
A RESTful Web Service
for Non-overlapping Community
Quality Assessment with MPI

Yuhong Feng1, Song She1, Yuanshi Wu1, Mingyang Zhou1, Zhong Ming1(B),
and Haoming Zhong2(B)

1 National Engineering Laboratory for Big Data System Computing Technology,
College of Computer Science and Software Engineering, Shenzhen University,

Shenzhen 518060, China
mingz@szu.edu.cn

2 Data Science and Application, Intelligence Department, WeBank, Shenzhen, China
hmzhong@webank.com

Abstract. Network community quality assessment (CQA) is essential
for many applications. However, large scale communities detected from
nowadays rapidly growing social networks present great challenge to its
computation efficiency. Though parallel algroithms using message pass-
ing interface (MPI) have recently been introduced into the field, its com-
putation efficiency needs further improvement. Meanwhile, the complex-
ity of the MPI implementation handicaps data scientists from adopting
it. In this paper, we first design a fast MPI-based metrics computa-
tion algorithm. Then we propose a RESTful framework to wrap the
non-overlapping CQA metrics computation as a Web service, i.e., non-
overlapping CommuMetrics, which makes it easy to use. Finally, experi-
ments in empirical networks demonstrate the effectiveness of our method
in terms of execution time and speedup.

Keywords: Web services · RESTful
Community quality assessment · MPI

1 Introduction

Networks or graphs usually display community structure, i.e., their vertices are
aggregated into communities (or groups, clusters, modules in literature) [1], where
the vertices in the same community have higher similarity scores or denser con-
nections than those between them. Detecting the community structure for a
network, i.e., community detection, has been regarded as one of the key issues
in the study of networked systems and has been widely applied in various fields.
Many algorithms have been proposed to detect communities, e.g., modularity-
based [2], network partition based [3], clustering (or spectral) based [4], statistical
inference-based [5], dynamic process based [6] algorithms. This gives rise to the
requirement of community quality assessment (CQA for short).
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Girvan and Newman (GN) [7] and Lancichinetti–Fortunato–Radicchi (LFR)
proposed algorithms for generating networks with benchmark community struc-
ture according to specified parameters, e.g., edge density, strength of commu-
nity structure. Detection algorithms can be applied on the generated networks
to detect communities, which will be compared with the benchmark commu-
nity structure for CQA. Various CQA metrics have been proposed to evaluate
the quality of communities. In general, communities can be categorized into
non-overlapping or overlapping, where a vertex in non-overlapping communities
belongs to only one community and a vertex in overlapping ones can belong to
more than one community. The metrics for non-overlapping CQA and overlap-
ping CQA are different, in this paper, we focus on the non-overlapping CQA
metrics computation. In the rest of the paper, “CQA metrics” means non-
overlapping CQA metrics and “communities” means non-overlapping commu-
nities.

Sequential algorithms for computing CQA metrics, e.g., scikit-learn [8] and
igraph [9], have high computation complexity. Parallel algorithms using message
passing interface (MPI) [10] and Pthreads have recently been proposed to expe-
dite the computation over large scale communities [11], where MPI is an efficient
distributed memory programming model using message passing communication
mechanisms. However, the rapid growth of application data like Facebook which
have more than 2.2 billion monthly active users [12] presents great challenges to
the CQA execution efficiency. Meanwhile, the complexity of MPI implementation
details, e.g. efficient resource utilization, load balancing, execution management,
handicap data scientists from adopting it for data analysis because of the high
learning curve.

Web services1 are a set of standards and open protocols for encapsulating
application functions to be programmatically invoked over the Internet. Repre-
sentational State Transfer (REST) [13] is a web standard based architectural
style where HTTP protocol and uniform interfaces like GET, POST are used for
data communication over the Internet. Data analytics provisioned via RESTful
Web services [14–16] can remove the implementation and deployment details,
and ease the data scientists’ developing job. Therefore, RESTful Web services
for CQA metrics provisioning are desired.

This paper designs, implements and evaluates Non-overlapping CommuMet-
rics (CommuMetrics for short), an effective RESTful Web service for non-
overlapping CQA metrics provisioning. We first propose an improved MPI based
CQA metrics computing algorithm to expedite its execution, then we design a
RESTful framework to wrap the improved MPI-based CQA computation as a
Web service to make it easy to use. Finally, an empirical comparison study has
been carried out to demonstrate that the services are provisioned in an efficient
way.

