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Abstract. With the rapid development of cloud computing, system and
data security become concerns due to user losing control of his machines
and internal attacks. Provenance is an essential approach to establish
data and system trustworthiness for cloud computing services, as it sum-
marizes the history of objects and the actions performed on them. How-
ever, the current existing provenance-aware solutions either depend on
applications in the user-space or fail to convey a genuine provenance
information to a cloud user to do a further analysis. Thus they are vul-
nerable to a malicious privileged administrator or adversary attacking in
an untrusted network. In order to solve these problems, we design TProv
to establish a trusted provenance-aware service with the help of Trusted
Computing. In addition, we introduce Merkle Hash Tree to reduce the
length of Chain of Trust and enable parallel validation for the trustwor-
thiness of provenance information, thus TProv decreases the overhead of
the huge size of provenance information and the cost of operating trusted
hardware, e.g. Trusted Platform Module. The experimental results reflect
TProv’s effectiveness and efficiency.

1 Introduction

Cloud Computing has attracted a lot of attention by facilitating customers access
to computing services without owning any computing resources. However, system
security and data security bring people’s attention for the problems as user
losing control of his machines in cloud [7] and internal attacks [23]. A number
of security enhancement mechanisms have been proposed, e.g. access control,
least privilege and intrusion detection. Nevertheless, there is still a key issue not
being addressed, i.e. whether the proclaimed service components, including those
security-enhancement components, have been genuinely enforced, and whether
other unnecessary or even adverse components have not been loaded.

Genuinely recording and reporting the provenance of objects, e.g. files and
processes, is an essential approach to establish data and system trustworthiness
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for cloud computing services [4]. The provenance of an object can be character-
ized by the processes which have modified this object and recursively the prove-
nance of all objects which were inputs for those processes [27]. Over the past
two decades, provenance is adopted into different areas, e.g. network, storage
and security enhancement [15,16,18,29]. However, adopting the current existing
provenance-aware solutions to the cloud faces several challenges.

Firstly, due to the existence of internal attacks and even privileged adver-
saries in the cloud, assumption that applications in the user-space are trusted
can be easily breached. Nevertheless, most of the existing provenance-aware
systems [6,8,9] rely on some applications and services in the user-space. Even
kernel-based provenance mechanisms [15,19] fail to work in malicious environ-
ments. Bates et al. claim to solve this problem and present a generic provenance-
aware architecture called Linux Provenance Modules (LPM) [3]. Unfortunately,
LPM also introduces the provenance recorder and storage back-ends in the user-
space into its TCB, and anchors its hope to protect LPM components through
SELinux. A strict SELinux policy is powerful to prevent these components from
privileged adversaries. However, besides the cost to design and manage this strict
SELinux policy, how to entrust a remote user that the cloud computing platform
has genuinely enforced the proclaimed SELinux policy is also a problem.

Secondly, the user loses control of the services deployed in the cloud [7], and
all information are transferred to the user through an untrusted network. Because
of the existence of the network adversary [1] who may sniff or control the network
and further temper or forge the packages, the integrity and trustworthiness of
provenance information should be ensured. However, the vast majority of existing
provenance-aware systems fail to support this capability. Lyle et al. [10] prepare
to integrate Trusted Computing [14] into provenance-aware system, as the former
provides remote attestation to enable a remote verifier to obtain genuine records
of a target platform. Unfortunately, the provenance information the traditional
Trusted Computing could collect is too coarse-grained to reflect the whole system
provenance [3]. In addition, the efficiency of traditional Trusted Computing is
limited due to the latency of operating trusted hardware [24].

In order to solve the aforementioned problems, our paper provides a trusted
provenance-aware service named TProv based on Trusted Computing. As all
applications and services in the user-space are viewed as untrusted, TProv is
enhanced to prevent from a privileged adversary. In addition, TProv enables to
genuinely transfer provenance information to a remote user through an untrusted
network. We achieve these goals by designing an appropriate Chain of Trust
(CoT ). Furthermore, we leverage Merkle Hash Tree [13] to reduce the length of
CoT and enable a parallel validation towards CoT rather than the traditional
strict sequential validation. Key contributions in this paper are:

1. presenting a trusted provenance-aware service, which enables a cloud user to
collect trusted provenance of a cloud machine in the case of a malicious local
privileged adversary or adversary attacking in an untrusted network.

