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Abstract. To enable the individual data block files of a distributed big
data set to be used as random samples for big data analysis, a two-stage
data processing (TSDP) algorithm is proposed in this paper to convert a
big data set into a random sample partition (RSP) representation which
ensures that each individual data block in the RSP is a random sam-
ple of the big data, therefore, it can be used to estimate the statistical
properties of the big data. The first stage of this algorithm is to sequen-
tially chunk the big data set into non-overlapping subsets and distribute
these subsets as data block files to the nodes of a cluster. The second
stage is to take a random sample from each subset without replacement
to form a new subset saved as an RSP data block file and the random
sampling step is repeated until all data records in all subsets are used
up and a new set of RSP data block files are created to form an RSP
of the big data. It is formally proved that the expectation of the sample
distribution function (s.d.f.) of each RSP data block equals to the s.d.f.
of the big data set, therefore, each RSP data block is a random sample
of the big data set. Implementation of the TSDP algorithm on Apache
Spark and HDFS is presented. Performance evaluations on terabyte data
sets show the efficiency of this algorithm in converting HDFS big data
files into HDFS RSP big data files. We also show an example that uses
only a small number of RSP data blocks to build ensemble models which
perform better than the single model built from the entire data set.

Keywords: Big data analysis · Random sample partition · RSP
HDFS · Apache Spark

The work of this paper was supported by National Natural Science Founda-
tions of China (61503252 and 61473194), China Postdoctoral Science Foundation
(2016T90799), Scientific Research Foundation of Shenzhen University for Newly-
introduced Teachers (2018060) and Shenzhen-Hong Kong Technology Cooperation
Foundation (SGLH20161209101100926).

c© Springer International Publishing AG, part of Springer Nature 2018
M. Luo and L.-J. Zhang (Eds.): CLOUD 2018, LNCS 10967, pp. 347–364, 2018.
https://doi.org/10.1007/978-3-319-94295-7_24

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94295-7_24&domain=pdf


348 C. Wei et al.

1 Introduction

In the era of big data, large files of millions of objects with thousands of features
are frequently encountered in many applications [1]. For example, millions of
customers in a telecom company are required to be segmented into a large num-
ber of small groups for targeted marketing and product promotion [2]. Millions
of people in a social network are analyzed to understand their opinions on differ-
ent policies in different social groups [3]. Analyzing such an ever increasing big
data is a challenging problem, even on computing clusters, especially when data
volume goes beyond the available computing resources. In this regard, divide-
and-conquer has become a common and necessary computing strategy to handle
big data [4] by distributing both data and computation tasks to the nodes of clus-
ters using distributed file systems (e.g., Hadoop distributed file system (HDFS))
[5] and big data processing frameworks (e.g., Hadoop’s MapReduce [6,7], Apache
Spark [8,9] and Microsoft R Server1). Nevertheless, all distributed data blocks of
a data set must be loaded and processed when running data analysis algorithms
with current big data frameworks. If the data set to be analyzed exceeds the
memory of the cluster system, the algorithms will be inefficient or may not be
able to analyze the data. Therefore, the size of memory is an important factor
to the ability and performance of the current big data processing and analysis
platforms. However, memory may never be enough considering the speed of the
increase of big data in size. Can we have a technology with which analysis of big
data will not be limited to the size of memory? The answer is affirmative.

If we only analyze some small distributed data blocks without considering
the entire big data set and use the results of these blocks to estimate or infer the
results of the entire big data set, then the above problem can be solved. In our
previous empirical study [10], we found that it is possible if the distributed data
blocks have similar probability distributions to the probability distribution of
the big data set. We also found that if the records of a big data set are randomly
organized, i.e., satisfying the i.i.d. condition, sequentially chunking the big data
set into a set of data block files will make each data block a random sample of
the big data, i.e., making the probability distribution of each data block similar
to the probability distribution of the big data set. In statistical analysis, using
random samples is a basic strategy to analyze a large data set or an unknown
population [11]. The statistical properties of a big data set can be estimated and
inferred from the results of random samples of the big data [12]. However, having
a naturally randomized data set can only be taken as an exception rather than
a rule in big data because it depends on the data generation process. Moreover,
the data partitioning methods in current distributed file systems do not take
the statistical properties of data into consideration. Consequently, data blocks
produced by such methods may not necessarily be random samples of the big
data set and using these data blocks as random samples to directly estimate
statistics of the big data or build analytical models will lead to biased or incorrect

1 https://www.microsoft.com/en-us/cloud-platform/r-server.

https://www.microsoft.com/en-us/cloud-platform/r-server
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results. Therefore, a new big data representation model is required to support
scalable, efficient and effective big data analysis.