The rest of the paper is organized as follows: Sect. 2 describes various met-
rics and their computation for non-overlapping CQA. Section 4 presents our
improved MPI based metrics computation. Section 3 introduces the architecture

1 https://www.w3schools.com/xml/xml services.asp.
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design and prototype implementation of the RESTful CQA metrics based web
service provision. Section 5 describes our empirical experimental performance
evaluation on the service provision. Finally, Sect. 6 concludes the paper.

2 Metrics Computation for Non-overlapping Community
Quality Assessment (CQA)

A network N consists of n vertices that are represented as a set V = {v1, v2,
· · · , vn}. Let X = {X1,X2, · · · ,XK} represent the communities detected over
N , where K denotes the number of communities. Then for any 1 ≤ r �= r′ ≤ K,
Xr,Xr′ ⊆ V, we have Xr

⋂
Xr′ = ∅ and

∑K
r=1 |Xr| = n. Let Y = {Y1, Y2, · · · ,

YK′} represent the benchmark communities for N , where K can have different
value from K ′.

Values for CQA metrics are between 0 and 1, measuring two communities’
similarity. The higher the value is, the closer two communities are. Particularly,
the value is 0 when the detected communities are completely different from
the benchmark, and the value is 1 when the detected communities are exactly
the same to that. According to how metrics are computed, CQA metrics can
be categorized into pair counting based (PC-based for short), cluster matching
based (CM-based for short) and mutual information based (MI-based for short),
which have been described in detailed in papers [11,17]. To make the paper self-
contained, we first give a summarized introduction to the metrics. The PC-based
metrics, e.g., Rand Index (RI) [18], Adjusted Rand Index (ARI) [19], Jaccard
Index (JI) [20] and Fowlkes–Mallows Index (FMI) [21], represent the fraction of
pairwise vertices which are aggregated to the same community. For X and Y, let
N11 and N00 represent the number of pairwise vertices categorized into the same
community and different communities respectively, N10 (N01) denote the number
of pairwise vertices that are categorized to the same community in X (Y) and dif-
ferent communities in Y(X ). Then RI, ARI, JI and FMI can be calculated using
Eqs. 1–4 respectively.

RI(X ,Y) =
N11 + N00(

n
2

) (1)

ARI(X ,Y) =
N11 − M

1
2 [(N11 + N10) + (N11 + N01)] − M

(2)

where the generalized hypergeometric distribution is assumed to be a random-
ness model, i.e., K for X , K ′ for Y and the size of each community are fixed, and
M = 1

(n2)
(N11 + N10)(N11 + N01) is the expected value under null hypothesis.

JI(X ,Y) =
N11

N11 + N10 + N01
(3)

FMI(X ,Y) =
N11√

(N11 + N10)(N11 + N01)
(4)
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In order to compute CM-based metrics, e.g., F-Measure and normalized Van
Dongen (NVD for short) [22], the best matched community in the benchmark Y
is needed to be found for each community in X . For each Xr ∈ X and Ys ∈ Y, let
pre = |Xr

⋂
Ys|

|Ys| and rec = |Xr

⋂
Ys|

|Xr| measure the precision and recall respectively,

and F(Xr, Ys) = 2·pre·rec
pre+rec = 2|Xr

⋂
Ys|

|Xr|+|Ys| represents the harmonic average between
pre and rec, then F-Measure and NVD can be calculated using Eqs. 5 and 6
respectively.

F -measure(X ,Y) =
1
n

∑

Xr∈X
|Ci| max

Ys∈Y
2|Xr

⋂
Ys|

|Xr| + |Ys| (5)

NV D(X ,Y) = 1 − 1
2n

[
∑

Xr∈X
max
Ys∈Y

|Xr

⋂
Ys| +

∑

Ys∈Y
max
Xr∈X

|Ys

⋂
Xr|

]

(6)

Finally, the MI-based metrics, e.g., Normalized Mutual Information (NMI)
[23] and Variation of Information (VI) [24], concern more about the entropy
and mutual information between communities. When such metrics are com-
puted, each vertex is assumed to be put in a community Xr ∈ X with the
same probability P (r) = |Xr|

n . Let H(X ) denote the entropy for X , then
we have H(X ) = −∑K

r=1 P (r) log P (r), which measures the expected uncer-
tainty in X . Mutual information between X and Y, denoted as I(X ,Y), mea-
sures the mutual dependencies between X and Y, which can be calculated by

I(X ,Y) =
K∑

r=1

K′
∑

s=1
P (r, s) log P (r,s)

P (r)P (s) , where P (r, s) = |Xr

⋂
Ys|

n . NMI between X
and Y, denoted as NMI(X ,Y), normalizes the mutual information I(X ,Y) and
concerns the maximum average normalized mutual information of all communi-
ties in both X and Y [23], which can be calculated using Eq. 7.