2. ensuring the efficiency of TProv by leveraging Merkle Hash Tree.
3. implementing a prototype of TProv.
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The rest of this paper is organized as follows. Section 2 reviews Trusted
Computing. Section 3 illustrates a possible scenario and overviews TProv. Sec-
tions 4 and 5 present TProv in detail. The evaluation results are given in Sect. 6.
Section 7 reviews the related works. Section 8 presents some necessary discussion
and our future works, and we conclude this paper in Sect. 9.

2 Trusted Computing

Trusted Computing [14] provides a hardware-based solution to validate the
integrity of a remote platform. The core component for this technology is an
embedded chip called Trusted Platform Module (TPM) [2]. TPM is viewed as
the Root of Trust (RoT) and is trusted by default. The Chain of Trust (CoT) is
built from the RoT. The last component in CoT measures the upcoming com-
ponent and determines its trustworthiness if we enforce trusted boot [11]. The
entire boot process is extended into CoT, including BIOS, GRUB, and finally
the operating system kernel. After the kernel is loaded, this chain is extended to
the applications layer via Integrity Measurement Architecture (IMA) [22].

IMA ensures that all software components are measured into Platform Con-
figuration Registers (PCRs) inside the TPM, including the executables, kernel
modules, dynamic link library and files opened by root. It is implemented by
the PCR Extend instruction of TPM, which replaces the PCR value with a hash
of the result of concatenating its original value and the most recently measure-
ment’s hash value. As a PCR can only be extended after a system restart, i.e.
preforming PCR Extend, all the values measured into it cannot be reversed. Each
TPM has a number of 24 PCRs (from 0 to 23). The measurements of hardware,
BIOS and bootloader stages are recorded into PCR0-7, while PCR10 records the
events of IMA. Since the extend operation makes computationally impossible to
recover the list of stored values backwards from the current content of a PCR, a
Measurement Log (ML) is maintained to record the detailed information for the
software components, representing the integrity status of the platform (Fig. 1).

Fig. 1. Integrity Measurement Architecture
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IMA has defined Remote Attestation to enable verifier to validate the
integrity of prover. When receiving an attestation request, the Attestation Agent
in prover collects integrity evidence, including PCR values, the signature signed
by TPM and the ML. The signature signed by TPM contains the current PCR
values. The private key (i.e. Attestation Identity Key, AIK) to generate signature
can only be used inside a specific TPM. Hence, a valid signature represents for
the identity of prover and can be used to determine the trustworthiness of trans-
ferred PCR values. The genuineness of ML is further determined by simulating
PCR Extend and matching the simulated result with trusted value of PCR10. If
the validation result is positive, verifier searches his expected values and com-
pares them with the trusted ML, and hence he can determine whether the prover
is running as his expectation. The expectations of verifier are collected from the
original source: the software and hardware manufacturers.

3 Scenario and Architecture Overview

3.1 Scenario

Figure 2 shows the threat model. We define prover as the provenance-aware
platform (e.g. a machine in the cloud) and verifier as a cloud user to retrieve
the provenance information of prover to do some analysis, e.g. identify malicious
behavior. Besides the user-space applications and services in the prover, the
communication channel between verifier and prover is also untrusted. We allow
the adversary to be a local privileged adversary [1] or a remote adversary [1].
Specifically, a local privileged adversary is capable of obtaining root privileges
and controlling all privileged or unprivileged software on prover, e.g. falsifying
the provenance response sent to verifier. A remote adversary can remotely infect
malwares, sniff all packets in the network and interfere with the communication
to launch attacks, e.g. Man-in-the-Middle attacks. As many solutions [5,25] have
been proposed to ensure kernel’s integrity, we assume that the kernel is trusted.

Fig. 2. Threat model of TProv

Based on this threat model, we consider a scenario which uses provenance to
detect malicious process in prover. Given that an adversary successfully attacks
prover via a user-space rootkit attack [12], e.g. mafix1. This rootkit replaces the
1 http://forum.eviloctal.com/attachment.php?aid=1341.

http://forum.eviloctal.com/attachment.php?aid=1341
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good system applications, e.g. ls, find, ps, netstat and ifconfig, with trojaned sys-
tem files to provide backdoor or hide the attackers presence [12]. Some tools (e.g.
chkrootkit [17]) construct a basic digest library towards core system applications
to prevent this attack. However, a local privileged adversary can modify these
tools to hide himself. Auditing is a promising mechanism to record behaviors,
yet transferring the audit log to a remote verifier is also challenging.