Recently, we have proposed the random sample partition (RSP) data model
for big data analysis. The RSP model represents a big data set as a set of non-
overlapping subsets which forms a partition of the big data set. Each subset is
saved as an RSP data block file that is used as a random sample of the big data
set. In this way, analysis of a big data set approximately equals to analysis of one
or more RSP data blocks which can be easily read in the nodes of a cluster and
computed without the need of big memory. Therefore, the memory limitation
on big data analysis is removed in the new RSP data representation model.
However, current big data sets are usually saved as HDFS files on computing
clusters. Efficient and scalable algorithms are required to convert existing big
HDFS files into RSP representations in the scale of Terabyte to support big
data analysis. Currently, such algorithms are not available.

In this paper, we propose a two-stage data processing (TSDP) algorithm that
is used to convert a big HDFS data set into an RSP representation which ensures
that each RSP data block is a random sample of the big data, therefore, it can be
used to estimate the statistical properties of the big data. The first stage of this
algorithm is to sequentially chunk a big data set into non-overlapping subsets
and distribute these subsets as data block files on the nodes of a cluster. This
operation is provided in HDFS. The second stage is to take a random sample
from each subset without replacement to form a new subset saved as an RSP
data block file. The random sampling step is repeated until all data records in all
subsets are used up and a new set of RSP data block files are created to form an
RSP of the big data. We formally prove that the expectation of the probability
distribution of each RSP data block equals to the probability distribution of the
big data set, therefore, each RSP data block is a random sample of the big data
set.

We present the implementation of the TSDP algorithm on Apache Spark and
HDFS and the performance evaluations of this algorithm on terabyte data sets.
The experiments were conducted on a computing cluster with 29 nodes. The
evaluation results have shown that the TSDP algorithm is efficient in converting
HDFS big data files into HDFS RSP big data files. We also show an example
that uses only few RSP data blocks to build ensemble models which perform
better than the single model built from the entire data set.

The remainder of this paper is organized as follows. Section 2 presents pre-
liminaries used in this research, including two basic definitions. The proposed
TSDP algorithm is introduced in Sect. 3. Section 4 presents the TSDP implemen-
tation on Apache Spark. Experimental results are discussed in Sect. 5. Further
discussions on the advantages of the RSP model for big data analysis and the
TSDP algorithm are given in Sect. 6. Finally, the conclusions are given in Sect. 7.
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2 Preliminaries

This section briefly reviews big data representations in Hadoop distributed file
system (HDFS) and Apache Spark, and gives a formal data definition of the
random sample partition (RSP) representation model.

2.1 Big Data Representations in HDFS and Spark

The current big data frameworks use divide-and-conquer as a general strategy to
analyze big data on computing clusters. A big data set is chunked into small data
blocks and distributed on the nodes of a computing cluster using distributed file
systems such as Hadoop distributed file system (HDFS) [13]. To tackle a big data
analysis task, the data blocks of a big data set are processed in parallel on the
cluster. The intermediate results from the local data blocks processed on local
nodes are integrated to produce the final result for the entire data set. To save a
big data set as an HDFS file, HDFS operation sequentially chunks the big data
set into small data blocks of fixed size (e.g., 64 MB or 128 MB) and distribute the
data blocks randomly on the local nodes of the cluster. For data safety, 3 copies
of the same data block are usually stored on three different nodes. Apache Spark
provides processing-level distributed data abstractions as the resilient distributed
data set (RDD) which is held in memory to facilitate the data processing and
analysis. The RDDs APIs are provided to import HDFS files or other data files
to Spark RDD, control RDD partitioning and manipulate RDD using a rich
set of operators. An RDD can be partitioned and repartitioned using different
partitioning methods such as hash partitioner and range partitioner.

