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Abstract. Developing tactical or strategic methods to counter the small
Unmanned Aerial System (sUAS) threats is effectively pacing up. With the advent
of unprecedented proliferation of malicious or unintended intrusion from drones,
the national infrastructure could be at risk and can become vulnerable if detection,
tracking and disruption of these sUAS employed with electronic counter measures
are at stake. Anticipating the boom in counter UAS technology, this paper presents
methods and state estimation techniques based on multi sensor data fusion to
mitigate position errors caused by electronic counter measures. A complete math‐
ematical modeling and simulation of the proposed system for further research is
presented. Two sensors namely RADAR and FLIR (Forward Looking Infrared)
and their mathematical models are considered in this paper. A state variable
approach to describe the motion characteristics of the target and sensor measure‐
ment model is utilized and performance evaluation of tracking filters are inves‐
tigated. The experimental results in MATLAB show fusion architectures that
demonstrate better tracking results with less residual errors. Also, for a nonlinear
target motion the robust particle filter proves its nature and achieves desired
response.
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1 Introduction

Low-cost, easy to use and readily available unmanned aircraft systems (UASs) are
advancing in capabilities to magnetize military and commercial industries. Also these
advance capabilities strengthens the adversaries to distract, desensitize and disrupt mili‐
tary operations [1]. Any operating drone near a populated area or restricted areas can
record video or audio conversations, crash deliberately onto people or objects, and could
even drop malicious biological and chemical weapons [2, 3]. However, it is not just
drones that are the threat. They are swarms of drones, perhaps tens or dozens or hundreds,
spying or striking [4]. As a result, defense agencies and industry experts are looking at
a system of systems approach that incorporates a broad set of capabilities – electronic
warfare, electro-optics and infrared cameras, RADAR’s and user display [5–10]. By
2020, the Federal Aviation Administration (FAA) expects the number of UAVs flying
in the US to be as many as 30,000. This figure is disturbing given the recent number of
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incidents involving UAVs flying over or landing on critical infrastructures. As the
proliferation of small consumer drones has raised much recent interest in their regulation
and monitoring, one potential way to detect and identify these drones is using ground-
based radar [11]. However, composite UAV’s have a small radar cross section (RCS),
and as they fly slowly and at low altitudes they easily blend into surrounding clutter
which makes a typical radar to see them [12–14]. DoD officials are particularly
concerned about UASs with a low-radar cross section. Any target attack is considered
to be detected via electronic systems such as electro-optics/IR systems or ground- or
air–based RF (Radio Frequency) systems. Both of these systems work by using the
target’s signatures such as its minimum resolvable temperature difference or its RCS.
The target must reduce these signatures in order to be detected or not to be seen [15–
17]. The mission effectiveness of RADAR could be degraded by electronic attacks such
as RADAR Absorption Materials (RAM’s) which decrease target signature. A low RCS
tends to increase the covariance of the RF sensor and the sensed tracking position errors.
Here the RADAR sensor is an active sensor, which has narrow beam width and the
RADAR beams are prone to electromagnetic interference. The forward looking infrared
(FLIR) sensor is a passive system, which is quite sensitive to atmospheric conditions
and is not susceptible or prone to electromagnetic interference. In this parlance, with
thermal imaging technology, it is impossible for a drone to go unnoticed; any object,
hot or cold will be detected by the 360° thermal sensor, day and night. Thermal imaging
allows for day and night surveillance, but also guarantees the ability to view any object,
even deemed as stealth, whether it is hot or cold [10]. One such an example of detecting
the DJI Phantom 3 UAV by RADAR, IR night vision and Thermal camera is shown in
Fig. 1.

Fig. 1. RADAR and IR signatures (from [10, 15])
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FLIR sensors provide good azimuth resolution, but poor range resolution. Radar
sensors provide good range resolution but poor azimuth resolution. Fusing the detection
results from both FLIR and radar sensors can significantly enhance performance by
utilizing the strengths of each [18, 19]. With these insights the main objective of this
paper is to mitigate a high degree of uncertainty associated with the dynamics of target
model and the origin of measurement model uncertainty using complex data association
and robust filtering algorithms. The organization of the paper is as follows: Sect. 2
presents the mathematical modeling and formulation of the two different sensors along
with state estimation techniques. Section 3 deals with the experimental results and anal‐
ysis followed by conclusion and future scope in Sect. 4.

2 Mathematical Modeling and Formulation

A three dimensional spherical coordinate system [20] using flat earth approximation
[21] is considered in Fig. 2 to provide the target information sensed by RADAR and
FLIR where point P describes the position of the target in Cartesian coordinate system.