NMI(X ,Y) =
2I(X ,Y)

H(X ) + H(Y)
(7)

VI between X and Y, denoted as V I(X ,Y), measures the mutual dependen-
cies based on the information loss [24], which can be calculated using Eq. 8.

V I(X ,Y) = H(X )+H(Y)−2I(X ,Y) = [H(X )−I(X ,Y)]+[H(Y)−I(X ,Y)] (8)

The workflow of computing aforementioned CQA metrics includes two main
steps: (1) Compute all pair-community intersection sizes between X and Y; and
(2) Compute the rest part of the metrics, which can also involve high complexity
computation, e.g., finding all the best-matched pair-community for NVD. The
computation complexity of both steps are all high. The rapid growth on the size
of social networks presents great challenges to the metrics computation, MPI
based algorithm [11] uses parallel and distributed computation model MPI to
decompose the computation task into smaller ones, and then distribute them
to execute on multiple distributed hosts simultaneously, which improves their
efficiency and scalability. When this approach is applied, communities in X and Y
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are partitioned into p groups respectively, each one will be sent to a process
for pair-community comparison-based [25] all pair-community intersection size
computation. After a process completes its processing on the local data, it will
exchange its corresponding part of Y to each others and continues to compute
the intersection size between its corresponding group communities from X and
the newly received group ones from Y. After a process completes the intersection
size computation on its group communities of X and those of Y, it will calculate
the rest part of metrics based on the local data. Finally all the local results will be
accumulated for the final metrics computation. The pair-community comparison-
based all pair-community intersection size computation in this approach requires
KL × K ′ times comparison, where KL is the size of the partition of X for a
process. This high computation complexity degrade its efficiency.

We notice that igraph [9] and scikit-learn [8] use pair-cid counting based app-
roach for the all-pair community intersection size computation. Let the commu-
nity id (cid for short) of Xr be r, and let CX

i represent the cid of vi in X . For
any vi, its pair-cid for X and Y is denoted as a tuple (CX

i , CY
i ). Let sequence

S = 〈(CX
1 , CY

1 ), . . . , (CX
n , CY

n )〉, S is a repeat sequence, (CX
i , CY

i ) = (CX
k , CY

k )
means {vi, vk} ⊂ (XCX

i
∩YCY

i
) since vi, vk ∈ XCX

i
and vi, vk ∈ YCY

i
. That is, the

frequency of tuple (CX
i , CY

i ) in S is |XCX
i

∩ YCY
i
|. Therefore, |XCX

i
∩ YCY

i
| can

be calculated by counting the occurrence frequency of (CX
i , CY

i ) in S. The com-
putation complexity of all-pair community intersection size using this approach
is O(n). But igraph and scikit-learn are all sequential algorithms.

The objectives of our research include two folds: (1) Design an improved
MPI based CQA metrics computation, combing pair-cid counting based all pair-
community intersection size computation and MPI technologies to further expe-
dite the CQA metrics computation. (2) Design a RESTful framework to wrap
the CQA metrics computation as a Web service, i.e., Non-overlapping Commu-
Metrics, to offload the computation complexities from data scientists and help
them focus on data analysis, since the management of MPI based algorithm
execution needs extensive computational domain knowledge, e.g., configuration,
deployment, etc.

3 An Improved MPI-Based Algorithm for
Non-overlapping CQA Metrics Computation

Before the description of the algorithm, we first present the relevant nota-
tions. Let p denote the number of processes, tN11, tN10, tN01, tNV D(X ,Y),
tF -measure(X ,Y), tI(X ,Y), tH(X ), and tH(Y) denote the corresponding inter-
mediate N11, N10, N01 and NV D(X ,Y), F -measure(X ,Y), I(X ,Y), H(X ) and
H(Y) by each process computing the local datasets respectively.

