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Abstract. Thanks to the development of big data, more and more con-
text are available in web services. In this paper, we focus on recommenda-
tion with internal context (antithetical to external context such as social
connections), which refers to ratings assigned by users to items only.
Inspired by a very recent work that embeds the item neighborhood infor-
mation represented by multiclass preference context (or simply “MPC”)
into a model-based method, we further extend MPC to both user-based
MPC for user neighborhood and item-based MPC for item neighborhood.
In our new model termed matrix factorization with dual multiclass pref-
erence context (MF-DMPC), both user-based and item-based MPC are
encoded in a matrix factorization framework. By studying the effective-
ness of user-based MPC, item-based MPC, and our dual MPC through
experiments on three public data sets, we find that our proposed model
with dual MPC performs the best in accuracy. As a matter of fact, our
model successfully strikes a balance between user-based and item-based
neighborhood information, i.e., it exploits the complementarity well.

Keywords: Dual multiclass preference context · Matrix factorization
Collaborative filtering

1 Introduction

Recommendation technology [1], which is designed to help users pick out the
items they are interested in from a wide range of items, is an important tool
for solving the information overload problem and therefore attracts a great deal
of attention from both the academia and business communities. Actually, it is
of great practical application value to many web services scenarios such as e-
commerce, advertisement, multimedia (including movie, music, etc.), and even
social networking.

It is natural to imagine that the type of information (also called “context” in a
broad sense) introduced in the recommendation system has an important impact
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on the quality of recommendation service, with different type of context having
its own advantages. In this paper, we divide context in a recommendation sys-
tem into two categories, including external context and internal context, which is
illustrated in Fig. 1. External context includes physical context (e.g., time, loca-
tion) [2], social context (e.g., trust, companion, festival) [14] and so on, while
internal context mainly refers to user’s direct preference in the form of complex
latent pattern hidden in the known rating matrix [7,9]. In recent years, more
and more researchers are paying attention to context-aware recommendation
systems [4] that make predictions through the introduction of various external
context, believing that introducing appropriate external context can effectively
improve the recommendation performance. However, it may cause the problem
of model inflexibility and computational burden. Furthermore, external context
may not be available for many systems due to design flaws in early versions,
so algorithms that only make use of internal context still occupy an important
place in the research community.

Fig. 1. Illustration of two categories of context in recommendation systems.

Different from context-aware recommendation systems, traditional recom-
mendation systems (typically collaborative filtering recommendation systems [4,
7,9,10]) only consider internal context, that is, ratings assigned by users to items.
A newly proposed model called matrix factorization with multiclass preference
context (MF-MPC) [9] is a unified method which combines the two major cate-
gories of collaborative filtering – neighborhood-based [4] and model-based [7,10].
Briefly, MF-MPC is an improved method of SVD (a kind of matrix factoriza-
tion method) [10] by adding a matrix transformed from the multiclass preference
context of a certain user, which represents the user similarities in a neighborhood-
based method. In this paper, we further introduce a matrix factorization model
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that combines not only user similarities but also item similarities, which is thus
called MF with dual MPC (MF-DMPC for short). We also study the effect of
user similarities and item similarities separately. Experimental results show that
our MF-DMPC performs better than MF-MPC [9], and the degree of perfor-
mance improvement is probably effected by the ratio of the user group size to
the item group size, as well as the density of the rating matrix. MF-DMPC
inherits not only high accuracy of model-based recommendation algorithms, but
also good explainability of neighborhood-based algorithms.

2 Preliminaries

2.1 Problem Definition

In this paper, we study the problem of making good use of internal context in
recommendation systems, which means that we will only need an incomplete
rating matrix represented by R = {(u, i, rui)} for our prediction task, where u

Table 1. Some notations and explanations.

