. A particular class of service is
Infrastructure as a Service (IaaS), which offers a set of Virtual Machines (VMs)
with different types and capacity, allowing users to choose instances according
their needs.

Recently, cloud providers have been adopting a business model that offers
the idle capacity of VMs resources in the form of transient servers [18]. These
VMs are offered without a guarantee of their availability at considerably lower
prices compared to normal servers. Amazon offers transient servers, namely Spot
Instances (SIs), using a dynamic pricing model which uses a market model based
on users’ bids [14]. A user acquires a VM when the maximum value they are
willing to pay, their bid, exceeds the current price of the instance. A bid fault
(BF) occurs when the current price of the VM is above the user’s bid price.
Using these transient instances may weaken running applications because the
environment is volatile, even if the user does not want to lose the instance.
In [15], the authors state that, to effectively use transient cloud servers, it is
necessary to choose appropriate fault-tolerance mechanisms and parameters.

In this paper, we present an heuristic model for efficient usage of transient
instances, providing a novel strategy that uses machine learning to predict Time
To Revocation (TTR) using historical data patterns and bid strategies. This
approach allows the definition of fault tolerant mechanisms with appropriate
parameters, reducing costs even more. These parameters are computed based on
the features explained later in the paper (Sect. 4), addressing the impact of the
checkpointing interval on the SIs to reduce monetary costs and the application’s
total execution time. The remainder of this paper is structured as follows. First,
in Sect. 2, we briefly discuss related work in this domain. In Sect. 3 we describe
the proposed heuristic for the definition of the parameters in a checkpoint and
restore FT technique, based on a machine learning model that analyzes historical
price changes of SIs. In Sect. 4 we present the results of exhaustive experiments
that comply with our proposal. Finally, in Sect. 5 we summarize this study with
conclusions and discuss elements for future research.

2 Related Work

Researchers have been doing significant work in the cloud computing area. The
use of computing services as a utility is defined as “on demand delivery of infras-
tructure, applications, and business processes in a security-rich, shared, scalable,
and computer based environment over the Internet for a fee” [13]. This model
brings benefits to providers and consumers, especially because users can choose
services and resources according to their application needs. It reduces both the
monetary costs and idle resources, making it possible to provide them to other
consumers. In recent years, a lot of research has been done regarding the use
of FT techniques in cloud environments. Migration is considered as a FT mech-
anism in [6,16,17,19], and in [5] a framework is proposed to migrate servers
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between VMs in an efficient way. Using a set of proposed virtualization tech-
niques, [17] offers a platform that uses migration mechanisms to offer the cheap-
est environment, using unsecured spot instances instead of on-demand servers.

In a transient server perspective, much of the research focuses on explor-
ing efficient ways to use SIs, either using techniques to define best user bids to
avoid revocation [6,9,15,19] or providing FT mechanisms to guarantee appli-
cation execution without data loss [17,21,22]. In the area of FT in SIs, recent
works have focused on providing users a transparent environment with a high
level of reliability, ensuring the execution of applications without data loss. Use
of FT mechanisms are even more significant in transient instances than conven-
tional servers where high availability is present. Even with additional overhead
on running processes due to the necessity of save states, as shown in Fig. 1, check-
point and restore is one of the most used FT mechanisms [3] and is explored in
[4,10,22].

Fig. 1. Checkpoint intervals and restoration on failure of a single process execution.

From a checkpoint FT technique perspective, an important element is the
checkpointing interval, because it affects total execution time. A process that
executes in 30 h with 10 min of overhead checkpointing and an interval of 1 h will
add 290 min of total execution time. A well defined interval time leads to lower
costs and better use of execution time. Larger intervals imply faster execution.

In [19,20], the authors use a static interval of 60 min, arguing that the billing
window used by the service is one hour, ignoring the fact that memory and
data intensive applications need time for the save process. Alternatively, other
authors present a strategy in which interval time is defined through monitoring
price changes [21]. When a new price is registered, a new checkpoint is created.
Using a set of defined times, [22] uses continuous checkpoints in static intervals
of 10, 30 and 60 min. What is common among these related works is that the
defined intervals are not dynamic. An important point is understanding the
impact of the checkpointing interval on the SIs in order to reduce the monetary
costs and the application’s total execution time. This is the focus of this work.

3 Proposal

In this section, we present a high-level overview of our heuristic with a machine
learning model that analyzes historical and current prices of SIs and their changes
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to define appropriate checkpoint intervals. Compared to existing similar studies,
our scheme uses observed price change patterns of SIs in terms of hour-in-day
(HID) and day-of-week (DOW), as proposed in [7,8]. The performance and avail-
ability of VMs in a cloud environment varies according to instance types, region,
zone and different times of day. A pattern can be observed in Fig. 2, that shows,
in a range from April to December of 2017, how many price changes occurred
on each day of the week (a) and during each hour of the day (b) in an m1.large
SI, grouped by zones in the US-WEST region. The number of changes peaks
during weekdays, as opposed to weekends, and after 5pm (17 h).