Fig. 2. 3D spherical coordinate system

Equation 1 describes the targets position, velocity and acceleration in x, y and z
directions in a finite-dimensional representation [22].

[
x ẋ ẍ y ẏ ÿ z ż z̈

]T (1)

Using the targets position information the line of site system measurements [23] are
given by

r =
√
Δx2 + Δy2 + Δz2 (2)

𝜙 = tan−1
(
Δy

Δx

)
(3)
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𝜃 = tan−1

(
−Δz

√
Δx2 + Δy2

)

(4)

To start with the motion characteristics the target is modeled as a point target that can
be easily fit into a state variable form and the target motions are generated in MATLAB.
The first is a projectile motion [24] and the second trajectory considered is a special case
where the target is aggressively maneuvering in a nonlinear fashion [25] given by

xk = 0.5xk−1 +
25xk−1

1 + x2
k−1

+ 8cos(1.2(k − 1)) (5)

2.1 State Estimation

A state variable approach [26] is adopted to represent the state vector of a dynamic
system and for a given kinematic model the generic representation is given as

X̂k(−) = FX̂k−1(+) + Gwk−1 (6)

Zk = HX̂k−1(+) + vk (7)

where Eq. 9 is a system dynamic model, Eq. 10 is measurement model and vk is the
measurement noise variance for both RADAR and FLIR. The measurement model
describes the motion characteristics of the target modeled as a point target assuming a
passive detection is given. The measurement error model [27] for RADAR whose vari‐
able variance is modeled by Gaussian noise written as

𝜎range =
𝜏

2.5
√

2SNR
(8)

𝜎az−el =
𝜃3db

2.5
√

2SNR
(9)

where SNR is given by

SNR =
nPTGTGR𝜎𝜆

2

(4𝜋)3kTBF(Rmax)
4L

(10)

The RADAR signature σ is predicted using POFACETS [28] shown in Fig. 3, a
convenient tool developed based on physical optics approximation. A built-in CAD
library airplane model shown in Fig. 3 is considered for simulation.
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Fig. 3. Triangular surface of the airplane model and its predicted RCS

The reduced RCS considered for simulation is only a predicted value due to RADAR
absorption material used in POFACETS tool. Similarly, noises in IR systems caused by
any distortions or statistical fluctuations in the electrical current are classified and char‐
acterized as Johnson noise, shot noise, generation-recombination noise, and photon
noises. Using blackbody radiance theory and detector theory [29], these noises calcu‐
lated using equations Therefore, total noise current is given by

𝜎noise or n(R)Photovoltaic =
√

jn(r) + sn(r) + pn(r) (11)

𝜎noise or n(R)Photoconductive =
√

jn(r) + grn(r) + pn(r) (12)

where

Johnson noise jn(r) =
4kTdB(R)

Rd

(13)

Dark current shot noise sn(r) = 2qiDB(R) (14)

generation − recombination noise grn(r) = 4qGiDB(R) (15)

Photon noise pn(r) =
2𝜂q2

(
Ps + Pb

)
B𝜆

hc
(16)

2.2 Sensor Fusion

An Extended Kalman Filter (EKF) based centralized fusion architecture is considered
in which the data from both sensors are synchronized at the same sampling interval T.
Two widely fusion methods such as Measurement Fusion (MF) and State Vector Fusion
(SVF) methods [30, 31] are implemented. Measurement fusion starts with fusion of
measurement noise variances and measured values given by the equations
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𝜎f = 𝜎ir − 𝜎ir

[
𝜎ir + 𝜎r

]−1
𝜎ir (17)

Zf = Zir + 𝜎ir

[
𝜎ir + 𝜎r

]−1[
Zr − Zir

]
(18)

Z =
[
Zaz Zel Zr

]
(19)

Equation 19 gives the final fused measurement vector upon which the fused cova‐
riances and fused measured values are collected and concatenated into EKF. In state
vector fusion each sensor measured values are estimated with EKF and the resultant
state estimates and state error covariances of each sensor are fused. The fusion steps are
given by

Zf = Zir + Pir

[
Pir + Pr

]−1[
Zr − Zir

]
(20)

Pf = Pir − Pir

[
Pir + Pr

]−1
PT

r
(21)

Also, while using EKF the measurement sensitivity matrix is obtained by finite
difference method [31, 32] for the purpose of which is to linearize. It is given by

Hk = Hij =
𝜕hi

𝜕hj

|||||
X = X̂k−1(+) =

hi

(
xj + Δxj

)
− hi

(
xj

)

Δxj

(22)