However, these data partitioning methods, whether HDFS or Spark RDD,
do not consider the statistical properties of the big data set. As a result, the
data blocks in HDFS files and Spark RDDs cannot be used as random samples
for statistical analysis of the big data set. Using these data blocks to estimate
the big data tends to produce statistically biased results.

2.2 RSP Data Representation Model

To enable HDFS distributed data blocks to be used as random samples for esti-
mation and analysis of the entire big data set, we propose to use RSP distributed
data representation model to represent big data, which ensures that each data
block in the RSP model is a random sample of the big data set. The main
properties of the RSP model are given in the following two definitions.

Definition 1 (Partition of Data Set): Let D = {x1 , x2, · · · , xN} be a data
set containing N objects. Let T be an operation which divides D into a family
of subsets T = {D1, D2, · · · , DK}. T is called a partition of data set D if

(1)
K⋃

k=1

Dk = D;

(2) Di ∩ Dj = ∅, when i, j ∈ {1, 2, · · · ,K} and i �= j.
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Accordingly, T is called a partition operation on D and each Dk(k =
1, 2, · · · ,K) is called a data block of D.

An HDFS file is a partition of data set D where data blocks {D1, D2, · · · , DK}
are generated by sequentially cutting the big data. Usually, these data blocks in
HDFS files do not have similar distribution properties as the big data, therefore,
cannot be used in general as random samples for analysis of the big data set.
However, the data blocks in the RSP as defined below can be used as random
samples of the big data set.

Definition 2 (Random Sample Partition): Let D = {x1 , x2, · · · , xN} be
a big data set which is a random sample of a population and assume F (x) to
be the sample distribution function (s.d.f.) of D. Let T be a partition operation
on D and T = {D1 ,D2, · · · , DK} be a partition of data set D accordingly. T is
called a random sample partition of D if

E[F̃k(x)] = F (x) for each k = 1, 2, · · · ,K,

where F̃k(x) denotes the sample distribution function of Dk and E[F̃k(x)] denotes
its expectation. Accordingly, each Dk is called an RSP block of D and T is called
an RSP operation on D.

3 Two-Stage Data Processing Algorithm

In this section, we present a two stage data processing algorithm for generating
RSP from a big data set. Let D = {x1, x2, · · · , xN} be a data set with N objects
and M features. To generate RSP data blocks (i.e., random samples) from D, if
N is not big, we can easily use the following steps to convert D into Q RSP data
blocks.

– Step 1: Generate N unique random integer numbers for N objects from a
uniform distribution;

– Step 2: Sort N objects on the random numbers to reorganize D;
– Step 3: Sequentially cut N reordered objects into Q small data blocks, each

with N/Q objects.

Corollary 1. Let {D1 ,D2, · · · , DQ} denote the above Q small blocks. Each Dk

is an RSP data block of D.

Proof: Set Dk =
{

x(k)
1 , x(k)

2 , · · · , x(k)
Nk

}
, k ∈ {1, 2, · · · , Q} and Nk is the number

of objects in Dk. It is obvious that

P
{

Dk =
{

xs1 , xs2 , · · · , xsNk

}}
=

1
CNk

N

, (1)

where xs1 , xs2 , · · · , xsNk
are sNk

objects selected arbitrarily from D.
Assume F (x) is the s.d.f. of D. On one hand, for each real number x ∈ R1, the

number of samples whose values are not greater than x is F (x) ·N . On the other
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hand, for each data block Dk and object xi ∈ D, P{xi ∈ Dk} = CNk−1
N−1 · 1

C
Nk
N

=
Nk

N . Thus the number of objects in Dk whose values are not greater than x is
F (x) · N · Nk

N = F (x) · Nk. We therefore obtain that the expectation of the s.d.f.
of Dk is 1

Nk
· F (x) · Nk = F (x). According to Definition 2, Dk is an RSP data

block of D.