Fig. 2. Observed patterns in price changes in DOW and HID.

Compared to existing similar studies, our scheme uses a Case Based Rea-
soning (CBR) [1], that classifies price changes in order to comply with HID and
DOW patterns. An intelligent system must be able to adapt to new situations,
allowing for reasoning and understanding relationships between facts to recog-
nize real situations and learn based on its experience. Applications that use
CBR can learn through previous cases, adapting the knowledge database when
evaluating new experiences.

Using a set of spot price history traces Pt, it is possible to perform simulations
and create a set of real cases Δ. Algorithms that recover spot prices and simulate
an auction are needed to estimate the time which a SI stays with a user until its
revocation. Using a Estbid(Pt , n) function, that calculates the median price over
the previous n days, simulations can produce scenarios where the user’s bid Ubid

assumes the returned value from Estbid. With these assumptions, a set of cases
can be defined as Δ = {δ1, δ2 . . . , δn}, in which δ is a structure with the following
attributes: δ.instance-type, representing a type of VM instance; δ.day-of -week,
an integer number that determine a day of week, being 1 for Sunday and 7 for
Saturday; δ.hour-in-day with a range of 0–23 representing a full hour; δ.price
with instance price value; and δ.time-to-revocation, that retains how much time
(in minutes) a VM was alive until TTR.

In addition, our model uses a Survival Analysis (SA) statistical model [12].
SA is a class of statistical methods which are used when the data under analysis
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represents the time to a specific event. In this paper, we use a nonparametric
technique which incorporates censored data to avoid estimation bias. The event
under study is a BF and the time to this event, TTR, is treated as a random
variable.

We would like to estimate the largest survival time (TS) for which we have
a high confidence (98%) that our SI will not be revoked. This time is defined
by TS = arg maxt{t ∈ R | P (TTR > t) ≥ 0.98} and can be calculated as the
98th percentile of TTR (TTR98) from estimated Survival Curves (SC). The SCs,
Ŝ, are estimated using the Kaplan-Meier estimator [11], in which ti represents
the upper limit of a small time interval, Di the number of deaths within that
interval, and Si the number of survivors at the beginning of the interval. If no
deaths occur in a given interval, the SC does not decrease.

Ŝ(t) =
∏

i:ti≤t

(1 − Di

Si
) (1)

Figure 3 shows SCs for some SIs on Saturday at midnight. TTR98 for the
c3.large instance is a little less than 100 h, while TTR98 for the m3.large is
much smaller.

Fig. 3. Generated SC of selected SIs.

The main goal of our scheme is to find an optimal checkpointing interval that
minimizes the total runtime and reduces costs. Using both CBR and SA, a SC
is produced, allowing quantiles of the TTR to be used to find a probable TS and
use it as part of strategy, avoiding occurrences of BF.
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4 Experimental Evaluation

We evaluate our proposed checkpointing scheme for 37 SIs in all zones of the
US-WEST region. Using 6 months of real price changes, collected from April
to December of 2017, our experiment simulates 389.576 scenarios with Ubid =
Estbid(Pt, n) | n ∈ N = {1 . . . 7}, using all combinations of days and hours for
the 13 weeks in October, November and December.

From the collected data, approximately 1 million cases were generated.
Figure 4 shows a SC generated by the experiments. The value of TTR98 is indi-
cated. We then repeated the same experiment, varying n in the Estbid function
between 1 and 7 days. Our results show that n = 7 is the best strategy, with all
others performing worse.

Fig. 4. SC of c1.medium on Sunday at 5am.

Each DOW and HID relationship has its own SC and a set of SC quantiles
can be represented as a Survival Time Matrix (STM), as illustrated in Table 1,
which shows TTR98 times, in minutes, obtained by 98th confidence level.

Table 1. Generated STM of c1.medium SI.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

1 95 129 76 220 142 100 86 130 75 706 636 569 201 168 119 330 270 208 150 90 65 151 117 94

2 83 134 78 221 159 102 84 107 68 134 123 173 129 93 68 118 95 167 109 75 69 210 121 101

3 103 129 73 226 143 100 63 154 80 445 360 309 132 189 223 156 250 192 133 74 66 345 142 101

4 108 136 80 138 111 90 199 172 79 124 360 300 215 149 102 61 261 199 141 81 68 361 194 154

5 173 138 87 119 73 102 69 128 80 717 634 574 461 438 372 318 249 191 138 85 63 227 160 128

6 85 70 69 198 134 81 67 128 78 591 253 471 169 109 123 231 189 130 89 93 64 84 80 70

7 73 120 60 207 114 99 77 134 74 680 575 346 120 111 220 238 210 164 116 89 67 130 77 120
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To evaluate STM times, a set of experiments that compare STM values with
real scenarios was created. Using the same experimental scenario, 80.808 simu-
lations were executed. An example of the c1.medium instance is illustrated in
Fig. 5. Very good results can be seen, with mean success rates around 80% with
standard deviation of 1.36% points.