To improve the CommuMetrics CQA metrics Web service provisioning, we
improve the metrics computation efficiency by two ways. First of all, it com-
putes all the metrics introduced in Sect. 2, which involves the all pair-community
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intersection size computation. If the results can be shared by all the metrics to
computed, the overall execution time can certainly be reduced. However, igraph
and scikit-learn only output some of the metrics, e.g., scikit-learn output only
ARI, FMI, and NMI. MPI-based algorithm compute 7 metrics, but it uses three
algorithms to compute the PC-based, CM-based and MI-based metrics respec-
tively. That is, when all the metrics are needed, multiple algorithms are needed
for execution, which further prolongs the execution time. Second, we will com-
bine the advantages of the pair-cid counting based all pair-community intersec-
tion size computation and MPI-based parallel and distributed computation. To
put the discussion into perspective, a small artificial dataset X ′ and Y ′ is used
as an example to illustrate how their metrics ARI and NMI are computed using
the improved algorithm, which is depicted in Fig. 1.

Fig. 1. Computing ARI and NMI with the improved MPI-based algorithm.

The metrics computation exploiting the pair-cid counting based all pair-
community intersection size computation includes the following three steps: (1)
Construct the pair-cid sequence S based on X and Y; (2) Compute the all pair-
community intersection size; (3) Complete the rest computation of metrics. The
parallelism of the first two steps are straightforward, dataset are split into mul-
tiple smaller groups, each one will be distributed to a process for independently
obtaining the cid and occurrence frequency of pair-cid based on the local data
respectively, and then the local results will be accumulated to obtain the all
pair-community intersection size. We actually construct S sequentially since its
computation complexity is low and parallelism is needed. But for the third step,
appropriate data grouping strategy is needed.

In order to reduce the communication among MPI processes, the tuples in
S with the same cid in X should be categorized into the same group and sent
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to the same process for computing intersection size and the rest of the metrics,
which is to ensure that for each Xr, its intersection size with each Yi ∈ Y (for
PC-based), its intersection size with its best matched Yi ∈ Y (for NVD), its best
harmonic average (for F-Measure), and its entropy and mutual information with
each Yi ∈ Y (for MI-based) will be calculated. Meanwhile, the tuples in S with
the same cid in Y should be categorized into the same group and sent to the
same process to ensure that each Yt, its intersection size and mutual information
with each Xi ∈ X will also have to be calculated for PC-based and MI-based
metrics computation.

It is hard to group the tuples in S to satisfy the above criteria. We re-
represent the tuples in S and construct a new sequence S′, targeting at achieving
parallelism for the following computations. Specifically, each tuple (CX

i , CY
i )

in S can be re-represented using two new tuples (CX
i , f, CY

i ) and (CY
i , f, CX

i )
in S′, where f is flag. f = 0 indicates that the first cid belongs to X and
f = 1 indicates that it belongs to Y. As illustrated in Fig. 1, tuple (1, 1) in S
is re-represented as two tuples (1, 0, 1) and (1, 1, 1) in S′. For a particular Xr,
there will be |Xr| tuples with the prefix (r, 0, ∗) in S′. That is, the larger a
community Xr is, the more tuples with the same prefix (r, 0, ∗) appear in S′.
Similarly, the larger a community Ys is, the more tuples with the same prefix
(s, 1, ∗) appear in S′. Since the tuple with the same prefix (r, 0, ∗) or (s, 1, ∗) will
be categorized into the same group, in order to balance the number of tuples
partitioned to each processors, the size of each community is collected in sequence
T = {t1, . . . , tK+K′}, where ti is (r, 0, |Xr|) or (s, 1, |Ys|) and T is sorted in
descending order of the community size. A tuple ti can be uniquely identified by
its prefix (cid, f) in T , let seq(cid, f) denote the index of its corresponding ti with
prefix (cid, f, ∗) in the sequence T , g(cid, f) denote the group id (gid for short) of
ti, then g(cid, f) = seq(cid, f) mod p. Therefore the tuples in S′ are categorized
to the group using the same strategy g(cid, f) = seq(cid, f) mod p. That is,
for a tuple (cid, f, ∗) in S′, it will be sent to process with number g(cid, f) =
seq(cid, f) mod p for processing. This hash-mapping strategy scatters tuples
derived from large communities to each process so as to balance the workload,
i.e., the number of tuples to be processed. As illustrated in Fig. 1, tuples (2, 0, ∗)
will be processed by process 1 since (seq(2, 0) mode 3 = 4 mod 3 = 1). In
addition, we can also see that the tuples derived from the 3 largest communities
X1, Y1 and Y3 are scattered to be processed by process 0, 1, and 2 respectively.