3.2 Architecture Overview

The overview of TProv is shown in Fig. 3. We call Measurement Events (MEs)
as the events that should be recorded as provenance information, such as run-
ning binary programs, reading/writing/replacing a file, fork ing a new process,
insmod ing a kernel module and IPC. LPM gives us a great idea to capture these
events by writing hooks following LSM [3]. These hooks in TProv are called
TProv hooks. When a ME occurs in prover, the corresponding TProv hook is
triggered. The Measurement Agent in kernel measures this ME and writes the
measurement result into PROV Log. In addition, kernel maintains a merkle hash
tree (MHT) with a given tree height. The hash of the measurement generated
by Measurement Agent is viewed as a leaf node of MHT. Once the MHT is full,
i.e. all leaf nodes store measurement results, the root node’s value of MHT is
appended into RecordChain and extended into PCR via PCR Extend. Mean-
while, data in RecordChain is exported into Chain Log.

Fig. 3. Overview of TProv service

The whole procedure of handling ME is called as Provenance Collection (see
Sect. 4), as the real lines show in Fig. 3. Other lines in Fig. 3 refer to the Prove-
nance Attestation procedure (see Sect. 5), which starts from when a verifier sends
requests to collect provenance information, and ends with when the verifier val-
idates the trustworthiness of provenance received from prover.
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Note that all components in the user-space of prover may be tampered by a
local adversary. Meanwhile, even a non-tampered response generated by prover
may be attacked by a remote adversary. Nevertheless, the Provenance Collection
procedure establishes an one-by-one protection, i.e. TPM protects PCR which
further protects the ChainLog, and finally the ChainLog protects the PROV
Log. Hence any attack based on our threat model can be recognized by verifier.

Besides, introducing MHT gives adversary a chance to attack via modifying
the memory which stores MHT. However, the runtime integrity of kernel can be
protected by [5,25], and hence we do not consider this attack in this paper.

4 Provenance Collection

4.1 Definition of System Provenance

Before introducing TProv, we attempt to define the system provenance. Prove-
nance of the whole system makes up of a directed graph, i.e. G(V, E). The
objects we focus on in prover consist of the processes and the files operated, i.e.
read/write/rename, by these processes. All the processes and files compose of
the nodes V in G. The edges E in G appear in the following cases:

1. When process B derives from process A, there is an edge from A to B.
2. When file F is operated by process P, there is an edge from P to F. The

notation of this edge contains the type of operation, e.g. read/write/rename.
3. The IPC from process P to process Q introduces an edge from P to Q.

int main() {
int fd;
fd = fork();
if (fd == 0) {
printf ("I am child\n");

} else if (fd > 0) {
printf ("I am parent\n");

}
return 0;

}

Fig. 4. Possible provenance (the right figure) for the fork program (the left figure)

Figure 4 gives a possible provenance graph for a “fork” program, which
invokes syscall fork to generate a new child process in a bash environment. It
indicates that the bash process forks a new child process to run “fork” program,
which further reads some necessary files, e.g. /etc/ld.so.cache, and forks a new
child process. TProv should enable the verifier to restore a trusted provenance
graph to do a further analysis, e.g. whether malicious behaviors exist in prover.
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4.2 Workflow of Provenance Collection

ME Conversion. The inputs of Provenance Collection are the MEs (defined
in Sect. 3.2) generated in the user-space of prover. MEs fall into kernel mode
through syscalls. After this ME passes the DAC and MAC performed by LSM,
TProv hooks are invoked and the Measurement Agent receives it. TProv hooks
are designed according to LPM [3] to record the whole system’s provenance,
as the completeness of LSM Hooks has been demonstrated [28]. Measurement
Agent measures the coming ME to generate some key-value pairs.