When N is not large and D can be sorted in memory, the above algorithm
works well. However, when N is large and D is big, e.g., in terabyte, if Q is also
large, e.g., 100000 data blocks, the execution of this algorithm on the cluster
becomes impractical, e.g., running extremely long time or bringing the cluster
down due to many processes competing for resources. To deal with that situation,
a general two-stage data-processing (TSDP) algorithm is designed for converting
a big data set to a set of RSP data blocks below. Firstly, we give the following
theorem before we present the TSDP algorithm.

Theorem 1. Let D1 and D2 be two big data sets with N1 and N2 objects respec-
tively. Assume that D1 with n1 objects is an RSP data block of D1 and D2 with
n2 objects is an RSP data block of D2. Then, D1

⋃
D2 is an RSP data block of

D1

⋃
D2 under the condition that n1

n2
= N1

N2
.

Proof: Let F1(x) and F2(x) denote the s.d.f.s of D1 and D2 respectively. Assume
that the s.d.f.s of D1 and D2 are F̃1(x) and F̃2(x), respectively. According to
Definition 2, we have E[F̃1(x)] = F1(x), E[F̃2(x)] = F2(x). For any real number
x, the number of objects in D1

⋃
D2 whose values are not greater than x is

n1F̃1(x) + n2F̃2(x). Therefore, the s.d.f. of D1

⋃
D2 is:

F̃ (x) =
n1F̃1(x) + n2F̃2(x)

n1 + n2
.

Similarly, the s.d.f. of D1

⋃
D2 is:

F (x) =
N1F1(x) + N2F2(x)

N1 + N2
.

The expectation of F̃ (x) is

E[F̃ (x)] = E[
n1F̃1(x) + n2F̃2(x)

n1 + n2
] =

n1E[F̃1(x)] + n2E[F̃2(x)]
n1 + n2

=
n1F1(x) + n2F2(x)

n1 + n2
=

N1F1(x) + N2F2(x)
N1 + N2

= F (x).

Therefore, D1

⋃
D2 is an RSP data block of D1

⋃
D2.

Remark: With a subtle modification, the proof of Corollary 1 can be extended
to data in multiple dimensions and the proof of Theorem1 can also be extended
to the multiple dimensions and more than two data sets.
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Fig. 1. Illustration of TSDP algorithm.

Let D be a data set of N objects and M features where N is too big for sta-
tistical analysis on a single machine. The following TSDF algorithm is designed
to generate an RSP with Q RSP data blocks from D on a computing cluster.

Stage 1 (Data-Chunking): D is sequentially chunked into P data blocks
{Di}Pi=1 which form a partition of D. HDFS provides functions to perform this
operation. We call these blocks as HDFS data blocks which are not necessarily
random samples of D.
Stage 2 (Data-Randomization): Each RSP data block is built using ran-
dom samples from P HDFS data blocks. This requires a distributed ran-
domization operation where a slice of samples is selected randomly without
replacement from each HDFS data block to form a new RSP data block. This
operation is repeated Q times to produce Q RSP data blocks. The main steps
in this stage are summarized as follows:

– Step 1: Randomizing Di in parallel for 1 ≤ i ≤ P ;
– Step 2: Cutting each Di in parallel into Q subsets {D(i, j)}Qj=1 which form an

RSP of Di, for 1 ≤ i ≤ P ;
– Step 3: From P ×Q subsets {D(i, j)} for 1 ≤ i ≤ P and 1 ≤ j ≤ Q which form

a partition of data set D, merge the subsets of {D(i, j)}Pi=1 for 1 ≤ j ≤ Q to
form Q subsets {D(·,j)}Qj=1 which form an RSP of D.