Process i (0 ≤ i ≤ (p − 1)) gets a group of tuples of S′, denoted as S′
i,

and orders the tuples in dictionary descending order of their prefix (cid, f). As
described in Sect. 2, the occurrence frequency of tuples can be calculated as the
corresponding two communities’s intersection size. As illustrated in Fig. 1, tuple
(3, 0, 3) appears only once in S′

2 in processor 2, meaning that |X3∩Y3| = 1. Then
each processor calculates tN11, tN10, tN01, tF -measure(X ,Y), tNV D(X ,Y),
tI(X ,Y), tH(X ), and tH(Y) accordingly (refer to Eqs. 1–8). Finally, process 0
accumulates all local results of the other processors, together with its own local
results and outputs the metrics accordingly.
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Algorithm 1: The improved MPI-based algorithm.
Input: X = {X1, X2, · · · , XK}, Y = {Y1, Y2, · · · , YK′}
Output: A full set of CQA metrics for X and Y, including RI, ARI, JI, RMI,

F-measure, NVD, NMI, VI.
1 processor 0:
2 Construct sequence S and S′ for X and Y;
3 Partition S′ into S′

0, · · · , S′
p−1;

4 Sent S′
1, · · · , S′

p−1 to processor 1, · · · , p− 1;
5 forall the processor i in {0, . . . , (p-1)} do
6 Calculate all pair-community intersection size for S′

i

7 Calculate local results tN11, tN10, tN01, tNV D(X ,Y), tF -measure(X ,Y),
tI(X ,Y), tH(X ), and tH(Y).

8 Send local results to processor 0

9 processor 0:
10 Calculate and output all metrics based on Eqs. 1–8.

In all, the improved MPI-based algorithm is described in Algorithm1. Specif-
ically, in steps 2–4, process 0 construct the consequence S and S′ sequentially
since the computation cost here is low, which takes only 1–2 s. In steps 6–8, p pro-
cesses execute in parallel for all the intermediate pair counting, harmonic average
with best matched community, mutual information and entropy calculation. In
step 10, process 0 accumulates all the local results and output all the CQA met-
rics. Here, we can see that our proposed algorithm has two main advantages:
(1) Combine the advantages of pair-cid counting based and MPI-based metric
computation; (2) Systematically organize the metrics’ computation, remove the
redundant computation and output all metrics together.

4 A RESTful Web Service for Non-overlapping CQA
Metrics Computation

4.1 System Model

Figure 2 depicts the system model of the non-overlapping CommuMetrics (Com-
muMetrics for short), a RESTful non-overlapping CQA Web service. Commu-
Metrics provides a web based metrics computation services for data scientists
and decision makers, who can use browsers (e.g., IE, Chrome, etc.) and HTTP
protocol to upload their communities and benchmark, then send request for
desired CQA metrics, then CommuMetrics backend will process the computa-
tion and return the calculated metrics. The interaction provided by the user
interface is quite simple, only around four buttons Add for communities dataset
specification, Upload for transfer the dataset to backend for processing, and Run
for request submissions. The data scientists and decision makers can obtain high
performance metrics computation via a few click operations.
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Fig. 2. The system model of the RESTful non-overlapping CQA Web service.

Meanwhile, CommuMetrics also provide metrics computation API for data
analysis developer. Here, all the uploaded communities datasets and correspond-
ing CQA metrics are regarded as Resource, each resource has a specific and
unique name, represented as Universal Resource Identifier (URI). CommuMet-
rics provides RESTful API using URIs for accessing any services. Combing
domain knowledge and the APIs, developers can focus on domain specific data
analysis, e.g., brain disease detection and microbial metagenomic sequence data
analysis.

4.2 Prototype Implementation

As a proof of concept, we provide an implementation of CommuMetrics Web ser-
vice prototype. First, the backend of CommuMetrics is developed upon Flask2, a
lightweight web application framework based on Python. Flask is used to match
the URI of a HTTP request to its corresponding business logic function. For exam-
ple, when Upload is clicked for uploading a local dataset for metrics computation,
Flask will invoke the corresponding function to accept and store it.