MAME = Measurement Agent (ME) = {key : value}n (1)

MAME should contain all necessary information that the verifier can utilize to
do a further analysis. The relationship among MEs is essential to reconstructing
the provenance graph. We enforce the Measurement Agent to allocate a unique
and auto-increment PROV ID for each process and file nodes when they are cre-
ated. Besides PROV ID, PARENT ID is also recorded to indicate the node’s parent.
The PARENT ID is the PROV ID of the current process in kernel, afterwards, the
relationship among MEs can be established by parsing PROV ID recursively. Key
ACTION tells us the type of operation the ME does and it is determined by the
TProv hook’s name. For example, value PROV FILE WRITE reflects to write
to a file. Some special keys are included into MAME, e.g. key ARGV represents an
executable program’s parameters. The integrity of these key-pairs should also be
ensured, so the Measurement Agent concatenates all key-value pairs and views
its hash value as the value of key NODE HASH.

An example of the final MAME is shown below, which means that process
whose PROV ID is 5038 executes a binary program (value of key ACTION) named
cp. The value of key HASH refers to the hash value of binary file /bin/cp.

NAME:/bin/cp HASH: 911babc64858747484fa00bbe4c2b50922150ede
ACTION:PROV_BPRM_CHECK_SECURITY ARGV:cp /var/prov_records /root/record.new
PROV_ID:5039 PARENT_ID:5038 NODE_HASH: 3cf54a63c131ac2a66b896c5f14b1e913059bddb

Then how can we reliably save these provenance entries? According to IMA
[22], Measurement Agent appends the measurement result into kernel data struc-
tures and extends the PCR of TPM directly. Each measurement result of ME
becomes a component of CoT. It means that kernel has to maintain CoT in the
form of data structures. The longer the CoT, the larger the memory of kernel to
be consumed and the longer the time for validation. Considering the huge size of
MEs, this approach can not satisfy high efficiency. In order to reduce the memory
consumption of kernel, the Measurement Agent writes MAME in the form of a
string into PROV Log in the user-space directly, without recording any informa-
tion of ME in the kernel. However, since the PROV Log locates in the user-space
and is thus untrusted, it is essential to ensure the PROV Log’s integrity. As we
mentioned before, the value of key NODE HASH (hereafter we call it node hash)
indicates the digest value of MAME, so recording a trusted node hash ensures the
integrity of PROV Log. Measurement Agent does not take charge of protecting
node hash, yet it just passes node hash into the Merkle Tree.
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Merkle Tree. TProv maintains a complete binary merkle hash tree (MHT)
with a specified height. We donate MHTh as a MHT whose height equals h. The
root node of MHTh lies in layer 0, while the leaf nodes lie in layer h-1. All nodes
are initialized as zero. We call the initialization state as AllZero, otherwise the
state is non-AllZero. We use Nodeli to represent the i-th node in layer l of
MHTh, where l ∈ [0, h − 1], i ∈ [0, 2l − 1] and l, i ∈ Z. All ancestors of Nodeli
are:

AncestorSet(Nodeli) = {Nodekj | k ∈ [0, l − 1] ∩ j = � i

2l−k
�} (2)

When receiving node hash from Measurement Agent, kernel locates the first
non-AllZero leaf node (called WorkNode) of MHTh and sets its value as
node hash.

WorkNode := min
i

{Nodeh−1
i |Nodeh−1

i �= AllZero} (3)

Updating leaf node results in updating MHT. For the sake of explanation, let’s
start with a necessary definition:

1. ϕL[r(r1
s−→ r2); statement] means that the object operated is L (may be a

Set), and the operating procedure is to traverse r from value r1 to value r2
with the step s, each time to complete statement.

Based on the above definition, the updating procedure of MHTh can be
expressed as Eq. 4, where HASH() indicates to calculate a digest value.

ϕNodekj ∈AncestorSet(WorkNode)[k(h-2
−1−−→ 0); Nodekj := HASH(Nodek+1

2j ||Nodek+1
2j+1)]

(4)
More specifically, it operates the WorkNode’s all ancestor nodes and updates

them from the higher layer to the root node of MHTh. For each ancestor node
(e.g. Nodekj ), kernel concatenates its two children’s values and calculates their
digest value which will be set as the value of Nodekj .

Once finishing the updating procedure, the Provenance Collection is accom-
plished if the WorkNode is not the MHT’s last leaf node. Otherwise kernel passes
the root node’s value (Node00) to RecordChain, and all leaf nodes of this MHT
will be cleared and set as AllZero. Equation 5 shows the clear procedure, such
that the WorkNode for the next ME is the first leaf node.