Fig. 5. Heat map of survival success compared of TTR times in c1.medium instance.

An unsecured gap can be observed on Monday and Tuesday between 1am and
10am, with 8 failures in 13 attempts, showing that another bid strategy is needed
to increase the observed TTR and achieve better success rates. Considering all
37 instances’ simulations, the success rate goes up to around 94%. This occurs
because instances with expensive price values have stable variations, allowing
long TTR times.

To achieve better results, a new strategy can be incorporated into the Ŝ
function, where more recent results receive a greater weight. In this strategy, the
time interval used in our experiment was reduced to 5 months, from April to
August of 2017. With this change, a new STM was generated, creating a new
matrix that represents the survival times over this period (MTS′).

Then, a new matrix that represents only September of 2017 was generated
(MTS′′) and a new STM was calculated as the median of MTS′ and MTS′′ . The
results of this calculation are presented in Table 2.

Table 2. A new STM created after recency strategy in Ŝ function.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

1 263 203143 83 1251 1191 1176 1090 1042 970 891 831 460 723 670 610 576 694 636 576 514 456 395 315

2 280 569349 256 404 363 313 255 195 135 92 276 215 155 96 71 585 524 465 402 344 284 233 173

3 114 338348 309 253 193 157 159 119 80 888 820 664 700 649 794 756 674 614 588 516 480 420 353

4 343 304224 184 215 175 117 167 158 100 192 390 333 295 238 245 187 130 74 62 394 334 297 223

5 163 184247 195 500 472 425 434 374 314 182 117 188 133 126 742 687 627 572 512 447 387 599 539

6 461 293223 323 238 206 172 252 410 350 317 415 355 276 235 192 135 284 424 364 300 252 188 128

7 109 619558 498 446 391 333 289 229 159 113 800 494 685 852 795 735 680 612 555 500 438 378 318

Better results were achieved with this change and can be observed in Fig. 6.
Giving greater weight to more recent results allowed a gain of 8%, reaching an
88% success rate under the same conditions of our experiment. The new results
for the DOW and HID relationship can be observed in Fig. 6.
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Fig. 6. Heat map of survival success after recency factor in Ŝ.

Expanding our experiment to involve all 37 instances available in the US-
WEST region, the success rate increases considerably, reaching 94% in our sim-
ulations, considering STM times with greater weight for more recent results. This
occurs because when treating all instances, we include instances with advanced
resources and with higher and more stable prices. The demand for these instances
by cloud users is low and intermittent, allowing long TTR times.

Given the accuracy achieved in our experiments, we have shown that a sur-
vival curve can offer data to be used in Fault Tolerance (FT) parameters, e.g.
the checkpointing interval. Given an application’s required execution time (TA)
and TS , estimated by STM, an interval can be given by Eq. 2.

interval =

{
min(60, TS) TA ≥ TS

60 ∗ TS

TA
TA < TS

(2)

Considering a data intensive application task that needs time TA = 500 min,
having checkpointing time Ct = 10 min, using intervals used in [19,22] (30 and
60), total execution varies between 580 and 620 min. A bigger interval means
faster execution. With TS = 1000 min, Eq. 2 results an interval of 120 min, lead-
ing to total execution time of 540 min. All collected data (30.3 GB) and source
code are available at a public repository and can be used to reproduce our exper-
iment and test other scenarios not contemplated in this paper.

5 Conclusions

In this paper, we present a heuristic model that uses price change traces of SIs
as input in a machine learning and statistical model to predict TTR. To the
best of our knowledge, there is not any available study that combines machine
learning (CBR model) and SA to predict TTR in SIs. We demonstrate how our
strategy can be used to define FT parameters, like the checkpointing interval or
number of replications. Aspects related to the restoration of failed executions
are beyond the scope of this paper. We consider that existing fault tolerance
techniques can be used and their respective parameters can be defined using
our approach. Furthermore, in order to achieve longer survival times, new bid
strategies can be introduced, e.g. using bid values defined by a percent increase
over actual instance prices.
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The performed simulations have confirmed the efficiency and the accuracy
of the proposed model when used in a real environment with real data. Better
results are achieved when strategies which place more weight on recent data are
explored. Future work can explore other strategies to exploit more recent data,
such as comparing recent instance price changes with previously established
change patterns to update FT parameters, like checkpoint intervals. Use of the
proposed strategy to definite the checkpoint interval decreases the total time of
execution, allowing more effective use of SIs and reducing monetary costs for
cloud users.
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