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Abstract. The non-local p-Laplacian evolution equation, governed by
given kernel, has various applications to model diffusion phenomena, in
particular in signal and image processing. In practice, such an evolu-
tion equation is implemented in discrete form (in space and time) as a
numerical approximation to a continuous problem, where the kernel is
replaced by an adjacency matrix of graph. The natural question that
arises is to understand the structure of solutions to the discrete problem,
and study their continuous limit. This is the goal pursued in this work.
Combining tools from graph theory and non-linear evolution equations,
we give a rigorous interpretation to the continuous limit of the discrete
p-Laplacian on graphs. More specifically, we consider a sequence of deter-
ministic simple/weighted graphs converging to a so-called graphon. The
continuous p-Laplacian evolution equation is then discretized on this
graph sequence both in space and time. We therefore prove that the
solutions of the sequence of discrete problems converge to the solution
of the continuous evolution problem governed by the graphon, when the
number of graph vertices grows to infinity. We exhibit the corresponding
convergence rates for different graph models, and point out the role of
the graphon geometry and the parameter p.
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1 Introduction

In its continuous form, the nonlocal p-Laplacian problem with homogeneous
Neumann boundary conditions governed by a given kernel K corresponds to the
following nonlinear evolution equation{

∂
∂tu(x, t) = −ΔK

p u(x, t), (x, t) ∈ Ω×]0, T ],
u(x, 0) = g(x), x ∈ Ω,

(1)

Supported by GRAPHSIP ANR Project.

c© Springer International Publishing AG, part of Springer Nature 2018
A. Mansouri et al. (Eds.): ICISP 2018, LNCS 10884, pp. 370–377, 2018.
https://doi.org/10.1007/978-3-319-94211-7_40

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94211-7_40&domain=pdf


The Nonlocal p-Laplacian Evolution Problem on Graphs 371

where

ΔK
p = −

∫
Ω

K(x, y)
∣∣u(y, t) − u(x, t)

∣∣p−2(u(y, t) − u(x, t))dy.

Ω = [0, 1] (without loss of generality), K(·, ·) is a symmetric, nonnegative and
bounded mapping and p ∈ [1,+∞]. The problem of existence and uniqueness of
a solution to (1) is non-trivial. Relying on the theory of nonlinear semi-groups
[1], we have the following theorem

Theorem 1. Suppose p ∈]1,+∞[ and let g ∈ Lp(Ω).

(i) For any T > 0, there exists a unique strong solution in [0, T ] of (1).
(ii) Moreover, for q ∈ [1,+∞], if gi ∈ Lq(Ω), i = 1, 2, and ui is the solution of 1

with initial condition gi, then∥∥u1(t) − u2(t)
∥∥

Lq(Ω)
≤ ∥∥g1 − g2

∥∥
Lq(Ω)

, ∀t ∈ [0, T ]. (2)

There are many applications that integrate equation (1) to model nonlocal
diffusion processes. It appears as the flow of gradient associated with a particular
case of a functional non-local introduced in [6].

For p �= 2, the discrete p-Laplacien on graphs was studied for the semi-
supervised classification, as well as for various image processing applications
such as simplification and unsupervised segmentation (see Figs. 1 and 2 for some
illustrations). Indeed, the data in practice being discrete, graphs constitute a
natural structure adapted to their representation. The nodes of this graph rep-
resent the data and the edges represent the interactions between these data.
These interactions can then model a geometric proximity of the data but also
other measures of similarities, depending on the application. For example, for
images, we can find different types of interaction (local or non-local), according
to construction of the graph, which makes it easy to find methods for processing
local or non-local images.These practical considerations naturally lead to a dis-
crete time and space approximation of (1). To do this, we fix n ∈ N and consider
a partition Qn on Ω

[(i − 1)/n, i/n[, i ∈ [n], Qn = {Ω
(n)
i , i ∈ [n]},

where [n] = {1, · · · , n}. Let τh−1 :=
∣∣th − th−1

∣∣, h ∈ [N ],the time steps corre-
sponding to a division of the interval of time [0, T ] of maximum size τ = max τh.
The discrete form in time (explicit) and space of (1) is thus written⎧⎪⎨

⎪⎩
uh

i − uh−1
i

τh−1
=

1
n

n∑
j=1

(Kn)ij

∣∣uh−1
j − uh−1

i

∣∣p−2(uh−1
j − uh−1

i ),

ui(0) = g0i , i ∈ [n].