ϕNodeh−1
j

[j(0 1−→ 2h−1 − 1);Nodeh−1
j := AllZero] (5)

RecordChain. Besides MHTh, kernel maintains a double-linked list. When
receiving the root node’s value (Node00) of MHTh, RecordChain appends Node00
into this double-linked list and extends this value into PCR11 via PCR Extend.
Kernel exports this list into Chain Log in the user-space. Note that PROV Log is
appended by Measurement Agent directly in order to reduce the cost of storing
data structures. However, Chain Log is exported into user-space via securityfs,
which is used to print the data structures in kernel when a process opens this
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file. As the write operation of this securityfs is disabled, modifying Chain Log
in the user-space is in fact invalid. In addition, as the entries in Chain Log are

1
2h−1 times the number of entries in PROV Log, a reasonable h brings benefit to
balance between the cost and security. In a word, Chain Log records root nodes
of every full MHT and hence can be used to validate the integrity of PROV Log.

Besides protecting PROV Log, Merkle Tree and RecordChain also contribute
to achieving high efficiency, as them reduce the length of CoT and enable parallel
computing when validating PROV Log. Compared with IMA where all measure-
ment events of IMA belong to CoT, the length of CoT in TProv is decreased to

1
2h−1 times. The longer the CoT, the more cost of operating TPM and validat-
ing CoT. In addition, we can leverage parallel validation to validate CoT. The
details are shown in Sect. 5.

5 Provenance Attestation

5.1 Message Transferring

A verifier requests to collect provenance by sending RetrieveReq to prover.

RetrieveReq = {nonce, PCR index} (6)

where nonce is generated at random, and PCR index indicates which PCRs are
to be retrieved. nonce is used to prevent from the attacker using the past to
forge the current message. The PCR index refers to PCR11 which records the
CoT of TProv, i.e. root nodes’ values of every full MHTs.

When receiving the RetrieveReq, the Retrieve Agent in prover collects the
RetrieveRes, including PROV Log, Chain Log and information stored in TPM,
i.e. PCR11, the AIK Certificate and the signature for PCR11 and nonce.

5.2 Trustworthiness of Chain Log

When RetrieveRes reaches verifier through an untrusted network, the Message
Parser in verifier attempts to resolve each part of RetrieveRes. If the resolution
fails, the RetrieveRes has been tampered. Otherwise, the Message Parser passes
the PROV Log that has not yet been verified to the PROV Log Validation
module, and passes the others of RetrieveRes to the TPM Identity Validation.

TPM Identity Validation module does the following steps. Firstly, it validates
the identity of TPM via AIK Certificate in RetrieveRes. Secondly, it retrieves
the AIK public key from AIK Certificate and resolves the PCR11 and nonce
from the signature with the AIK public key. Finally, it compares the resolved
results with PCR11 in RetrieveRes and nonce in RetrieveReq respectively. Note
that any failure of these steps means that the RetrieveRes has been tampered.
If all steps are successful, trusted PCR values are obtained, and the RetrieveRes
is up to date as the nonce matches the one the verifier sent.

The trusted PCR11 and the Chain Log waiting for validation are passed into
the ChainLog Validation module as inputs. During the Provenance Collection,
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entries in Chain Log are extended into PCR11 one-by-one. Through simulating
the PCR Extend operation towards Chain Log, a simulated value (s-PCR) can
be calculated (Eq. 7). s-PCR is initialized as AllZero.

ϕentryi∈ChainLog[i(0
1−→ |ChainLog| − 1); s-PCR := HASH(s-PCR ‖ entryi)]

(7)
Finally, the verifier compares s-PCR with the trusted PCR11. If the match fails,
RetrieveRes has been tampered.

5.3 Trustworthiness of PROV Log

When the Chain Log has been validated to be trusted, the PROV Log Validation
module prepares to work with the inputs, including the trusted Chain Log and
the PROV Log waiting for validation.

SPLIT. Split contributes to making a division towards the input log and out-
putting a Set of entries. For Chain Log, each element of the outputted Set, i.e.
SC, refers to an entry in Chain Log, while for PROV Log, each element of the
outputted Set, i.e. SP, refers to adjacent 2h−1 entries.