2.3 Particle Filter

Particle filter (PF) is a class of efficient Bayesian Filters introduced for nonlinear
approximations [33]. They are also known as Sequential Monte Carlo filters that are
presented in this section. The purpose of exploiting the PF is to understand its effective
estimation for nonlinear case alongside the Extended Kalman filter. The steps involved
in the Particle filter are:

• Initialize the state estimate vector X̂k−1(−)

• Choose the process noise variance value for Qk as 0.1
• Generate randomly N particle 

(
x+0,i where i = 1,…N

)
 assuming a known Gaussian

probability density function
• Obtain a priori particles X̂k(−) by performing time propagation step for k = 1, 2…

X̂k(−) = fk−1
(
X̂k−1,i(+), wi

k−1

)
, where i = 1…N

• Compute the relative likelihood qi of each particle X̂k(−) stipulated by measurement
and evaluating pdf p

(
yk|X̂k−1,i

)

• Scale the relative likelihood as qi =
qi

∑N

j=1 qj

 and sum of the likelihoods equal to one.

• Perform the resampling step based on these relative likelihoods generate a set of
posteriori particles X̂k(+).
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3 Simulation Analysis

For the purpose of the analysis it is assumed that both RADAR and FLIR are installed
at the same location with the origin as their center and the operating range is assumed
to be 25 km. The simulation is done with a sampling interval of 0.01 s. The specifications
for RADAR and FLIR for simulation are taken from [16, 29].

Other than PF, few widely used nonlinear state estimators are Extended Kalman
Filter (EKF) and Unscented Kalman Filter (UKF). However, from Figs. 4 and 5, its
understood that if the model nonlinearities are rigorous and difficult to linearize, EKF
is prone to tuning difficulties that could result in unpredictable estimates [34]. Even
though UKF provides significant raise in estimation accuracy it is only an approximate
nonlinear estimator [35] whereas PF is a complete nonlinear state estimator. Moreover
this recursive Bayesian estimator known as Particle filter provide better estimation
accuracy for a non Gaussian distribution. Here the PF algorithm is based on estimating
the probability distribution function (PDF) for the state variables given measurement
variables and the generation of the particles is a trade-off. The key feature with PF over
linear filtering is resampling which is to generate posteriori particles on the basis of
relative likelihood. Also, the functional equivalence of two fusion methods shows a
better performance than a single sensor. In MF a weighted or combined is obtained by
fusing the sensor measurements directly and then based on the fused measurement EKF
is utilized for final state estimate. In MF the combined measurement noise variance is

Fig. 4. Sensor and filter estimates for non-linear motion
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essential to feed into EKF. SVF first estimates the sensor measurements using EKF and
fuses the smoothed or final estimates.

Fig. 5. Position errors in range for nonlinear trajectory

The superiority of these two fusion methods are shown in two cases. The RMS and
RSSP errors in range and angles are shown in Table 1 to determine the performance
evaluation of the methods for two different target motions.

Table 1. Comparison of RMS and RSSP errors

Target motion Estimator RMS (m) RMS (rad)
Azimuth Elevation

Projectile RADAR 25 0.0004 0.0021
IRST – 0.0136 0.0643
MF 8 0.0004 0.66
SVF 9 – –

Non-linear RADAR 35 0.0039 0.0085
IRST – 0.0337 0.0735
Particle 0.6 0.0001 0.0001
MF 11 0.0043 0.0093
SVF 12 – –

Mitigation of Target Tracking Errors and sUAS Response 201



4 Conclusion and Future Scope

The performance evaluation and the necessity of the fusion methods are presented in
this paper for two different target motions. A nonlinear filtering theory in which particle
filter a recent development for general solution to the nonlinear problem is also presented
besides data fusion. From the simulation analysis it can be concluded that by adapting
suitable state estimation techniques, the choice of filters/estimators can mitigate the
definite cause of uncertainty with the sensor or target to demonstrate better performance
in tracking accuracy. As, all systems are ultimately nonlinear, the high degree of nonli‐
nearity/uncertainty associated with system dynamics and measurement model makes a
difficult tracking problem. The future work of this paper involves real time target detec‐
tion and tracking in multi target and multi sensor scenario. This involves the use of signal
and image processing algorithms to extract the target features in the presence of radar
absorption materials using RADAR, Night Vision and Thermal Cameras. The predicted
RCS considered for simulation in this paper has to be investigated with more technical
aspects. Also, to see how the FLIR thermal sensors can augment the target information
when more position errors are introduced due to reduced RCS and when the target is
blended in surrounding clutter. Therefore this research is termed as detection and
tracking of sUAS in the presence of surrounding clutter using novel filtering and image
acquisition techniques.
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