(3)

(Kn)ij represents the adjacency matrix of a given convergent graph sequence
{Gn} converging to a limit object called graphon K(·, ·) (see [2] for more details
about graph limits). Our goal is to study the continuum limit of the discrete p-
Laplacian on graphs and quantify the rate convergence and the error estimates.
All the proofs of the results can be found in the long version [3].
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Fig. 1. Semi-supervised segmentation. Left : image with labeled vertices. Right : clas-
sified graph.

Fig. 2. Semi-supervised classification. Left : graph with initial labels. Right : segmented
image.

Objectives and Contributions. The discrete formulation (3) is only an approxi-
mation of the underlying continuous problem (1). Several questions then arise:
what is the structure of the solutions of the discrete problem (3)? A continuous
limit, i.e. when n → +∞, does it exist? If so, what is the rate of convergence
towards this limit and what is the relationship of the latter with the strong single
solution of (1)? What are the parameters involved in this rate of convergence
and their influence?

It is to all these questions that this article brings answers. More precisely, by
combining tools from graph theory and nonlinear evolution equations, we give a
rigorous interpretation to the continuous limit of the p-Laplacian discrete graph
problem. To do this, we consider a sequence of graphs with n vertices whose limit
object is a graphon. (1) is then discretized according to (3) on this sequence of
graphs. Thus, we prove the consistency of the discrete problem (3), i.e. the con-
vergence of the solutions of the sequence of the problems discredited towards the
solution of the problem of continuous evolution governed by the graphon when
n → +∞. We give the corresponding convergence rates for different graph mod-
els (simple and weighted), and we highlight the influence of graphon geometry.
All the proofs of results can be found in the long version [3].
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2 Prerequisites on Graphs

An undirected graph G = (V (G), E(G)), where V (G) stands for the set of nodes
and E(G) ⊂ V (G) × V (G) denotes the edges set, without loops and parallel
edges is called simple.

A weighted graph G is a graph with weight β((i, j)) associated to each edge
(i, j). The adjacency matrix of a weighted graph is obtained by replacing the 1’s
in the adjacency matrix by the weights of the edges. An unweighted graph is a
weighted graph where all the edge weights are 1.

Let Gn = (V (Gn), E(Gn)), n ∈ N, be a sequence of dense, finite, and simple
graphs, i.e.;

∣∣E(Gn)
∣∣ = O(

∣∣V (Gn)
∣∣2), where

∣∣.∣∣ denotes the cardinality of a set. For
two simple graphs F and G, hom(F,G) indicates the number of homomorphisms
(adjacency-preserving maps) from V (F ) to V (G). Then, it is worthwhile to nor-
malize the homomorphism numbers and consider the homomorphism densities

t(F,G) =
hom(F,G)∣∣V (G)

∣∣
∣∣V (F )

∣∣ .

(Thus t(F,G) is the probability that a random map of V (F ) into V (G) is a
homomorphism).

Definition 1 (cf. [2]). The sequence of graphs {Gn}n is called convergent if
t(F,Gn) is convergent for every simple graph F .

This notion is extended to weighted graphs. To every φ : V (F ) → V (G), we
have

homφ(F,G) :=
∏

(i,j)∈E(F )

βG(φ(i), φ(j)).

Then the homomorphism function is defined by

hom(F,G) =
∑

φ:V (F )→V (G)

homφ(F,G)

and the homomorphism density as defined for simple graphs

t(F,G) =
hom(F,G)∣∣V (G)

∣∣
∣∣V (F )

∣∣ .