SC = {entry0, entry1, ..., entry|Chain Log|−1}
SP = {{entrys∗i+0, entrys∗i+1, ..., entrys∗i+2h−1−1} |

s = 2h−1 ∩ i ∈ {0, 1, ..., � |PROV Log|
2h−1

� − 1}
(8)

Since every 2h−1 entries of PROV Log make up of a MHT in kernel, and all root
nodes are recorded into Chain Log, the size of SC and SP should be equal.

Validation Rule 1 (size comparison): The outputted Sets for splitting Chain
Log and PROV Log should satisfy Eq. 9.

|SC| = |SP | or |Chain Log| = � |PROV Log|
2h−1

� (9)

MHT. For each element of SP, i.e. SP j , which is a Set with 2h−1 entries of
PROV Log, we have to reconstruct a MHT with height h. Let SP j

i as the i-th
element of SP j , and thus SP j

i also refers to an entry in PROV Log. Define
MHTj

h as the MHT reconstructed by SP j and Nodej,lk as the k-th node in layer
l of MHTj

h. Note that the node hash for each entry in PROV Log is viewed as
a leaf node to construct MHT. Define node hash for SP j

i as SP j
i .node hash.

Therefore, all SP j
i .node hash for SP j make up the leaf nodes of MHTj

h.

ϕNodej,h−1
i

[i(0 1−→ 2h−1 − 1);Nodej,h−1
i := SP j

i .node hash] (10)

Additionally, considering that node hash is calculated by all other key-value
pairs for a entry in PROV Log, we can validate the integrity of each entry in
PROV Log during the procedure of updating the leaf nodes of MHT.
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Validation Rule 2 (entry’s integrity comparison): If all steps in Eq. 11
return True, the integrity of entries in SP j is satisfied.

ϕSP j
i
[i(0 1−→ |SP j | − 1);Compare(SP j

i .node hash,HashSet(SP j
i \ node hash))]

(11)
where SP j

i \ node hash represents the key-value pairs of SP j
i except key

NODE HASH, and HashSet (S) indicates to concatenate all elements of Set S and
calculate its digest value. Compare (A,B) returns True if the value of A equals
value B.

We can recalculate the root node’s value through updating nodes from layer
h − 2 to the lowest layer, i.e. layer 0. Updating a node means to concatenate its
two children nodes’ values and set the returned value’s digest as this node’s new
value. Equation 12 shows the updating procedure towards nodes in layer k.

ϕNodej,ki
[i(0 1−→ 2k − 1);Nodej,ki := HASH(Nodej,k+1

2∗i ||Nodej,k+1
2∗i+1)] (12)

Validation Rule 3 (PROV Log’s trustworthiness determination): After
all MHTs are updated, a trusted PROV Log should satisfy Eq. 13.

ϕMHT j
h
[j(0 1−→ |SP | − 1);Compare(Nodej,00 , SCj)] (13)

where Nodej,00 is the root node of the j-th MHT and SCj refers to the j-th
element of SC, i.e. the j-th entry of Chain Log.

Except Validation Rule 1, all validation steps can be determined with
multi-threading, as they only concern about a specific element of SP and SC
during the calculation. Hence the cost of validation can be reduced.

6 Evaluation

The prover in our prototype is Ubuntu 14.04 with our modified kernel to sup-
port TProv, along with 4 GB memory and 4 processor cores. A TPM1.2 chip
is equipped in prover. The verifier is Ubuntu 14.04 with the default kernel and
2 GB memory.

6.1 Effectiveness: Process Behavior Track

We firstly demonstrate TProv’s effectiveness. We utilize the scenario in Sect. 3.1
to show that TProv contributes to tracking process behaviors. Figure 5 describes
a part of provenance graph created by analyzing the PROV Log towards mafix
process, i.e. mafix/root/#4645. Nodes in this graph are made up of processes
and files to be written. Node /bin/bash#4441 represents for process /bin/bash
whose PROV ID equals 4441. The file movement is identified by a character “→”,
for instance, node in the bottom left corner with label mafix/bin/hide →
/usr/lib/libsh/hide#31185 means to replace /usr/lib/libsh/hide with file
mafix/bin/hide.



78 W. Luo et al.

Fig. 5. Provenance information towards mafix process.

