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Abstract. When using Gaussian mixture models (GMMs) as a prior for
image denoising under the Bayesian maximum a posteriori (MAP) per-
spective, only a single prominent Gaussian component is usually selected
to recover a noisy image patch, which leads to computationally efficient
implementations. We attempt to justify this on several image datasets by
evaluating the number of Gaussian components required for recovering
patches. We show that even patches without a prominent component in
the prior can be recovered with little loss of performance. Comparisons
between two dictionary choices and between small and large models sug-
gest that large gains are attainable, but only one component is required
for reconstruction.
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1 Introduction

Image denoising aims to recover a latent clean image X from its degraded obser-
vation Y, which is modeled as Y = X + V where V ∼ N (0, σ2) denotes Gaus-
sian noise with zero mean and standard deviation σ. It is an ill-posed inverse
problem because noise prevents the full recovery of image details. Consequently,
prior information is used to regularize the problem: internal reference in nonlocal
self-similarity [1,2], arbitrary priors in sparse representation [3,4], or estimated
priors in deep-learning [5,6]. In patch-based image denoising, each image is par-
titioned into a set of overlapping patches, and the degradation model is written
on each patch i as yi = xi + vi. Without loss of generality, we can represent
image patches in the vector space generated by a dictionary D ∈ Rm×M , i.e. a
basis set of M basic vectors (also called atoms) of size m. For each image patch
yi, our objective is to seek a vector αi ∈ RM such that the clean latent patch
xi verifies xi = Dαi. Using MAP we have:

α̂i = arg max
α i

log(p(αi|D,yi)) ∝ arg min
α i

{||yi − Dαi||22 − λ log(p(αi))} (1)

where λ = τσ2 (with τ > 0) controls the amount of regularization.
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We consider a Gaussian Mixture Model (GMM) to model the distribution
of image patches, i.e. p(αi) =

∑K
k=1 πkN (αi|μk,Σk), where πk are the mixing

weights, μk, Σk are the mean and covariance matrix of the kth component. The
model can be estimated from a set of image patches [7] or a collaborative group of
patches [8,9] extracted from standard images. However, solving Eq. (1) with the
complete mixture is time-consuming and, to our knowledge, existing methods
only use one prominent component for each image patch and justification for
this is lacking. In this contribution, we divide the patches in an input image
into a set P1 of simple patches with a prominent component and a set P2 of the
remaining patches. We focus on the set P2 and conduct multiple experiments to
show that only marginal gains can be obtained by considering the full GMM in
denoising. We explore different choices of dictionary (identity matrix and K-SVD
based) and two choices of GMM complexity on PSNR and reconstruction error
and discuss the type of images that are difficult to reconstruct.

The rest of the paper is organized as follows. Section 2 gives a brief intro-
duction to the datasets. The details of the Gaussian mixture model as Prior for
Image Denoising (GPID) method are described in Sect. 3. Section 4 presents the
experimental results and discussion.

2 Datasets

We explore the following datasets, with different image types and structures:

Cartoon [10] contains 590 images of popular cartoon characters. We choose
45 images to train a GMM and 80 images for evaluation.
Urban [11] contains urban scenes with high self-similarity and many repeated
patterns. We use 25 images for training and 25 images for denoising.
Nature We use 200 training images in [12] and 20 popular natural test images
presented in [8].
Brodatz [13] contains 112 grayscale images of natural textures. We select
30 good quality and content-rich images and split each of them into 4 non-
overlapping sub-images. 90 sub-images are used for training the GMM and
30 sub-images for denoising.
Dtd [14] contains textural images in the wild such as band, braid, spiral,
grid, etc. We choose 55 images for training and 40 images for denoising.
CT of Thorax and CT of Lung We download 7 sequences of CT lung
images and 12 sequences of CT thorax images from [15]. 40 thorax images
are used for training the GMM and 40 images for testing. The numbers of
images for training and testing of CT images of Lung are 40 and 60.
MRI Brain We download 16 sequences of MRI brain images from [16]. 80
images are selected from 7 sequences for training and 60 images are chosen
in other sequences for denoising.
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Sas34 (Cartoon), p = 83.9, e = 1.2 Img75 (Urban), p = 86.6, e = 1.2

Boat (Nature), p = 77.1, e = 1.1 D31 (Brodatz), p = 79.6, e = 1.2.

Perforated 0012 (DTD), p = 79.5,
e = 1.2

CT of Lung, p = 52.7, e = 1.2

CT of Thorax, p = 83, e = 1.1 MRI of Brain, p = 79.4, e = 1.2

Fig. 1. Examples from the 8 datasets, test image with P2 patches in red (left), PSNR
as a function of L (right). Captions indicate image name, percentage of P1 patches and
average reconstruction error ||X̂L=1 − X̂L=5||L1 . (Color figure online)

3 Image Denoising with a Gaussian Mixture Model

3.1 Training the GMM on a Patch Database

From the training set of good quality noise-free images, we randomly extract
N patches xj (1 ≤ j ≤ N) of size

√
m × √

m. After mean subtraction, each
patch xj is encoded in the vector space generated by M atoms of dictionary D,
xj = Dαj by least squares fitting αj = (DTD)−1DTxj .