Symbol Meaning

n User number

m Item number

u, u′ User ID

i, i′ Item ID

M Multiclass preference set

rui ∈ M Rating of user u to item i

R = {(u, i, rui)} Rating records of training data

yui ∈ {0, 1} Indicator, yui = 1 if (u, i, rui) ∈ R and yui = 0 otherwise

Ir
u, r ∈ M Items rated by user u with rating r

Iu Items rated by user u

Ur
i , r ∈ M Users who rate item i with rating r

Ui Users who rate item i

µ ∈ R Global average rating value

bu ∈ R User bias

bi ∈ R Item bias

d ∈ R Number of latent dimensions

Uu·, Nr
u· ∈ R

1×d User-specific latent feature vector

Vi·,Mr
i· ∈ R

1×d Item-specific latent feature vector

Rte = {(u, i, rui)} Rating records of test data

r̂ui Predicted rating of user u to item i

T Iteration number in the algorithm
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represents one of the ID numbers of n users (or rows), i represents one of the
ID numbers of m items (or columns), and rui is the recorded rating of user u
to item i (rui ∈ M, M can be {1, 2, 3, 4, 5}, {0.5, 1, 1.5, . . . , 5} or other ranges).
As a result, we build an improved model based on MF-MPC [9] to estimate the
missing entries of the rating matrix. In other words, we are studying a problem
called rating prediction. Some notations used to establish our model are shown
in Table 1.

2.2 Multiclass Preference Context

In the state-of-the-art matrix factorization based model – SVD model [10], the
prediction rule for the rating of user u to item i is as follows,

r̂ui = Uu·V T
i· + bu + bi + μ, (1)

where Uu· ∈ R
1×d and Vi· ∈ R

1×d are the user-specific and item-specific latent
feature vectors, respectively. And bu, bi and μ are the user bias, the item bias
and the global average, respectively.

In the MF-MPC model [9], the rating of user u to item i, i.e., rui, can be
represented in a probabilistic way as follows:

P (rui|(u, i); (u, i′, rui′), i′ ∈ ∪r∈MIr
u\{i}), (2)

which means that rui is dependent on not only the (user, item) pair (u, i), but
also the examined items i′ ∈ Iu\{i} and the categorical score rui′ ∈ M of each
item. Notice that multiclass preference context (MPC) refers to the condition
(u, i′, rui′), i′ ∈ ∪r∈MIr

u\{i}.
In order to introduce multiclass preference context into matrix factorization

based model, we need a user-specific latent preference vector ŪMPC
u· for user u

from the multiclass preference context [9],

ŪMPC
u· =

∑

r∈M

1√|Ir
u\{i}|

∑

i′∈Ir
u\{i}

Mr
i′·. (3)

Notice that Mr
i· ∈ R

1×d is a classified item-specific latent feature vector and
1√

|Ir
u\{i}| plays as a normalization term for the preference of class r.

If we multiply the MPC expressions of two users u and u′ (ŪMPC
u· and ŪMPC

u′· )
together, and set M = {1} specially, we will have

〈
ŪMPC

u· , ŪMPC
u′·

〉 ≈
∑

i′∈Iu
Mr

i′· · ∑
i′∈Iu′ Mr

i′·√|Iu||Iu′ | , (4)

which is quite similar to the cosine-based similarity [11] – a measure of the
similarity between two users shown as follows:

sim(u, u′) = cos(Ru,∗,Ru′,∗) =
Ru,∗ · Ru′,∗

‖Ru,∗‖2 ‖Ru′,∗‖2
, (5)
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where R is the n × m user-item matrix. Therefore we believe that multiclass
preference context can represent user similarities.

By adding the neighborhood information ŪMPC
u· to SVD model, we can get

the MF-MPC prediction rule for the rating of user u to item i [9]:

r̂ui = Uu·V T
i· + ŪMPC

u· V T
i· + bu + bi + μ, (6)

where Uu· and Vi·, bu, bi and μ are exactly the same with that of the SVD
model. MF-MPC is proved to generate better recommendation performance than
SVD [10] and SVD++ [7], and also contains them as particular cases.