Convergent graph sequences have a limit object, which can be represented
as a measurable symmetric function K : Ω2 → Ω, here Ω stands for [0, 1]. Such
functions are called graphons. Let K denote the space of all bounded measurable
functions K : Ω2 → R such that K(x, y) = K(y, x) for all x, y ∈ [0, 1]. We also
define K0 = {K ∈ K : 0 ≤ K ≤ 1} the set of all graphons.
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Proposition 1 ([4, Theorem 2.1]). For every convergent sequence of simple
graphs, there is K ∈ K0 such that

t(F,Gn) → t(F,K) :=
∫

Ω

∣∣
V (F )

∣∣
∏

(i,j)∈E(F )

K(xi, xj)dx. (4)

for every simple graph F . Moreover, for every K ∈ K0, there is a sequence of
graphs {Gn}n satisfying (4).

3 Networks on Simple Graphs

We consider first the case of a sequence of simple graphs converging to
{0, 1} graphon. Briefly speaking, we define a sequence of simple graphs Gn =
(V (Gn), E(Gn)) such that V (Gn) = [n] and

E(Gn) =
{

(i, j) ∈ [n]2 : Ω
(n)
ij ∩ supp(K) �= ∅

}
,

where
supp(K) =

{
(x, y) ∈ Ω2 : K(x, y) �= 0

}
. (5)

As we have mentioned before, the kernel K represents the corresponding graph
limit, that is the limit as n → ∞ of the function KGn

: Ω2 → {0, 1} such that

KGn
(x, y) =

{
1, if (i, j) ∈ E(Gn) and (x, y) ∈ Ω

(n)
ij ,

0 otherwise.

As n → ∞, {KGn
}n converges to the {0, 1}-valued mapping K(·, ·) whose sup-

port is defined by (5).
Let us recall that our main goal is to compare the solutions of the discrete

and continuous models and establish some consistency results. Since the solutions
do not live in the same spaces, it is convenient to represent some intermediate
model that is the continuous extension of the discrete problem, using the vector
Uh = (uh

1 , uh
2 , · · · , uh

n)T whose components solve the previous system to obtain
the following linear interpolation on Ω, for x ∈ Ω

(n)
i , t ∈]th−1, th]

ǔn(x, t) =
th − t

τh−1
uh−1

i +
t − th−1

τh−1
uh

i (6)

and

ūn(x, t) =
N∑

h=1

uh−1
i χ]th−1,th](t)χΩ

(n)
i

(x).

So that ǔn(x, t) uniquely solves the following problem
{

∂
∂t ǔn(x, t) = −ΔKs

n
p (ūn(x, t)), (x, t) ∈ Ω×]0, T ],

ǔ0
n(x) = g0n(x), x ∈ Ω,

(7)
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As where
g0n(x) = gi := n

∫
Ω

(n)
i

g(x)dx if x ∈ Ω
(n)
i , i ∈ [n],

Ks
n(x, y) is the piecewise constant function such that for (x, y) ∈ Ω

(n)
ij , (i, j) ∈

[n]2 ⎧⎨
⎩

n2

∫
Ω

(n)
ij

K(x, y)dxdy if Ω
(n)
i × Ω

(n)
j ∩ supp(K) �= ∅,

0 otherwise.

By analogy of what was done in [5], the rate of convergence of the solution of the
discrete problem to the solution of the limiting problem depends on the regularity
of the boundary bd(supp(K)) of the support closure. Following [5], we recall the
upper box-counting (or Minkowski-Bouligand) dimension of bd(supp(K)) as a
subset of R2:

ρ := dimB(bd(supp(K))) = lim sup
δ→0

log Nδ(bd(supp(K)))
− log δ

,

where Nδ(bd(supp(K))) is the number of cells of a (δ × δ)-mesh that intersect
bd(supp(K)) (see [?]).

Theorem 2. Suppose that p ∈]1,+∞[, g ∈ L∞(Ω), and

ρ ∈ [0, 2[.

Let u and ǔn denote the functions corresponding to the solutions of (1) and (7),
respectively.

Then for any ε > 0 there exists N(ε) ∈ N such that for any n ≥ N(ε)

∥∥u − ǔn

∥∥
C(0,T ;Lp(Ω))

≤ C
(∥∥g − gn

∥∥
Lp(Ω)

+ n−((2−ρ)/p−ε)
)

+ O(τ), (8)

where the positive constant C is independent of n.