As Fig. 5 shows, mafix process, i.e. node mafix/root#4645, firstly runs a
binary program /bin/tar#4650 to extract a lot of files and save them into
directory mafix/bin. After that, mafix runs mv several times to replace the
good system binaries with files extracted by itself. For example, process with
PROV ID 4877, which is created by mafix, runs /bin/mv#4878 program, and
replaces /usr/bin/find with mafix/bin/find in node with PROV ID 31055.
Hence the information that a lot of system binaries have been replaced can be
acquired.

6.2 Efficiency: Performance of Provenance Collection

Besides the effectiveness of TProv, we utilize LMbench32, a well-known tool
for performance analysis, to evaluate our modified kernel which implements
Provenance Collection procedure. The evaluation is divided into three cases:
(1) Origin: the default kernel 3.13.11. (2) TProv: kernel which implements the
Provenance Collection procedure based on kernel 3.13.11. (3) TProv-w/o-mht:
compared with TProv, kernel in this case does not maintain MHT, yet just
extends all measurement results into PCR and writes them into PROV Log
directly.

Table 1 shows the evaluation results, where in each case we run LMbench3 for
10 times and calculate its average overhead. The MHT’s height is set as 10. For

2 http://www.bitmover.com/lmbench/.

http://www.bitmover.com/lmbench/
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Table 1. Performance of provenance collection

Type Origin TProv TProv-w/o-mht

Processor, Processes - times in microseconds - smaller is better

null call 0.07 0.07 (0.00%) 0.07 (0.00%)

null I/O 0.16 0.1609 (0.57%) 0.16 (0.00%)

fork process 138 150.3636 (8.96%) 306.7273 (122.27%)

exec process 600.3636 689 (14.76%) 1251 (108.37%)

File & VM system latencies in microseconds - smaller is better

0 K file create 7.7379 8.1674 (5.55%) 8.1667 (5.54%)

0 K file delete 6.9002 6.9333 (0.48%) 6.9037 (0.05%)

10 K file create 16.1727 16.7273 (3.43%) 16.5938 (2.60%)

10 K file delete 9.8112 9.9845 (1.77%) 9.8428 (0.32%)

*Local* communication bandwidths in MB/s - bigger is better

Pipe 2436.1818 2465.6364 (1.21%) 2522 (3.52%)

AF Unix 6989.4545 6957.6364 (−0.46%) 6673.1818 (−4.52%)

Bcopy (libc) 6558.8364 6547.2273 (−0.18%) 6547.25 (−0.18%)

Bcopy (hand) 4193.4182 4191.8727 (−0.04%) 4173.75 (−0.47%)

Mem read 8785.6364 8824.6364 (0.44%) 8817.7 (0.36%)

Mem write 6003.2727 5952 (−0.85%) 5965 (−0.64%)

case TProv and TProv-w/o-mht, Table 1 shows them with a percent overhead
calculation against case Origin. For most measurements, the evaluation results
of case TProv and TProv-w/o-mht cost a little more than case Origin. However,
there are four measurements whose additional overheads are noteworthy: fork
process, exec process, 0K file create and 10K file create. It is reasonable as more
than two hooks are triggered in these cases. Additionally, compared with case
TProv, case TProv-w/o-mht usually costs more. The reason is that kernel in this
case does not maintain a MHT, instead each valid ME causes a TPM operation.

6.3 Efficiency: Influence of MHT’s Height

The MHT’s height is the only parameter for TProv. In order to enable the user
of TProv to adjust the MHT’s height to fit for his own requirement, we add a
new parameter with the key prov mht height into the configuration or command
line of Grub, e.g. /boot/grub/grub.cfg for Ubuntu.

Figure 6(a) shows the average time usage for adding 600000 entries. When a
lower prov mht height is set, the average time for collecting entries is higher. The
result is acceptable due to reducing the frequency of performing TPM operations.
However, due to the increased cost of updating MHT when setting a larger
prov mht height, the average time for collecting entries tends to be stable.



80 W. Luo et al.

Fig. 6. (a) Average time usage for adding 600 thousands entries for different
prov mht height ; (b) Time usage for validation with different prov mht height.