3 Matrix Factorization with Dual Multiclass Preference
Context

Inspired by the differences between user-based and item-based collaborative fil-
tering [4], we can infer that item similarities (item-based multiclass preference
context) can also be introduced to improve the performance of matrix factor-
ization model. Furthermore, thanks to the extendibility of MF model, we can
hopefully introduce both user-based and item-based MPC into the prediction
rule so as to obtain an improved model – matrix factorization with dual multi-
class preference context (MF-DMPC). The derivation process can be found in
Fig. 2.

3.1 Dual Multiclass Preference Context

Now we call ŪMPC
u· (mentioned in previous section) user-based multiclass pref-

erence context (user-based MPC). Before defining dual multiclass preference
context (DMPC), we should first define item-based multiclass preference con-
text (item-based MPC) V̄ MPC

i· to represent item similarities. Symmetrically, we
have

V̄ MPC
i· =

∑

r∈M

1√|Ur
i \{u}|

∑

u′∈Ur
i \{u}

Nr
u′·, (7)

where Nr
u· ∈ R

1×d is a classified user-specific latent feature vector. So now we
have the item-based MF-MPC prediction rule,

r̂ui = Uu·V T
i· + V̄ MPC

i· UT
u· + bu + bi + μ. (8)

When choosing between the implementation of a user-based and an item-
based neighborhood recommender system, we often consider criteria such as
accuracy, efficiency, and so on. However these properties always depend on the
ratio between the number of users and items in the system.

The good news is that through the advanced matrix factorization method,
now we can introduce both user-based and item-base neighborhood information
into our model by keeping both ŪMPC

u· and V̄ MPC
i· in the model, collectively

called dual multiclass preference context (DMPC).
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Fig. 2. Illustration of user-based MF-MPC, item-based MF-MPC and our MF-DMPC.

3.2 Prediction Rule and Optimization Problem

For matrix factorization with dual multiclass preference context, the prediction
rule for the rating of user u to item i is defined as follows,

r̂ui = Uu·V T
i· + ŪMPC

u· V T
i· + V̄ MPC

i· UT
u· + bu + bi + μ, (9)

with all notations described above. Finally, we call our new model MF-DMPC
in short.

With the prediction rule, we can learn the model parameters in the following
minimization problem,

min
Θ

n∑

u=1

m∑

i=1

yui[
1
2
(rui − r̂ri)2 + reg(u, i)], (10)

where reg(u, i) = αm

2

∑
r∈M

∑
i′∈Ir

u\{i} ||Mr
i′ ||2F + αn

2

∑
r∈M

∑
u′∈Ur

i \{u} ||Nr
u′ ||2F

+ αu

2 ||Uu·||2 + αv

2 ||Vi·||2 + βu

2 ||bu·||2 + βv

2 ||bi·||2 is the regularization term used
to avoid overfitting, and Θ = {Uu·, Vi·, bu, bi, μ,Mr

i·μ,Nr
u·}, u = 1, 2, . . . , n,

i = 1, 2, . . . ,m, r ∈ M. Notice that the objective function of MF-DMPC is
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quite similar to that of MF-MPC. The difference lies in the “dual” MPC, i.e.,
V̄ MPC

i· UT
u· in the prediction rule, and αn

2

∑
r∈M

∑
u′∈Ur

i \{u} ||Nr
u′ ||2F in the regu-

larization term.

3.3 Algorithm

Using the stochastic gradient descent (SGD) algorithm, we have the gradients
of the model parameters for a randomly sampled rating record (u, i, rui),

∇Uu· = −eui(Vi· + V̄ MPC
i· ) + αuUu· (11)

∇Vi· = −eui(Uu· + ŪMPC
u· ) + αvVi· (12)

∇bu = −eui + βubu (13)
∇bi = −eui + βvbi (14)
∇μ = −eui (15)

∇Mr
i′· = − −euiVi·√|Ir

u\{i}| + αmMr
i′·, i

′ ∈ Ir
u\{i}, r ∈ M. (16)

∇Nr
u′· = − −euiUu·√|Ur

i \{u}| + αnNr
u′·, u

′ ∈ Ur
i \{u}, r ∈ M. (17)

where eui = (rui−r̂ui) is the difference between the true rating and the predicted
rating.