TSDP algorithm is illustrated in Fig. 1. The first stage generates the first
level partition {D (1, ·) ,D (2, ·) , · · · , D (P, ·)} of D. The second stage random-
izes each subset D(i, ·) independently, generates the second level partitions
{D(i, 1),D(i, 2), . . . ,D(i, Q)} for 1 ≤ i ≤ P and merges the column parti-
tions into {D(·, 1),D(·, 2), . . . ,D(·, Q)}. By repeatedly applying Theorem1, we
can deduce that the new data block D(·, j), (j = 1, · · · , Q) is an RSP data
block of D.
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4 TSDP Implementation on Apache Spark

In this section, we present an implementation of the TSDP algorithm on Apache
Spark with HDFS. This implementation is called the round-random partitioner
which is a hybrid between the range partitioner and the hash partitioner in
Spark. Algorithm 1 shows the Pseudocode of this TSDP implementation in which
the two stages are fulfilled as follows:

Algorithm 1. Round-Random Partitioner
Input:
- DHDFS : The HDFS file of a big data set D;
- P : the number of RDD partitions in DHDFS ;
- Q: the number of RSP data blocks in the RSP output HDFS file;
Method:
DRDD ← read DHDFS ; load HDFS file into an RDD
for all block i in DRDD do

K = Seq (1 to n)
shuffle K;

end for
bind K with DRDD partitions to generate pairRDD(K, V );
repartition pairRDD using HashPartitioner(Q)
DHDFS−RSP = values of pairRDD; ignore the random numbers in DHDFS−RSP

Output:
- DHDFS−RSP : the final RSP; Generate the RSP HDFS file.

Stage 1 (Data-Chunking): This stage is performed using HDFS. A given
big data set D is converted to an HDFS file with P HDFS data blocks. The
HDFS file of D is loaded to a Spark RDD using SparkContext.textFile()
function. By default, each HDFS data block is mapped into an RDD partition
and the Spark RDD consists of P RDD partitions. The number of RDD
partitions to be generated can also be specified in the Spark data loading
function. This step is basically a range partitioner which produces P HDFS
data blocks2.
Stage 2 (Data-Randomization): This stage randomizes all Spark parti-
tions in parallel, randomly takes samples from each partition to form a set of
Q RDD partitions and saves these RDD partitions as RSP data blocks in an
HDFS file. This stage is completed with the following operations:

– Key generation: Generate an array of a sequence of integers Ki (1 ≤ i ≤ P )
for each RDD partition. The length of the sequence equals to the number of
records in the RDD partition. This operation is carried out in parallel.

2 Note: In Spark’s terminology, an RDD is equal to a partition of the big data set. A
partition is equal to a data block of the big data set. In this section, we use partition
to indicate a data block of the big data set loaded to an Spark RDD in order to be
consistent with Spark’ terminology in this Spark implementation.
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– Key Randomizing and Binding: Use Spark shuffle operation to randomize the
integer sequences in the arrays Ks in parallel. Use the randomized integers
in each array as random numbers and bind them to its corresponding RDD
partition in a Spark partition pair named as pairRDD.

– Repartitioning: Repartition the pair RDD by hashing the random numbers
in the pairRDD to generate Q new RDD partitions in the pairRDD.

– RSP HDFS file generation: Ignore the random numbers in the pairRDD and
save the rest partitions as RSP data blocks in an HDFS file. This HDFS file
is an RSP representation of the big data set D.

Algorithm 2. Synthetic Data Generation
Input:
- M : number of features;
- P : number of data blocks;
- N : number of objects;
- H: number of clusters;
Method:
for all h = 1 to H do in parallel

μ(M) =Fill (μm)|μm ∈ U [0, 10]
σ(M) =Fill (σm)|σm ∈ U (0, 1)
D RDD ← GenerateRandomRDD(N/H, M, P, μ, σ)
save D RDD on HDFS

end for
Collect all files under one directory using HDFS APIs

5 Experiments and Results

In this section, we demonstrate the performance of Spark implementation of the
TSDP algorithm on a computing cluster consisting of 2 name nodes and 27 data
nodes, all running Centos 6.8. Each node has 16 cores (32 with Hyper-threading),
128 GB RAM and 1.1 TB disk storage. Several synthetic data sets were used in
the experiments. We first present the method used to generate synthetic data
sets. Then, we present the time performance of the algorithm in generating RSP
data blocks from HDFS data sets of different sizes, and the time performance
in generating different numbers of RSP data blocks from 1 terabyte HDFS data
set in 1000 HDFS data blocks, and the time performance in generating the
same number of RSP data blocks from 1 terabyte HDFS data set with different
numbers of HDFS data blocks. After that, we illustrate the changes of probability
distributions of HDFS data blocks and RSP data blocks. Finally, we use a real
data example to show how the RSP data blocks are used to build ensemble
models from only few RSP data blocks with accuracies equivalent to or even
better than the model built from the entire data set.
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5.1 Synthetic Data Generation

