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Abstract. Easy to use, oriented half kernels are reliable in image anal-
ysis. These thin filters, rotated in all the desired directions are useful
to detect edges, or extract precisely their orientations, even concerning
highly noisy images. Usually, the filtering process corresponds to convo-
lutions with Gaussians and their derivatives. Other filters exist and can
be implemented in order to build half kernels. However, functions used
for the smoothing and derivative parts have not been studied in depth.
The goal of this paper is to evaluate different types of half filters as a
function of the noise level. The studied kernels have the same spatial
support, enabling easier comparisons. To address the robustness of the
studied filters against noise, the image quality is gradually worsened.
Then, their performances are compared through objective evaluations of
both segmentation and gradient direction.

Keywords: Edge detection · Half kernels · Gradient direction
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1 Introduction

Edge detection is a fundamental process and remains widely used in image anal-
ysis and computer vision applications. Moreover, gradient and edge orientations
are essential information for the interpretation and exploitation of digital images
[19,26]. Classical methods use first-order fixed operators [4,5,21,24] or the struc-
ture tensor [11] to detect gradient and its orientation. Gradient-based edge and
orientation estimators are frequently utilized. Among these operators, DoB (Dif-
ference of Boxes) filters [21] often remain implemented in many applications as in
robotics. DoB simply computes the difference between two mean filters of same
sizes on both sides of the considered pixel (usually represented by a list of 1 or
−1). However, DoB filters are sensitive to noise and orientations not reliable.
The robustness of the detection is generally improved by smoothing the image
by a low pass filter followed by a gradient detection using vertical and horizontal
masks of type [−1 0 1]. Edge detection methods differ in the types of smoothing
filters that are applied [4–6,24], as equations presented in Table 3. The compu-
tations of the gradient magnitude |∇I| and its orientation η are presented in
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(a)Blurred corner (b) DoB [21] (c) Gaussian [5] (d) AGK [9] (e) Half kernel

Fig. 1. Edge extraction around a blurred corner using different filters.

Table 1. Gradient magnitude and orientation computation for a scalar image I where
Iθ represents the image derivative at the θ orientation (in radians).

Type of operator Fixed operator Oriented Filters Half Kernels

Example of filter

Gradient magnitude |∇I| =
√

I2
0 + I2

π/2 |∇I| = max
θ∈[0,π[

|Iθ| |∇I| = max
θ∈[0,2π[

Iθ − min
θ∈[0,2π[

Iθ

Gradient direction η = arctan
(

Iπ/2

I0

)
η = argmax

θ∈[0,π[
|Iθ| + π

2
η =

(
argmax
θ∈[0,2π[

Iθ + argmin
θ∈[0,2π[

Iθ

)
/2

Table 1(left). Among all the edge detectors, box [21] and exponential [4,24] fil-
ters do not delocalize contour points [12], whereas they are sensitive to noise
and blur while contours near a corner are rounded by Gaussian and Deriche
filters (cf. Fig. 2(a)). In the orientation and edge detection domains, steerable
feature detectors represent popular and efficient tools [8–10]. This concept pro-
vides valuable orientations and edges for many image processing applications,
especially when the filter is elongated (cf. Fig. 2(b)). The concept was gener-
alized in [20] by decomposing a given filter kernel optimally in a set of basic
filters approximating an Anisotropic Gaussian Kernel (AGK). Mathematically,
Table 1(middle column) presents the orientation and the gradient magnitude
computation using this type of filter, corresponding to the maximum energy in
the maximal response direction. The AGK possesses a common shortcoming, as
a matter of fact, only one π-periodic orientation is extracted efficiently [20], so
the impossibility of these filters to estimate in a relevant way several coexist-
ing orientations at the same pixel, as illustrated in Fig. 1(d). Otherwise, multi
steerable filters are designed and adjusted to a pattern of interest or a region
to determine more precisely the directions of edges with 2π-periodic templates
[13,18,23]. On the other hand, the asymmetric filter developed in [16] estimates
the homogeneity in multiple local directions. This filter consists in a network
of several parallel lines in which a homogeneity is computed and enables an
estimation of edge directions modulo 2π. Lastly, wedge [18,23] or asymmetric
oriented filters [15,16] sound better suited to multiple edge directions detection
or modeling a template. The next section details the edge detection process using
2π-periodic filters.
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Fig. 2. Representation of filter supports concerning edges and corners.

2 Edge Detection Using Half Oriented Kernels

2.1 Advantages of Half Oriented Kernels

Edge detection techniques using elongated kernels are efficient to detect large
linear structures correctly [9,10,20,22]. The robustness against noise depends
strongly on the smoothing parameters of the filter, i.e., the parameter of the fil-
ter elongation. If the filter length increases, the detection is less sensitive to noise,
but small structures are considered as noise and their edges are not extracted.
Consequently, the accuracy of the detected edge points decreases strongly at cor-
ner points and for non-straight object contour parts, as illustrated in Fig. 1(d).
To bypass this undesirable effect, an anisotropic edge detection method is devel-
oped in [15,17]. Indeed, the proposed technique is able to detect crossing edges
and corners due to two elongated and oriented filters in two different directions.
The simplest solution is to consider paths crossing each pixel in several direc-

Fig. 3. Decomposition of half kernel (HK) in one dimension. Normalized signals in
(e)–(g) represent the filter response (counter-clockwise rotation) of the centered pixel
in (d), with D and S the derivative and smoothing parameters (cf. Tables 4 and 5).
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Table 2. Different derivative filters. Parameters are available in Table 3.