The web client of CommuMetrics is developed using HTML, CSS and
JavaScript. Jinja23, a website template engine, is used to re-render the response
web pages from Flask. The web client attaches the RESTful APIs for uploading
community datasets and requesting CQA metrics computation into buttons, i.e.,
Upload and Run, as illustrated in Fig. 2. When a buttons is clicked, e.g., button
Run for submitting a metrics computation request, it will communicate with
the backend services via HTTP protocol, and invoke the remote corresponding
python functions using jQuery AJAX, then the backend provisions the metrics
computation services using the computation algorithms, e.g., the improved MPI-
based metrics computations, or the existing igraph, scikit-learn, or MPI-based
algorithms.
2 http://flask.pocoo.org/.
3 http://jinja.pocoo.org/.

http://flask.pocoo.org/
http://jinja.pocoo.org/
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5 Performance Evaluation

The CQA service provisioning efficiency is measured by the absolute execution
time and relative speedup for metrics computation. First, execution time evalu-
ates how much time the CQA metrics computation takes, the shorter the exe-
cution time, the more efficient the underlying algorithm is. Second, speedup
includes the scale-out speedup and scale-up speedup. The scale-out speedup is
the ratio of the execution time by using one machine against the one by using m
machines, which measures the improvement in execution speed when the num-
ber of computers increases. When the number of machines is fixed, the scale-up
speedup is the ratio of the execution time by using one core per computer against
the one by using k cores, which measures the improvement in execution speed
when available hardware resources for a computer increases.

5.1 Dataset and Testbed

Communities detected from artificial networks and the benchmark communities
are used as datasets. First, LFR proposed algorithms is applied to generate
networks with specified parameters for mimicking real network properties [26],
e.g., the vertex number ranging from 3.1 × 105 to 1.06 × 108, average vertex
degree ranging from 30 to 2 × 104, exponent for the vertex degree distribution
γ = −2, community size distribution β = −1, and the mixing parameter μ =
0.35. GossipMap [27], an efficient community detection algorithm, is applied on
the generated networks for community detection. The features of the benchmark
and detected communities are summarized in Table 1, including the number of
vertices (n), the maximum number of verices in communities (M(X ) and M(Y)),
the number of communities (K and K ′), the number of unique tuples in sequence
S (U(S)) and the percentage of unique tuples in S (P (S) = U(S)

n ).

Table 1. The features of the benchmark and detected communites

Network name n Ground truth GossipMap U(S) P (S)(%)

M(Y) K′ M(X ) K

dblp 317080 6596 61483 9267 61251 153141 48.3%

amazon 334863 371 53245 477 53074 138845 41.5%

youtube 1134890 81267 172326 84763 172177 372361 32.8%

wiki 1791489 151052 5027 153417 5190 24489 1.4%

orkut 3072441 734132 4115 633283 4542 34053 1.1%

livejournal 3997962 286711 241220 444612 234066 779619 29.5%

friendster 65608366 967366 7884397 950259 8269426 30798609 46.9%

uk200705 105896555 272433 6445260 277820 6437726 35051759 33.1%

Our experimental testbed is a cluster consisting of 16 DOWN TC4600 blades,
each of which has 2 10-core Intel(R) Xeon(R) E5-2680 v2 2.8 GHz CPUs. Mean-
while, each blade has 2× 1TB hard disk, 64 GB RAM and 1 Gbit Ethernet.
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The blades are installed with CentOS 2.6.32, GCC 5.4 and MPICH3 3.2.14, a
high performance and widely portable MPI implementation. We will use igraph,
scikit-learn, MPI-based and our improved MPI-based algorithms to compute the
CQA metrics.

5.2 Execution Time

Figure 3 depicts the execution time of our improved MPI-based algorithm against
that of scikit-learn, igraph and existing MPI-based over the 8 detected commu-
nities, where the y-axis is set as log scale, and the cross indicates that the
algorithm cannot finish its computation within 10,000 s over the corresponding
dataset. From the experimental results, we can have the following findings.

Fig. 3. The execution time of metrics computation.

– The execution time of the improved MPI-based algorithm is always shorter
than those of other 3 algorithms. Meanwhile, we can also see that the increase-
ment of the execution time of the improved MPI-based algorithm is less than
those of the other 3 algorithms as the number of vertices increases. As men-
tioned in Sect. 2, MPI-based methods requires KL × K ′ times comparison
to compute the all pair-community intersection size. Since all the datasets
for our experiment are with large number of communities and big size com-
munity, though it uses MPI for parallel computation, its execution efficiency
is actually not good. Combining the efficiency of pair-cid counting based all
pair-community intersection size computation and the parallel computation of
MPI, the imporved MPI-based algorithm outputforms the other 3 algorithms
in terms of execution time.