C(0, T ;Lp(Ω)) is the class of functions on [0, T ]×Ω which are uniformly contin-
uous corresponding to the time variable and in the space Lp(Ω) (for the space
variable). Theorem 2 shows that ǔn converges to u in Lp(Ω) when n → ∞ and
τ → 0. The rate of convergence depends particularly on the fractality of the
boundary of the graphon K.

4 Networks on Weighted Graphs

Let K : Ω2 → [0, 1], be a symmetric measurable function which will be used
to assign weights to the edges of the graphs considered bellow, we allow only
positive weights. We define the quotient of K and Qn as a weighted graph with



376 Y. Hafiene et al.

n nodes K/Qn =
(
[n], [n] × [n], K̂n

)
. Weights (K̂n)ij obtained by averaging K

over the sets in Qn

(K̂n)ij = n2

∫
Ω

(n)
i ×Ω

(n)
j

K(x, y)dxdy. (9)

We consider the totally discrete counterpart of 1 on K/Qn

⎧⎪⎨
⎪⎩

uh
i − uh−1

i

τh−1
=

1
n

n∑
j=1

(K̂n)ij

∣∣uh−1
j − uh−1

i

∣∣p−2(uh−1
j − uh−1

i ),

ui(0) = g0i , i ∈ [n].
(10)

Hence, ǔn(x, t) satisfies the following problem :
{
ǔnt

(x, t) = −ΔK̂w
n

p (ūn(x, t)), ǔ0
n(x) = g0n(x), (11)

where Kw
n and g0n are constant piecewise interpolations of (K̂n)ij and gi.

Theorem 3. Suppose that p ∈]1,+∞[, K : Ω2 → [0, 1] is a symmetric mea-
surable function, and g ∈ L∞(Ω). Let u and ǔn be the solutions of 1 and 11,
respectively. Then

∥∥u − ǔn

∥∥
C(0,T ;Lp(Ω))

−→ 0, n → ∞, τ → 0. (12)

To quantify the rate of convergence in (12), we need to add some supplementary
assumptions on the kernel K and the initial data g.

Definition 2. The total variation of a function K is defined by duality : For
K ∈ L1

loc(Ω
2) it is given by

J(K) = sup
{

−
∫

Ω2
Kdiv(φ) dxdy

}
, (13)

where
φ ∈ S := {φ ∈ C∞

c (Ω2;RN ),
∣∣φ(x, y)

∣∣ ≤ 1∀(x, y) ∈ Ω2}.

A function is said to have bounded variation whenever J(K) < +∞. We call
BV(Ω2) the set of functions with bounded variation K ∈ L1(Ω2) such that
J(K) < +∞.

Theorem 4. Suppose that p ∈]1,+∞[, K : Ω2 → [0, 1] is a symmetric and
measurable function in BV(Ω2), and g ∈ L∞(Ω) ∩ BV(Ω). Let u and ǔn be the
solutions of (1) and (11) respectively. Then

∥∥u − ǔn

∥∥
C(0,T ;Lp(Ω))

≤ O(n− 1
p ) + O(τ). (14)
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5 Conclusion and Perspectives

In this work, we deal with the nonlocal p-Laplacian problem on dynamical net-
works on simple and weighted graphs. We show that the approximation of solu-
tions of the discrete problems on simple and weighted graph sequences converge
to those of the continuous problem. We give also a rate of convergence estimate.
Specifically, for simple graph sequences, we show how the accuracy of the approx-
imation depends on the regularity of the boundary of support of the graph limit
in the same vein as [5] who did it for a nonlocal nonlinear heat equation. In
addition, for weighted graphs, we give a precise error estimate under the mild
assumption that both the kernel K and the initial data g are also in Lipschitz
spaces, which in particular contain functions of bounded variation.

We look in detail to the one-dimensional case, that is Ω = [0, 1], our results
also hold when we deal with approximations in a multidimensional domain, since
the extension to larger dimension spaces is straightforward.
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