Different synthetic data sets with different numbers of objects N , different num-
bers of features M and different numbers of clusters H were generated and saved
as HDFS files with different numbers of data blocks P . The clusters in the data
sets have normal distributions with different means μ and standard deviations σ.
Table 1 shows the characteristics of the synthetic data sets. The data generation
algorithm is illustrated in Algorithm2 which was implemented in Apache Spark.
The data generation is performed in the following steps:

– Mean Generation: For each cluster, create a mean array for all features
μ(M) and fill the array with values generated from the uniform distribution
U (0, 10).

– Standard Deviation Generation: For each cluster, create a standard deviation
array for all features σ(M) and fill this array with values generated from the
continuous uniform distribution U (0, 10).

– Cluster RDD Generation: Randomly generate a cluster RDD, D RDD, for
each cluster from the normal distribution with the following parameters,
the number of objects N

H , the number of features M , the number of data
blocks P , the array of features’ means μ, and the array of features’ standard
deviations σ.

– Save and Collect: Save D RDD on HDFS. After saving the RDDs for all
clusters, they are collected under the same directory using HDFS APIs.

Table 1. Characteristics of synthetic data sets: N , M and H are the numbers of
objects, features and clusters, respectively.

DS name Total size N M H Associated tasks

DS001 �100 GB 100,000,000 100 100 Classification

DS002 �200 GB 200,000,000 100 100 Classification

DS003 �300 GB 300,000,000 100 100 Classification

DS004 �400 GB 400,000,000 100 100 Classification

DS005 �500 GB 500,000,000 100 100 Classification

DS006 �600 GB 600,000,000 100 100 Classification

DS007 �700 GB 700,000,000 100 100 Classification

DS008 �800 GB 800,000,000 100 100 Classification

DS009 �900 GB 900,000,000 100 100 Classification

DS010 �1 TB 1,000,000,000 100 100 Classification
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Fig. 2. Execution time for different data sets. The size of data set is changed from
100GB to 1TB, with 100 GB increase in each run.

5.2 Time Performance of TSDP

Three experiments were conducted with the synthetic data sets in Table 1 on
the computing cluster. In the first experiment, all 10 synthetic data sets from
100 GB to 1 TB were used to convert HDFS data blocks to RSP data blocks of
the these data sets. The size of both HDFS and RSP data blocks was fixed to
100 MB. The execution time for converting all HDFS data blocks to RSP data
blocks for each data set by the TSDP algorithm on the computing cluster was
recorded. Figure 2 shows the result of this experiment. We can see that when
the size of data blocks is fixed, the time to generate RSP data blocks increases
linearly to the size of the data set. We can observe that the execution time for
1 TB data set is about 35 min. Since we only need to transform each data set
once, this time is quite acceptable in real applications. With this transformation,
analysis on terabyte data becomes easier.

In the second experiment, only the data set in 1 TB was used. The number
of HDFS data blocks was fixed to 1000. The number of RSP data blocks to be
generated was increased from 10000 to 100000 with 10000 increase in each step.
Figure 3(a) shows the execution time of ten runs on the computing cluster. We
can see that the execution time increases linearly as the increase of the number
of RSP data blocks to be generated when the number of HDFS data blocks was
fixed to 10000. However, the time increase is not significant in each step, which
indicates that the number of RSP data blocks is not an important factor to the
execution time in this algorithm.

