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Abstract. In this paper, we propose an iterative contraction and merging
framework (ICM) for semantic segmentation in indoor scenes. Given an input
image and a raw depth image, we first derive the dense prediction map from a
convolutional neural network (CNN) and a normal vector map from the depth
image. By combining the RGB-D image with these two maps, we can guide the
ICM process to produce a more accurate hierarchical segmentation tree in a
bottom-up manner. After that, based on the hierarchical segmentation tree, we
design a decision process which uses the dense prediction map as a reference to
make the final decision of semantic segmentation. Experimental results show
that the proposed method can generate much more accurate object boundaries if
compared to the state-of-the-art methods.
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1 Introduction

Semantic segmentation, an important topic in computer vision, aims to assign each
pixel a semantic label in an input image and to generate a dense semantic prediction for
the given image. Up to now, many semantic segmentation algorithms have been
proposed to improve the quality of dense semantic prediction. However, semantic
segmentation is still a challenging work because of the complex and diverse contents in
an indoor scene.

Today, RGB-D cameras are getting more popular and cheaper, such as Microsoft
Kinect and Intel RealSense cameras. With RGB-D cameras, semantic segmentation
algorithms [1–3] take into account both color and depth data to improve the quality of
semantic labeling. On the other hand, deep learning techniques are getting popular due
to the availability of large-scale datasets and powerful hardware. In [4], Long et al.
proposed a deep learning model, called fully convolutional network (FCN), with both
color and depth data to perform impressive semantic segmentation. However, since the
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FCN model derives the dense semantic prediction by combining the up-sampling of
multilayer information, the obtained semantic prediction results are usually not very
accurate around the boundary area.

On the other hand, some hierarchical segmentation algorithms [5, 6] have adopted
the bottom-up graph-based approach to generate a hierarchical segmentation tree for
image segmentation. These algorithms can properly partition an image into image
segments with very accurate region boundaries. However, due to the lack of semantic
information during the bottom-up process, these hierarchical segmentation algorithms
have difficulties in obtaining reasonable semantic segmentation results.

In this paper, we propose a semantic segmentation based on an iterative contraction
and merging process to achieve semantic segmentation with much improved boundary
extraction. In the proposed approach, we first cascade two bilateral filters to improve
the quality of the raw depth data. Second, we integrate the RGB-D image with a dense
semantic predictor, which extracts high-level information, and a normal estimation
map, which extracts mid-level information, to guide the ICM process for the generation
of a more accurate hierarchical segmentation tree. Finally, we make decisions over the
hierarchical segmentation tree to obtain the final semantic segmentation result.

2 Proposed Method

In this paper, we propose an architecture that includes three parts to solve the semantic
segmentation problem, as illustrated in Fig. 1. In the first part, we capture the mid-level
information from the depth image, such as the refined depth image and the normal
vector map, and the high-level information from the deep learning model, such as the
dense semantic prediction map. To get the refined depth image, we cascade two
bilateral filters to fill in the holes in the original depth image. Based on the refined depth
image, we estimate the normal vector map based on cross-product computation.
Moreover, the depth image is transformed into an HHA image, which has been defined
in [3]. The FCN model combines both the RGB image and the HHA image to derive a
semantic prediction map. In the second part, the iterative contraction and merging
(ICM) process, which was originally proposed in [5], is used for unsupervised image

Fig. 1. Block diagrams of the proposed method
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segmentation. In this paper, we maintain the original ICM features in [5] and add a few
more features captured from the first part to derive a more robust hierarchical seg-
mentation tree. In the final part, we design a decision process to decide the semantic
segmentation result based on the hierarchical segmentation tree.

3 First Part: Feature Extraction

3.1 Depth Recovery

The raw depth data as shown in Fig. 2 (b) includes holes with no depth values. In order
to fill in the estimated depth values over the holes, we assume adjacent pixels with
similar RGB color values should have similar depth values. Besides, it is reasonable to
trust nearby depth values than far-away depth values in the spatial domain. Hence, we
design a spatial kernel which refers to the depth value. On the other hand, we design a
range kernel which refers to the RGB values. Based on the spatial kernel and the range
kernel, we define a bilateral filter Dh xð Þ to fill in the depth values over the hole regions,
as expressed below:
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where I and D denote the RGB and depth value, k1 denotes the half-width of the filter,
rs1 denote the sigma of the spatial kernel, and rr1 denotes the sigma of the range
kernel. In our experiments, we choose k1 ¼ 20, rs1 ¼ 10 and rr1 ¼ 0:1. In some case,
the hole area is too large in the original depth images so we need to iteratively fill the
holes based on (1) until there is no hole in the depth image. In order to reduce the noise
effect on the depth image, we apply the following bilateral filter to smooth the depth
image:

Fig. 2. (a) Original RGB image. (b) Original depth image. (c) Refined depth image. (d) Normal
vector map.