The probability distribution of the patch coordinates αj can be modeled by a
GMM of K components, p(αj) =

∑K
k=1 πkN (αj |μk,Σk). We can get the param-

eters {πk,μk,Σk}Kk=1 by maximizing the likelihood function via Expectation-
Maximization algorithm. In the E-step, the expected value of the conditional
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probability of αj given the parameters of GMM (also called the “membership
probability”) is computed as in (2).

γjk =
πkN (αj |μk,Σk)

∑K
l=1 πlN (αj |μl,Σl)

(2)

In the M-step, the parameters of Gaussian components are updated using (3)

μk =

∑N
j=1 γjkαj

∑N
j=1 γjk

;Σk =

∑N
j=1 γjk(αj − μk)T (αj − μk)

∑N
j=1 γjk

;πk =

∑N
j=1 γjk

N
(3)

3.2 Denoising Algorithm

After mean substraction, denoising a patch yi is equivalent to finding the optimal
clean latent patch x̂i = Dα̂i. Solving problem (1) with the whole GMM of p(αj)
is a very time-consuming process. To overcome this issue, existing studies [7–9]
propose to assign the noisy patch yi to a single Gaussian component according
to the posterior probability:

γil =
πlN (yi|Dμl,DΣlDT )

∑K
n=1 πnN (yi|Dμn,DΣnDT )

(4)

where 0 ≤ γil ≤ 1 and
∑K

l=1 γil = 1. For convenience, we assume that γi1 ≥
γi2 ≥ . . . ≥ γiK . Problem (1) has a closed form solution when using only γi1

α̂i =
(
DTD + λΣ−1

1

)−1 (
DTyi + λΣ−1

1 μ1

)
(5)

Typically, this approach is acceptable when the first component is dominant
and the other components do not contribute much to the optimization. In prac-
tice, we define the set of dominant patches P1 = {yi s.t. γi1 ≥ 0.9} and we call
P2 the set of the remaining patches. P1 patches are restored via (5) whereas
the patches in P2 are restored by considering the largest L components of the
GMM. Consequently, in the following, we only solve the simplified problem (6).
The denoising method is presented in Algorithm1.

αi = arg min
αi

||yi − Dαi||22 − λ log

{
L∑

l=1

πlN (αi|μl,Σl)

}

(6)

3.3 Complexity Analysis

The denoising method GPID consists of two parts: off-line training and denois-
ing. In the training phase, the overall complexity to learn the GMM of K com-
ponents from N decomposition vectors αj ∈ RM is O(KM3N). In the denoising
process, P1 patches are restored via (5) that needs O(M2P1) operations, and P2

patches (P2 ≈ 10%P − 20%P ) are recovered using gradient descent with the
complexity O(LTgdM

3P2), where Tgd is the number of iterations of the gradient
descent algorithm. The computation of the membership probabilities requires
O(m3PK) operations. The denoising step is repeated T times and therefore
totally takes O(m3PKT + M2P1T + LTgdM

3P2T ) complexity.
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Algorithm 1. GMM as Prior for Image Denoising (GPID)

1 Learn the GMM model {πk, μk, Σk}K
k=1 (once per image database)

2 Initialization: X(0) = Y.
3 for t = 1 to T do
4 for each patch yi ∈ Y do
5 - Subtract its mean value (μy): yi = yi − μy.
6 - Calculate γil (1 ≤ l ≤ K) via (4) and arrange in descending order.

7 - If γi1 ≥ 0.9 then α̂i =
(
DTD + λΣ−1

1

)−1 (
DTyi + λΣ−1

1 μ1

)

8 - Else select L components with largest value of γil, then solve for α̂i

in (6) using gradient descent.
9 - Restore the noisy patch: x̂ = Dα̂i + μy.

10 end
11 Aggregate the denoised patches x̂ to recover the entire denoised image Xt

12 Regularize the denoised image: X(t) = (ηY(t−1) + βXt)/(η + β).

13 end

4 Experimental Results

To show the effect of the restriction to the dominant component, we examine
the performance of the GPID method on P2 patches with a varying number
of components L ∈ {1, 5, 10, 15, 20} in step 7 of the optimization algorithm1.
We study the differences in peak signal-to-noise ratio (PSNR) and mean gray-
level reconstruction error for the 8 datasets presented in Sect. 2, for the identity
dictionary D = I and a K-SVD dictionary, and for small (K = 20) and large
(K = 200) numbers of components.