6.4 Efficiency: Provenance Validation with Multi-threading

We claim that TProv enables parallel validation to decrease the time usage.
We evaluate it with two variables: the MHT’s height and the thread numbers
used to validate PROV Log. For each experiment, we record the time usage to
validate the integrity of PROV Log after finishing split. Before running this
experiment, the number of PROV Log’s and Chain Log’s entries are 27821 and
55 respectively when the prov mht height equals 10, and they reach to 27143 and
106 respectively when the prov mht height equals 9.

Figure 6(b) shows our results. It indicates two points. Firstly, when increasing
the thread number, the time for validate is reduced as expected until the
thread number reaching to the number of Chain Log’s entries, for instance, when
prov mht height is set as 10, time usage tends to be stable when thread number
reaches 55. Secondly, a higher prov mht height requires less thread number to
stabilize the time usage, i.e. 106 threads when prov mht height equals 9, but 55
threads when it is set as 10. Compared with IMA which is limited to do a strict
sequential validation, TProv reaches High efficiency.

7 Related Work

Trusted Computing. Based on IMA, binary remote attestation enables a ver-
ifier to determine the current state of prover. Due to the limited computation
capability of a TPM chip, the latency of a remote attestation is unacceptable.
Stumpf et al. [26] propose the Timestamped Hashchain-based Attestation to
compensate this deficiency. Policy-Reduced IMA(PRIMA) and Privilege-Based
Remote Attestation [20] achieve ML reduction and hence decrease the delay
of Remote Attestation. Additionally, Sadeghi and Stüble propose a delegation
based attestation in [21]. They highlight the drawbacks of binary remote attes-
tation and demonstrate how property based attestation to be realized.

Provenance-aware Mechanisms. The majority of proposed provenance-
aware mechanisms depend on applications in the user-space. SPADE [6] is a
daemon in the user-space to record the provenance from interfaces provided by
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operating system, e.g. the audit mechanisms. Hasan et al. present SPROV [8] and
SPROV2 [9] to utilize a signature-chaining mechanism to provide a platform-
independent, efficient, highly-configurable and modular library. However, an
adversary in our threat model can easily forge/disable this library to tamper
the provenance information. In contrast, PASS [15] is a well-known provenance-
aware system to collect provenance in the VFS layer. Hi-Fi [19] is implemented
as a LSM module to collect the whole system provenance, although it blocks the
installation of other security modules based on LSM. LPM [3] solves some issues
of Hi-Fi, but the provenance recorder and storage back-ends in the user-space are
assumed as a part of TCB. Lyle et al. [10] attempt to integrate Trusted Com-
puting to provide a trusted provenance system. Nevertheless, the provenance
information it could collect are incompleteness, i.e. just focus on code execu-
tion and ignores other activities like IPC and network. Activities whose digests
are not changed are also being ignored. Additionally, it requires frequent TPM
operations and is limited to the strict sequential validation.

8 Discussion and Future Work

Firstly, MHT maintained in the kernel of prover may not be full when the
Provenance Attestation occurs, i.e. leaf nodes in the state of AllZero exist. In
this situation, the last |PROV Log|%2h−1 entries in PROV Log are ignored in
the validation procedure. It can be accepted as the PROV Log is much huger
than these remaining entries with a reasonable height of MHT. Increasing the
Provenance Attestation frequency is also helpful.

Secondly, we adopt the idea of LPM to construct TProv Hooks following by
LSM. LSM is demonstrated to achieve completeness [3] such that this solution is
effective to collect the whole system provenance. However, the hooks for network
message transferring are not implemented. We will figure it out in the future.

Finally, we do not show algorithms to filter the entries of a trusted PROV
Log for the purpose of constructing a provenance graph with information only
concerned by a certain verifier. We will do it in the future.

9 Conclusion

In this work, we introduced TProv to establish trusted provenance-aware service
for cloud computing in the case of adversary being capable to be a privileged
administrator or attacking in an untrusted network. We firstly presented the
Provenance Collection procedure to show that TProv collects provenance which
only depends on hardware and kernel, such that the size of TCB is reduced.
Provenance Attestation procedure based on Trusted Computing ensures that
any attacks from untrusted user-space of prover and untrusted network can
be detected from the side of verifier. In addition, considering the overhead of
the huge size of provenance information and the cost of operating TPM, we
introduced an approach to leverage Merkle Hash Tree to guarantee efficiency.
The experiment result reflects the effectiveness and efficiency of our solution.
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