254 J.-H. Syu et al.



Ds xð Þ ¼ W�1
2 xð Þ

Z k2

�k2

Z k2

�k2
D nð Þe�

1
2

x�nk k
rs2

� �2

e
�1

2
D nð Þ�D xð Þk k

rr2

� �2

dn;with ð3Þ

W2 xð Þ ¼
Z k2

�k2

Z k2

�k2
e
�1

2
x�nk k
rs2

� �2

e
�1

2
D nð Þ�D xð Þk k

rr2

� �2

dn: ð4Þ

In our experiments, we choose k2 = 20, rs2 ¼ 12 and rr2 ¼ 0:05. In Fig. 2(c), we
show an example of the refined depth image.

3.2 Normal Vector Map

On the surface of the objects, each point is described as x; y; d x; yð Þð Þ in the 3D
coordinate where d x; yð Þ denotes the depth value at x; yð Þ. We then estimate the gra-
dient maps by computing the derivatives along the x-direction and y-direction of the
depth values. On the surface S, the normal vector at a point i is derived by computing

the cross product @Si
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@y which is expressed as
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above computations, we can get the normal vector map as shown in Fig. 2(d).

3.3 Dense Semantic Prediction

In our approach, we generate a dense prediction map by using the fully convolutional
network (FCN) [4]. The FCN model was originally designed for RGB images. In order
to fit the 3-dimensional input format of the FCN model, we follow Gupta’s approach in
[3] and transform the refined depth image to the HHA image format. Besides, we
fine-tune the FCN model for color images and learn another FCN model for depth
images based on the NYUD-V2 dataset. Since the NYU-Depth V2 dataset [2] contains
40-class labels, the learned FCN model generates 40 layers of score maps. We combine
each end of the feature map with the weight 0.5 and perform up-sampling to derive the
score maps with each layer of the score maps representing one class. The dense
prediction map is assigned by finding the maximal value at each pixel among 40 layers
of score maps:

Classi ¼ arg minK SiKð Þ; ð6Þ

where SiK is the score of pixel i correspond to Class K.
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4 Second Part: Iterative Contraction and Merging

The iterative contraction and merging process (ICM) in [5] can construct a hierarchical
segmentation tree in two phases. In this paper, we aim to derive a more robust hier-
archical segmentation tree for indoor-scene images. Hence, we maintain the original
features captured in [5] and add additional features extracted in the first part of our
system. In Phase 1 of the ICM process, the pixel-wise contraction and merging process
quickly merges pixels with similar features into regions. In this phase, the definition of
the affinity value A i; jð Þ between pixels i and j is based on pixel-wise features, such as
color, depth, normal vector, and dense semantic prediction value. After that, a remnant
removal process is used to remove small remnant regions around the boundary. In
Phase 2 of the ICM process, since similar image pixels have already been merged into
regions, several kinds of regional information, including features in [5] and other
additional features, such as depth, normal vector, and dense semantic prediction, are
taken into account to define a more informative affinity value A Rm;Rnð Þ to describe the
similarity between the region pair Rm and Rn. Based on the region-wise affinity matrix,
we iteratively apply the contraction and merging process to merge image regions into
larger ones and progressively build a hierarchical segmentation tree. In the following
subsections, we will describe the details of each module in the ICM process.

4.1 Phase-1: Pixel-Wise Contraction and Merging

Phase-1 of the ICM process aims to quickly merge pixels with similar features into
regions. Here, we use a mixed feature space that consists of five subspaces: color space,
spatial location space, depth space, normal vector space and dense prediction score
space. The features at an image pixel i is mapped into a vector
Li; ai; bi; xi; yi; di; ui; vi; zi; Si1 Si2. . .SiKð Þ in the feature space where Li; ai; bið Þ, (xi; yiÞ,
(di), ðui; vi; ziÞ and ðSi1 Si2. . .SiK) denote the color values, spatial coordinates, depth
value, normal vector values and dense prediction values, respectively.