And we have the update rules,

θ = θ − γ∇θ (18)

where γ is the learning rate, and θ ∈ Θ is a model parameter to be learned.
The algorithm of MF-DMPC (see Fig. 3) consists of three major steps. Firstly,

we randomly pick out a rating record sample from the training data. Secondly, we
calculate the gradients via Eqs. (11–17). Thirdly, we update each model param-
eter via Eq. (18). The major difference between the algorithm of MF-DMPC
and that of MF-MPC [9] lies in the prediction rule as shown in Eq. (9) and the
corresponding gradients.

Judging from algorithmic efficiency, the time complexity of MF-MPC [9] and
SVD++ [7] and the proposed MF-DMPC is MF-DMPC > MF-MPC > SVD++,
mainly because of the traversal during calculating ŪMPC

u· and V̄ MPC
i· in MF-

DMPC, ŪMPC
u· in MF-MPC, and ŪOPC

u· (oneclass preference context defined
in [9]) in SVD++. As for space complexity, we can reckon from the size of
dominating model parameters vectors shown in Table 2. In general, our MF-
DMPC consume more time and memory than the closely related algorithms.

4 Experiments

In this section, we wonder what benefit does MF-DMPC bring with more
resource consumption. We expect that it may lead to improvement of the accu-
racy, which is probably related to the effects of different kinds of MPC (including
user-based MPC, item-based MPC and dual MPC).
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1: Initialize model parameters Θ
2: for t = 1, . . . , T do
3: for t2 = 1, . . . , |R| do
4: Randomly pick up a rating from R
5: Calculate the gradients via Eq.(11 - 17)
6: Update the parameters via Eq.(18)
7: end for
8: Decrease the learning rate γ γ × 0.9
9: end for

Fig. 3. The algorithm of MF-DMPC.

Table 2. The size of dominating model parameters vectors in different models.

Model Dominating model parameters vectors size (× d)

SVD Uu·, Vi· n + m

SVD++ Uu·, Vi·,Mi· n + m + n

MF-MPC Uu·, Vi·,Mr
i· n + m + n|M|

MF-DMPC Uu·, Vi·,Mr
i·, N

r
u· n + m + n|M| + m|M|

4.1 Data Sets and Evaluation Metrics

For convenience, we choose the same data sets used in previous research about
MF-MPC [9]. They are three public data sets from the Grouplens research
lab, including MovieLens100K (ML100K), MovieLens1M (ML1M) and Movie-
Lens10M (ML10M). Table 3 shows some information about them. Notice that
now the ratio of user group size to item group size and the density of the rating
matrix should be important factors to analyze the results of the experiments due
to different characteristics of different neighborhood-based algorithms. We use
five-fold cross validation in the empirical studies.

Table 3. Statistics of the data sets used in the experiments.

Data set User number Item number Record number Density of
training set

n/m

ML100K 943 1,682 100,000 5.04% 0.56

ML1M 6,040 3,952 1,000,209 3.35% 1.53

ML10M 71,567 10,681 10,000,054 1.05% 6.70
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We adopt mean absolute error (MAE) and root mean square error (RMSE)
as evaluation metrics:

MAE =
∑

(u,i,rui)∈Rte

|rui − r̂ui|/|Rte|

RMSE =
√ ∑

(u,i,rui)∈Rte

(rui − r̂ui)2/|Rte|

4.2 Baselines and Parameter Settings

In order to find out the effects of introducing different kinds of MPC into matrix
factorization (MF) model, we compare the performance of SVD (see Eq. (1))
against that achieved by matrix factorization with user-based MPC (see Eq. (6)),
item-based MPC (see Eq. (8)) and dual MPC (see Eq. (9)).

We configure the parameter settings of factorization-based methods as fol-
lows:

– For the learning rate γ, we set it to a commonly used default value, that is
γ = 0.01.

– For the number of latent dimensions d, it is enough to show the advantages
of introducing MPC when d = 20 (according to [9]).