In all experiments, we degrade the images from the database with white
Gaussian noise with standard deviation σ = 30. We train the two GMMs for each
dataset on N = 2.106 randomly extracted patches of size m = 8×8. In the GPID
denoising method, we use T = 5 regularizing iterations with η = m2/σ2, β =
[1, 4, 8, 16, 32]/σ2. We set λ = 0.9σ2 and 1000 maximum iterations in gradient
descent optimization. All the experiments are implemented in the Matlab 2013a
environment on a machine with Intel Core i7-4770K CPU of 3.5 GHz and 16 GB
of RAM.

From the examples in Fig. 1, we notice that P2 patches can usually be found
close to the edges or contours. We also compute the PSNR values obtained for
the GPID method as a function of L. On these examples, only modest gains
can be obtained by considering several components in the reconstruction. These
properties are explored further by computing the distributions of PSNR gains
and reconstruction error.

1 We only present L ∈ {1, 5, 10} for the K-SVD dictionary in the case K = 200 due
to the high computational requirements.
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Maximum PSNR improvement for K =
20

Maximum PSNR improvement for K =
200

Percentage of P1 pixels Average reconstruction error ||X̂L=1 −
X̂L=5||L1

Fig. 2. Denoising performance for the identity dictionary

4.1 Denoising Performance

When using the identity matrix as a dictionary, image patches are denoised
without transformation. Note that the GPID method coincides with the method
EPLL proposed by Zoran and Weiss in [7] when L = 1. We first observe that
most image patches correspond to a single dominant component from Fig. 2. As
expected, more complex images such as textures (Brodatz and Dtd datasets)
require more components and have more P2 patches.

We compute the PSNR for P2 patches for L ∈ {1, 5, 10, 15, 20} and study the
distribution of the maximum improvement (maxL PSNR) − PSNRL=1.

As shown on Fig. 2, for five datasets (Cartoon, Urban, Nature, CT Thorax
and MRI), the maximum improvement is negligible, less than 0.1 dB for all test
images except one from Nature. For complex images such as textures (Brodatz
and DTD datasets) and the CT Lung images, some images can be modestly
improved, up to 0.2 dB for K = 20. PSNR gains larger than 0.2 dB are only
observed for complex images (Dtd and CT Lung), with K = 200, i.e. with
enough components in the GMM to model distribution details and only for a
small fraction of images (around 20%). These gains require around 200 s for a
256 × 256 image, whereas only 10 s are needed for one Gaussian component.

We also analyze the reconstruction error on the central pixel of P2 patches
||X̂L=1 − X̂L=5||L1 on Fig. 2. For all images, this difference is less than 2 gray
levels per pixel, and cannot be seen by eye.
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Maximum PSNR improvement for K =
20

Maximum PSNR improvement for K =
200

Percentage of P1 pixels Average reconstruction error ||X̂L=1 −
X̂L=5||L1

Fig. 3. Denoising performance for the K-SVD dictionary with 256 atoms

For each dataset, we learn an over-complete dictionary D with 256 atoms as
in [3]. Figure 3 shows a similar situation as Fig. 2. Most patches in the test images
belong to P1, and most images can be reconstructed with only one component
with a penalty less than 0.1 dB. PSNR gains larger than 0.2 dB can only be
observed for a few complex images in the Dtd and Urban datasets. Gray-level
differences are lower than for the identity dictionary, around 1.1 gray-levels per
pixel.

4.2 Dictionary Choice and Model Complexity

Using the denoising results from the 8 datasets with L = 1, we compare the
two dictionaries and GMM sizes in Fig. 4 (see also the examples in Fig. 1). We
observe that increasing the GMM model complexity is nearly always beneficial,
sometimes up to 2 dB PSNR gains, and that the K-SVD dictionary tends to
benefit more from K = 200. The K-SVD dictionary yields slightly better PSNR
especially for large GMM models overall, but the results are variable, which
implies that dictionary choice is largely image-specific.

In this manuscript, we consider only two sizes for the dictionary D. When
D is the identity matrix, its size corresponds to the patch size m. With the K-
SVD method, we obtain an overcomplete dictionary D with 256 vectors. In both
cases the dictionary determines the basis set for representing image patches and
is sufficiently rich to represent all image features. Dictionaries of the same size
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Fig. 4. Effect of model complexity (left) and dictionary choice (right) for L = 1

would yield the same results due to basis rotation. Our experiments suggest that
complex GMM models can take advantage of the additional degrees of freedom
of an overcomplete dictionary to model image details.

5 Conclusion

This paper studies the number of useful components in the GMM for patch-based
image denoising on 8 image datasets. We first remark that most of the patches
in an input image are well represented by a single prominent component. By
exploring denoising with increasing number of components L ∈ {1, 5, 10, 15, 20},
we show that only modest gains can be obtained in terms of PSNR and L1 recon-
struction error (gray-level differences) in all datasets when using more than one
component. This justifies current practice and drastically reduces computational
cost. Much larger improvements can be obtained with a suitable dictionary and
GMM model, but reconstruction only requires a single component.
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