The contraction process aims to pull pixel pairs with similar features closer in the
feature space than pixel pairs with less similar features. Here, the contraction process is
formulated as the problem of finding the twisted coordinates
~Li; ~ai; ~bi;~xi;~yi; ~di; ~ui;~vi;~zi; ~Si1~Si2. . .~SiK
� �

and is defined as
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� � ¼XN
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� �2

þ kh
XN
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~hi � hi
� �2

; ð7Þ

where N denotes the total number of pixels, wi denotes the neighborhood around the
pixel i, hi 2 Li; ai; bi; xi; yi; di; ui; vi; zi; Si1Si2. . .SiKf g denotes the original image feature
values, ~h1 2 ~Li; ~ai; ~bi;~xi;~yi; ~di; ~ui;~vi;~zi; ~Si1~Si2. . .~SiK

� 	
denotes the twisted image feature

values, and ~h ¼ ~h1; ~h2; . . .; ~hN
h iT

. In our simulation, we empirically choose kx ¼ ky ¼
0:001 and kh ¼ 0:01 otherwise. More details of contraction process can be found in [5].
In this paper, we define the affinity value A i; jð Þ of pairwise pixels as
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where D i; jð Þ denotes the feature difference between i and j and is defined as
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Different from [5], here we add depth, normal vector, and dense prediction infor-
mation into the affinity function. The score weight j1, j2, j3 and j4 controls the
strength of the impact from the color, depth, normal vector and dense prediction,
respectively. Similar to [5], the parameter q is adjusted to satisfy the condition that 70%
of the A i; jð Þ values is larger than 0.01.

After applying the contraction process, we use the same grid-based merging pro-
cess in [5] to group nearby pixels into regions. In order to efficiently perform the
merging process, we only consider the Li; ai; bi; xi; yið Þ features during merging. Here,
the feature space Sh ¼ max hð Þ �min hð Þ denotes the dynamic range in each feature
value. To achieve grid-based merging, we divided the feature space from SL � Sa �
Sb � Sx � Sy into SL=15


 �
Sa=15½ � Sb=15
 �

Sx=25½ � Sy=25½ � regions.
After the pixel-wise contraction and merging process, pixels are merged into

regions. However, there may exist a few pixels around the boundary of objects looking
like noisy data. To deal with this problem, the remnant removal process in [5] is used to
merge regions whose size is smaller than the predefined threshold into one of their
adjacent regions with the most similar color appearance.

4.2 Phase-2: Region-Wise Contraction and Merging

After Phase-1, image pixels have been merged into a set of regions. Similar to Phase-1,
the averaged feature values in each region Rm can be mapped into a feature vector
Lm; am; bm; xm; ym; dm; um; vm; zm; Sm1Sm2. . . SmKð Þ in the feature space. Likewise, we
can derive the twisted coordinates and define the energy function as

E ~h
� � ¼XNR

m¼1

X
Rn2u

A Rm;Rnð Þ ~hRm � ~hRn

� �2
þ kh

XNR

m¼1
~hRm � hRm

� �2
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where NR denotes the total number of regions, u denotes the neighboring regions of
Rm, hRm 2 Lm; am; bm; xm; ym; dm; um; vm; zm; Sm1Sm2. . .SmKf g denotes the original fea-
ture values, ~hRm 2 ~Lm; ~am; ~bm;~xm;~ym; ~dm; ~um;~vm;~zm; ~Sm1~Sm2. . .~SmK

� 	
denotes the

twisted feature values, and ~h ¼ ~h1; ~h2; . . .; ~hNR

h iT
. The affinity function of pairwise

region is defined as
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A Rm;Rnð Þ ¼ exp �D Rm;Rnð Þ=q
� �

; ð11Þ

where the parameter q is set so that 10% of the affinity values are larger than 0.01 if
NR [ 200 and q is set so that 1% of the affinity values are larger than 0.01 if NR � 200.
The difference function between two regions Rm and Rn is defined as

D Rm;Rnð Þ ¼ DN Rm;Rnð Þ M1
aDC Rm;Rnð Þþ bDT Rm;Rnð Þþ c~D

B
C Rm;Rnð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

80þ SI Rm;Rnð Þð Þp
 !"