– We set the iteration number T = 50, where results have reached steady state.
– The tradeoff parameters are searched through experiment using the first

copy of each data and the RMSE metric, and follow the following condi-
tions: αu = αv = βu = βv = α, α ∈ {0.001, 0.01, 0.1}; for user-based
MF-MPC, αm = α; for item-based MF-MPC, αn = α; for dual MF-MPC,
αm, αn ∈ {0.001, 0.01, 0.1}.

4.3 Results

The experimental results are shown in Table 4. Notice that the tradeoff param-
eters shown in the table are the searched best value for each method.

From the results in Table 4, we can have the following observations:

– The accuracy of factorization framework greatly improve when introducing
multiclass preference context;

– Among all kinds of MPC, dual MPC contributes the most to the achievement
of minimizing prediction error;

– In the MovieLens datasets, whether user-based or item-based MPC is more
helpful depends on the ratio of user group size to item group size (n/m).
Normally, item-based MF-MPC performs better when n/m is of a suitable
size. As n/m getting larger, user-based MPC becomes even more important
(may be affected by additional factors such as the density of rating matrix);
and
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Table 4. Recommendation performance of our MF-DMPC and other baseline methods
on three MovieLens data sets.

Data Method MAE RMSE Parameter (α, αm, αn)

ML100K SVD 0.7446 ± 0.0033 0.9445 ± 0.0035 (0.01, N/A, N/A)

User-based MF-MPC 0.7123 ± 0.0028 0.9102 ± 0.0029 (0.01, 0.01, N/A)

Item-based MF-MPC 0.7038 ± 0.0021 0.9008 ± 0.0025 (0.01, N/A, 0.01)

MF-DMPC 0.7011 ± 0.0025 0.8991 ± 0.0024 (0.01, 0.01, 0.01)

ML1M SVD 0.7017 ± 0.0016 0.8899 ± 0.0023 (0.01, N/A, N/A)

User-based MF-MPC 0.6613 ± 0.0015 0.8465 ± 0.0017 (0.01, 0.01, N/A)

Item-based MF-MPC 0.6587 ± 0.0009 0.8439 ± 0.0013 (0.01, N/A, 0.01)

MF-DMPC 0.6564 ± 0.0016 0.8434 ± 0.0017 (0.01, 0.01, 0.01)

ML10M SVD 0.6067 ± 0.0007 0.7913 ± 0.0009 (0.01, N/A, N/A)

User-based MF-MPC 0.5965 ± 0.0006 0.78135 ± 0.0007 (0.01, 0.01, N/A)

Item-based MF-MPC 0.6024 ± 0.0006 0.7900 ± 0.0008 (0.01, N/A, 0.01)

MF-DMPC 0.5955 ± 0.0005 0.78133 ± 0.0007 (0.01, 0.001, 0.1)

– The performance of MF-DMPC is in a way restrained by the better result
between user-based and item-based MF-MPC – just slightly better than the
better result. The improvement shows that MF-DMPC strikes a good balance
between user-based MPC and item-based MPC.

Last but not the least, MF-DMPC not only inherits high accuracy of model-
based algorithm, but also inherits good explainability of neighborhood-based
algorithm.

5 Related Work

5.1 Recommendation with Internal Context

Recommendation with internal context refers primarily to collaborative filtering,
which consider only rating data given by users. Collaborative filtering (or sim-
ply “CF”) methods can be broadly separated into two categories: neighborhood-
based and model-based (see Fig. 4). Neighborhood-based CF, which is based
on the assumption that users with similar interests have similar preferences
for an item, makes predictions by calculating user similarities (represented by
user-based CF method) or item similarities (represented by item-based CF
method) [11]. Model-based CF (represented by SVD methods) can obtain latent
feature vectors of users and items through matrix factorization model, and fur-
ther obtain predictive scores. SVD++ method proposed by Koren [7], which is
regarded as attempt to combine neighborhood-based and model-based methods
by adding a latent feature vector (which is actually a latent form of user similar-
ities), gets a better result. After analyzing the merits and demerits of SVD++,
Pan et al. proposed the MF-MPC method [9]. Instead of ignoring categorical
scores, this method makes full use of multiclass preference context and treats
SVD++ as an exception, so as to achieve better results. As an upgraded method



Matrix Factorization with Dual Multiclass Preference Context 347

of MF-MPC, our MF-DMPC model is also a typical example of using internal
context. There are also some different views in modeling the rating scores such
as categorical, numerical and ordinal [6], from which we may derive some rich
preference context.