– The execution time is affected by not only the number of vertics of the
network (i.e., n), but also the number of pair-communities between X
and Y (i.e., K × K ′). For example, scikit-learn completes its execution
faster on dataset uk200705 than friendster, though the number of vertics of

4 https://www.mpich.org/.

https://www.mpich.org/
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uk200705 is bigger than that of friendster. The number of pair-communities
of uk200705 is 6445260 × 6437726, which is less than that of friendster, i.e.,
7884397 × 8269426.

From the execution results, we can also see that the execution time of the
igraph is longer than that of scikit-learn for most datasets except for wiki and
orkut datasets. The reason is that igraph and scikit-learn use different data
structure to store the computed all pair-community intersection size, where
igraph uses adjacent list and scikit-learn uses contingency tables. The computa-
tion cost for constructing the adjacent list depends on the datasets. As described
in Table 1, the percentage of unique tuples in S, i.e., P (S), for wiki and orkut
is 1.4% and 1.1% respectively, which is far less than that of the other datasets.
Small P (S) means small actual size of the adjacent list, and thus less construct
time and less pair-community intersection size query time.

5.3 Speedup

The speedup performance of the improved MPI-based and the existing MPI-
based algorithms are compared using the wiki dataset. First, we compare that
by increasing the number of blades in the cluster from 1 to 16, where only core
of each blade will be used for process execution. From Fig. 4(a), we can see that
the improved MPI-based algorithm achieves better speedup. The speedup starts
to decrease for the existng MPI-based algorithm takes place when the number
of blades is larger than 10 while there is a slowdown in speedup improvement
for the improved MPI-based algorithm when the number of blades is larger than
14. Second, we use only one blade and compare the speedup by increasing the
number of cores in the blade from 1 to 20. From Fig. 4(b), we can see that the
improved MPI-based algorithm achieves much better speedup.

(a) The scale-out speedup (b) The scale-up speedup

Fig. 4. The speedup of the MPI-based metrics computation over wiki dataset.

The reason is that the p processes in existing MPI-based algorithm involve
massive data transmission between processes, which degrades the overall perfor-
mance. Specifically, existing MPI based algorithm partition the communities in
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X and Y into p parts respectivley. For example, X = {X ′
1,X

′
2, . . . , X

′
p}, where

p ≤ K and p ≤ K ′. For any X ′
i, X ′

i = {Xi1 , . . . , Xil}, where Xij ∈ X and
|X ′

i| ≥ 1. Similarly, Y = {Y ′
1 , Y

′
2 , . . . , Y

′
p}. For any X ′

i, Y ′
j , they will be sent

to a process for the intersection size computation of pair communities between
X ′

i and Y ′
j . After each process completes its execution, it will sent the corre-

sponding Y ′
j to the other processes, then each process will continue to compute

the intersection size of pair communities between its corresponding X ′
i and the

newly received Y ′
k. However, as illustrated in Fig. 1, with our data grouping strat-

egy, the p processes in the improved MPI-based algorithm are actually execute
independently, no data transmission is needed in between.

6 Conclusions

A thorough comparison of different community detection methods is critical for
the analysis of networked systems, where community quality assessment (CQA)
is of the key performance metrics.

Popular used non-overlapping CQA metrics include RI, ARI, JI, F-measure,
RMI, NVD, NMI and VI, whose computation complexities are high. MPI has
been exploited to expedite the computation, yet, the efficiency needs further
improvement. Meanwhile, MPI based implementation usually calls for computa-
tional domain knowledge like load balancing, effective resource utilization, etc,
such complicated details handicap data scientists from adopting it.

In this paper, we first propose an improved MPI-based algorithm to improve
the CQA metrics computation: (1) It computes all the aforementioned popular
used metrics together, where the results of common sub-routine computation
are shared. Existing algorithms only output part of the metrics, e.g., scikit-
learn output only ARI, FMI, and NMI. (2) It combines the advantages of exist-
ing algorithms, using igraph and scikit-learn’s fast pair-cid counting based all
pair-community intersection size computation, and MPI-based parallel and dis-
tributed computation. Then we design a RESTful framework to wrap the CQA
metrics computation as a Web service for non-overlapping communities, i.e.,
CommuMetrics, which make CQA metrics computation can be accessed in an
easy way. The results of our empirical comparison study demonstrate its effi-
ciency.
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