þ M2DD Rm;Rnð ÞþM3 ~D
B
D Rm;Rnð Þ

� �
þM4DN Rm;Rnð ÞþM5DS Rm;Rnð Þ�: ð12Þ

where the terms DN , DC, DT, ~D
B
C and SI denote the difference of region-size, color,

texture, color-of-border and spatial-intertwining. Some of these terms have been
introduced in [5]. In this paper, we add four additional difference terms, including

depth DD, depth-of-border ~D
B
D, normal-vector DN and dense prediction score DS. In our

simulation, we empirically choose a ¼ 1, b ¼ 3, c ¼ 6, M1 ¼ 3, M2 ¼ 1, M3 ¼ 6,
M4 ¼ 1 and M5 ¼ 2. After the ICM, we can construct a hierarchical segmentation tree.
Please refer to [5] for the details of hierarchical segmentation tree construction.

5 Decision Process

Based on the hierarchical segmentation tree, we propose a decision process to find a
semantic segmentation by referring to the dense prediction map. In the dense prediction
map, we merge pixels with the same class into regions. For each region SK in the dense
semantic prediction map, we check the corresponding node in the hierarchical seg-
mentation tree that has the largest overlapping with SK. We call this region the can-
didate region of SK. In other words, given a class region SK from the dense semantic
prediction map and a node region Tn, the candidate region CK is defined as

CK ¼ arg minn
SK \Tnj j

Tnj j ;
Tnj j

SK \Tnj j
� �

; ð13Þ

where n denotes the node in the hierarchical segmentation tree and �j j denotes number
of pixels in the region. After computing candidate regions, we calculate the covering in
the image with these candidate regions. Here, three cases may occur at each pixel:

(1) one candidate region: the pixel is only covered by one candidate region,
(2) more than one candidate region: the pixel is covered by more than two candidate

regions, and
(3) no candidate region: the pixel is not covered by any candidate region.

For the first case, we can immediately assign the semantic label based on the
corresponding class label. In the second case, we tend to trust the candidate region with
a smaller size and assign the semantic label accordingly. In the third case, we have to
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assign these no-candidate regions with some semantic labels. Here, we reverse the
search from the no-candidate region into the dense prediction map. We can search
multiple nodes in the no-candidate region and find the larger overlap with the class of
the dense prediction map.

6 Experimental Results

Our propose model is evaluated on NYU-Depth V2 dataset [2] which includes 1449
RGBD images captured by Microsoft Kinect V1. The dataset contains dense per-pixel
labeling and are classified into 40 class for semantic segmentation task by Gupta et al.
[3]. The quantitative evaluation is measured by four common metrics: pixel accuracy,
mean accuracy, mean IU, and frequency weighted IU. In order to know the most
important features in our proposed method, we add depth, normal vector, and dense
prediction score. In Table 1, we list the quantitative evaluation over the 100 random
sampling images in NYUD-V2 dataset by using different combinations of the RGB,
depth, normal vector, and dense prediction score. It can be observed that the high-level
dense prediction score provides more important information than other features. It turns
out the combination of all features does provide the most preferred results. In Table 2,
we also compare our proposed method with other semantic segmentation methods. We
can observe that the quantitative evaluation of our proposed method is only close to the
original FCN model. This is because most boundary regions of the objects are not taken
into account in the quantitative evaluation and the improvement of our method mainly
occur in those boundary areas.

Table 1. Quantitative evaluation over different combinations of distance functions. (1) RGB,
(2) Depth, (3) Normal Vector and (4) FCN

ICM + DP Pixel acc. Mean acc. Mean IU f.w. IU

1 64.9 51.3 37.9 51.7
1, 2 65.9 51.8 38.6 52.5
1, 3 66.0 52.3 39.0 53.0
1, 4 66.9 53.8 40.1 54.7
1, 2, 3, 4 67.5 54.2 41.0 54.9

Table 2. Comparison of semantic segmentation methods over 100 random sampling images on
NYUD-V2 dataset (average value of 5 experiments)

Architecture Pixel acc. Mean acc. Mean IU f.w. IU

Gupta et al. [3] 60.3 28.6 31.3 47.0
FCN [4] 67.9 56.6 42.4 55.0
Ours 67.5 54.2 41.0 54.9
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In Fig. 3, we compare the semantic segmentation results of our method with the
original FCN [4] method over four image samples. It can be easily seen that our
proposed method provides more accurate semantic segmentation results around the
object boundaries.

7 Conclusion

In this paper, we propose an iterative contraction and merging framework for semantic
segmentation of indoor-scene images. Based on the ICM framework, we improve the
quality of the hierarchical segmentation tree by considering more mid-level and
high-level features. We also design a decision process to decide the final semantic
segmentation result based on the hierarchical segmentation tree. Experimental results
show that the proposed method can generate more accurate object boundaries on
semantic segmentation results.
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