In the third experiment, only the data set in 1 TB was used. The number
of RSP data blocks was fixed to 10000. The number of HDFS data blocks was
changed from 10000 to 100000 with 10000 increase in each step. Figure 3(b) shows
the execution time of ten runs on the computing cluster. Again, we can see the
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linear increase in execution time as increase in the number of HDFS data blocks
in the HDFS file. However, the increase is more significant in each step. This
indicates that the number of HDFS blocks in the HDFS file is an important factor
to the execution time of this algorithm. We can see that converting 1 terabyte
HDFS data set with 10000 HDFS blocks to 10000 RSP data blocks took about
30 min where converting the same data with 100000 HDFS blocks to 10000 RSP
data blocks took more than 1 h. The reason is that the HDFS data blocks need
to be randomized in this algorithm, which requires more memory resource to
execute in parallel when the size and number of HDFS data block become large.
These three experiments show that the TSDP algorithm is scalable to terabyte
data, which facilitates the analysis of big data in terabyte size.

5.3 Distribution of Data Blocks

In this section, we show the probability distributions of features in HDFS data
blocks and RSP data blocks and demonstrate that RSP data blocks of the same
data set have similar probability distributions among themselves whereas the
HDFS data blocks do not have similar probability distributions among them-
selves. Given a sequence of values of one feature from an HDFS data block, the
probability density function (p.d.f.) is represented as a kernel density function
which can be estimated by Parzen window method [14]. The density estima-
tion algorithm is used to disperse the mass of the empirical p.d.f. over a regular
grid with at least 512 points. The fast Fourier transform is used to convolve the
approximation with a discredited version of the kernel. Gaussian basis functions
are used to approximate univariate data. The rule-of-thumb is used to determine
the bandwidth h of Parzen window [14] as

h =
(

4σ5

3n

)1/5

≈ 1.06σn−1/5 (2)

where σ is the standard deviation of the feature and n is the number of points.
With this method, we plot the p.d.f. of any continuous feature in an HDFS data
block and an RSP data block.

Figure 4(a) and (c) show the p.d.f. of two features from 6 randomly chosen
HDFS data blocks in data set DS010. We can see that different HDFS data
blocks have different probability distributions of two features. This indicates
that these data blocks cannot be used to estimate and analyze the big data set
because they are not representatives of the entire data set. To analyze the big
data set, all HDFS data blocks must be taken into consideration, therefore, all
data blocks have to be loaded to memory and compute. If the computing cluster
has limited resource, then, the ability of analyzing big data will be limited.

Figure 4(b) and (d) show the p.d.f. of two features from 6 randomly cho-
sen RSP data blocks in data set DS010. We can see that all RSP blocks have
the same probability distribution on the same feature. Theorem1 shows that
the expectation of the probability distribution of each RSP data block is the
probability distribution of the entire data set. Therefore, these RSP data blocks
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Fig. 3. Execution time against the numbers of both HDFS and RSP data blocks in
1 terabyte data set.

are good representatives of the entire data set and can be used to estimate and
analyze the big data set. This is the rational to use RSP data blocks as random
samples to analyze the big data set. After converting an HDFS big data set to
RSP data blocks, analyzing the big data set is transferred to analysis of RSP
data blocks. The big data set no longer needs to compute directly. Therefore,
RSP representation significantly facilitates the analysis of big data and enables
terabyte data sets to be easily analyzed.

5.4 RSP Block-Based Ensemble Classification

In this section, we use a real data example to show the use of few RSP data
blocks to build ensemble classification models which perform equally good or
even better than the model built from the entire data set. In this experiment,
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we used the asymptotic ensemble framework (called Alpha framework) [10] to
build ensemble models from RSP data blocks.

Fig. 4. p.d.f. comparison between HDFS data blocks and RSP data blocks in 1TB
synthetic data.

Alpha framework is illustrated in Fig. 5. A big data set D is first converted
into RSP data blocks using the TSDP algorithm. Then, a subset of RSP data
blocks is randomly selected without replacement, e.g., D5,D120,D506 and D890

in Fig. 5. After that, a base model is built from each of these data blocks, e.g.,
four classifiers π1, π2, π3, π4 built in parallel from 4 selected RSP data blocks.
The next operation is to update the ensemble model Π with the newly built
classifiers and evaluate Π. If Π satisfies the termination condition(s), then output
Π, otherwise, go back to RSP representation and randomly select a new batch of
RSP data blocks to build a second batch of new classifiers, update the ensemble
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model Π with the second batch of classifiers and evaluate it again. This process
continues until a satisfactory ensemble model Π is obtained or all RSP data
blocks are used up.