Fig. 4. Illustration of related model-based algorithms.

5.2 Recommendation with External Context

For a long time, researchers are searching for ways to make prediction with only
user’s explicit feedback in a form of (user, item, rating) etc., due to the lim-
ited access to get more information from users in web services. However, with
rapid spread of big data, we are now able to make use of more context in rec-
ommendation algorithm. Context-aware recommendation have been developed
and applied, thanks to the findings in behavioral research on consumer decision.
For example, temporal context is likely to have an impact on a travel recom-
mendation system. In contrast with traditional recommendation, context-aware
recommendation typically deal with data records of the form (user, item, rating,
context), which means that it takes more contextual information (mainly rele-
vant external context) into consideration. According to [4], there are four major
approaches to model contextual information in context-aware recommendation
systems, distinct by change (static, dynamic) and knowledge (fully observable,
partially observable, unobservable) of/about contextual factors. And [4] also
introduces the three main algorithmic paradigms for incorporating contextual
information into rating-based recommender systems: contextual pre-filtering,
post-filtering, and modeling.

5.3 Discussions

From single to hybrid CF recommendation methods, we have achieved great
progress on recommendation with internal context. However, we are still looking
forward to more improvement because the two-dimensional (2D) data (user,
item) will also be included in recommendation with external context and the
way of applying the 2D data in traditional method can be illuminating to many
other methods such as the prediction rule of timeSVD++ [8].
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Different from ours, timeSVD++ is a representative method of containing
external context, which also adopts matrix factorization model. TimeSVD++
takes temporal effects on baseline predictors and user preferences into consider-
ation. The prediction rule of timeSVD++ is as follows [8]:

r̂ui = Uu·(tui)V T
i· + ŪOPC

u· V T
i· + bu(tui) + bi(tui) + μ, (19)

where the user bias bu, item bias bi and user-specific latent feature vector Uu· in
SVD++ model are replaced by time changing part bu(tui), bi(tui) and Uu·(tui),
respectively. Notice that ŪOPC

u· is the oneclass form of MPC (M = {0, 1}). It is
said that a timeSVD++ model of dimension 10 is already more accurate than
an SVD model of dimension 200, which can be an evidence of the importance of
capturing proper external context (temporal dynamics, in this case). It is under-
standable that multiclass preference context (defined in our MF-DMPC) can
also be introduced into timeSVD++ because of the same factorization frame-
work. Notice that the improvement on timeSVD++ is not illustrated any further
since we mention it here only to address the significance of recommendation with
internal context in the field of recommendation system.

Notably, approaches mentioned above are all applied in isolated services and
ignoring services sociability. Lately, however, a methodology to construct a global
social service network for social influence-aware service recommendation app-
roach, which provides recommend-as-you-go, has been proposed [3]. From one
perspective, we can say that this work provides a kind of thought to connect rec-
ommendation approaches used in different services and therefore achieves better
results.

6 Conclusions and Future Work

In this paper, we present a novel collaborative filtering method that joins neigh-
borhood information to factorization model for rating prediction. Specifically,
we extend multiclass preference context (MPC) to include two types, i.e., user-
based and item-based, and combine them in one single prediction rule in order
to achieve better recommendation performance than the reference models.

For future works, as discussed, the inefficiency of our model is an inevitable
problem and what we must firstly solve. In the second place, we are interested
in studying the issues of robustness of factorization-based algorithms with pref-
erence context. We also expect some advanced strategy such as adversarial sam-
pling [13], denoising [12] or multilayer perception [5] to be used.
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