Fig. 5. Alpha framework: an asymptotic ensemble framework to build ensemble models
from RSP data blocks.

The real data HIGGS with N = 11, 000, 000 objects and M = 28 features was
used in this experiment. 400 RSP data blocks were generated with the TSDP
algorithm. Figure 6(a) shows the accuracy of the ensemble models after each
batch of data blocks. We can see that there is no significant change after using
about 15% of the data and the accuracy value converges to a value which is
approximately the same as the accuracy of a single model built from the whole
data set (the dotted line in the figure). In addition, we also used the 100 GB
synthetic data set DS001 to test the performance of the ensemble models from
RSP data blocks. We found that only 10% of this data is enough to build an
ensemble model with 90% accuracy as shown in Fig. 6(b). In such cases, we do
not need to continue building further models from the remaining data blocks.

6 Discussions

Two computational costs are significant in cluster computing: one is the cost
of communications among the computing nodes and the other is the cost of
i/o operations on read/write data from/to the disks of local nodes. The two
costs limit the ability of cluster computing on analysis of big data with complex
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algorithms. The in-memory computing technology alleviates the i/o cost but the
communication cost can still be significant in analysis of big data. One solution
is to use less sample data to estimate the big data. However, conducting random
sampling on distributed big data sets is still very expensive because of the i/o
and communication costs in cluster computing. RSP big data presentation model
on cluster computing offers a fresh new solution to analysis of a big data set if
the big data set is converted to a set of distributed RSP data blocks. In this
new approach, analysis of big data becomes analysis of few randomly selected
RSP data blocks from the RSP data representation. Three advantages can be
summarized as follows:

(a) HIGGS data (b) Synthetic data

Fig. 6. Ensemble classification using RSP data blocks. Each point represents the overall
ensemble accuracy calculated after each batch of blocks (averaged from 100 runs of the
ensemble process).

– RSP block based analysis can estimate the statistical results of the big data
set without computing the entire data set. Therefore, after a big data set is
converted to a set of RSP data blocks, the size of the big data is no longer
a barrier in big data analysis. This increases the ability of cluster computing
when data volume exceeds the available resources.

– Since each RSP data block is processed independently on a local node with
the same algorithm, sequential algorithms can be used on RSP data blocks
without need of parallelization in the asymptotic ensemble learning frame-
work. This approach makes many existing sequential algorithms useful in
analysis of big data.

– Theorem 1 provides a theoretical foundation for analysis of a big data set
distributed in multiple computing clusters. For example, if a big data set A
is divided into three parts, (A1, A2, A3) stored in three computing clusters
(C1, C2, C3), respectively. The TSDP algorithm can be used to convert each
Ai to RSP blocks on Ci for 1 ≤ i ≤ 3. To analyze A, we can randomly select
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the same number of RSP data blocks from each computing cluster and merge
the three sets of RSP data blocks into one set of RSP data blocks for A where
each new RSP block is formed by merging three RSP blocks, each from one
computing cluster. According to Theorem 1, the new blocks are RSP data
blocks of A and can be used to estimate the statistical properties of A or
build ensemble models for A. This new approach provides an opportunity to
analyze big data sets cross data centers. However, detail technology needs to
be further developed to facilitate analysis of big data sets cross multiple data
centers.

7 Conclusions and Future Work

In this paper, we have proposed a two-stage data processing (TSDP) algorithm to
generate the random sample partitions (RSPs) from HDFS big data sets for big
data analysis. This algorithm is an enabling technology for RSP data block based
analysis of big data sets, which does not need to compute the entire big data set.
We have presented an implementation of the TSDP algorithm on Apache Spark
and demonstrated the time performance of this algorithm on 1 terabyte data.
The experiment results show that conversion of an HDFS data set in 1 terabyte
was completed in less one hour which is well acceptable in real applications. We
have also shown a real data example to demonstrate that the ensemble models
built using few RSP data blocks performed better than the model built from the
entire data set. Our future work is to extend the current algorithm to work on
bigger data sets, e.g., 10 terabytes. We will also develop a distributed big data
management system on computing clusters based on the RSP representation
model.
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