Filter Formula

DoB DoB(x) = [ −1 ... − 1
︸ ︷︷ ︸

(D−1)/2 times, see row 1 of Table 4

0 1 ... 1
︸ ︷︷ ︸

(D−1)/2 times, see row 1 of Table 4

]

Shen filter S1(x) =

⎧

⎪
⎪
⎨

⎪
⎪
⎩

e−α·|x|, if x < 0

0, if x = 0

e−α·|x|, if x > 0

Bourenanne filter B1(x) = −sgn(x) ·
[

k · sin(w · x) · e−α·|x| + cos(w · x) · e−α·|x| − e−s·|x|]

Deriche filter D1(x) = x · e−α·|x|

Gaussian filter G1(x) = x · e
x2

2·σ2

tions. The idea proposed in [15,17] is to “cut” the elongated kernel using a
Heaviside function into two parts, i.e. two directions (see Fig. 2(c)). Then, the
half kernel (HK) is rotated in several directions from 0 to 2π (bilinear rotation)
and computes a derivative information at each desired angle (illustrated in Fig. 3,
for each π/36 radian angle). Thus, in a contour direction, a half smoothing is
performed, whereas in the perpendicular direction, a derivative information is
computed, as illustrated in Fig. 3(a),(d)–(g). In order to better understand this
technique to extract edge, the filter support of a HK on a straight contour is
equivalent to 1/2 on both sides of the edge, as for elongated and circular or
box filters, illustrated in Fig. 2. On the contrary, for a corner point with a π/2
radian angle, the support of the half filter remains 1/2 on both sides of the edge,
whereas it is around 1/4 and 3/4 concerning other filter supports. Such a manner
to extract edges enables to compute a gradient of blurred contours, even cor-
ners as illustrated in Fig. 1(e), contrary to other filtering methods. Eventually, as
detailed in Table 1(right), the gradient corresponds to the maximum value minus
the minimum value of the convolution of the oriented half filter with the image.
These two directions represent to the two main orientations of a contour and the
gradient direction η corresponds to the bisector between these two directions (cf.
Fig. 2(c)). These orientations are useful and efficient for image restoration via
PDE [14], corner detection [3] or image descriptor [25].

2.2 Types of Implemented Filters

Edge detection using oriented half kernels is reliable, robust against noise, and,
outperforms classical edge detectors [14,15]. As pointed in [17] and illustrated
in Figs. 5(l)–(q), the HK can be implemented using different equations:

• a derivative part of the filter, represented by an equation in Table 2,
• a half smoothing part, which corresponds to an equation in Table 3.

In order to create an elongated filter, the support of the half smoothing part
must be higher than the derivative support. The parameters of the different
filter equations can be chosen in Table 5 for the half smoothing part, where S
represents the length of the support where 98% of the filtered information is
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Table 3. Different low pass filters compared in this study.

Filter Formula Parameter(s)

Boxes Box(x) = [ 1 ... 1
︸ ︷︷ ︸

S times, see row 1 of Tab. 5

] S ∈ N
∗

Shen filter S(x) = e−α·|x| α ∈ R
∗
+

Bourenanne filter B(x) =
e−α·|x|

α2 + w2
· [−(k · α + w) · sin(w · |x|) +

(α − k · w) · cos(w · x) · e−α·|x|] − e−s·|x|

s

s ∈ R
∗
+, w = 0.01,

k = −0.564,

α = 0.215 · s

Deriche filter D(x) = (α · |x| + 1) · e−α·|x| α ∈ R
∗
+

Gaussian filter G(x) = e
x2

2·σ2 σ ∈ R
∗
+

computed, i.e., the width of the HK (cf. Fig. 3(c)). As for the derivative part,
the parameters are available in Table 4, where D represents the length of the
support where 98% of the filtered information is computed (i.e., width of the
HK, cf. Fig. 3(b)). As an example, a half filter using Bourennane equation, of
length S = 46 pixels and D = 11 pixels, the parameter corresponds to s = 3.22
for the smoothing part and s = 0.33 for the derivative part. The half filter can
be generated using a half DoB, see first rows in Tables 2 and 3. Thus, S and
D numbers, indicate directly the size of the half DoB, which is rotated from 0
to 2π. It is important to note that the parameters of the half smoothing parts
in Table 5 correspond to parameters representing a pass bass filter centered at
0, and only the causal part is preserved here, so S corresponds to a smoothing
support size of a half filter. As a result, the derivative part computes the oriented
gradient information, whereas the half smoothing part enables a smooth along
edges, preserving them and their directions. Finally, on the one hand, the length
of the HK must be sufficiently large to be robust against noise. On the other
hand, the width of the HK must be thin to ensure precise edge detection and
orientations. As an example in Fig. 3(left), when S and D are small, all the signals
are noisy, whereas when S increases, the edge directions highlight incrementally,
even though Shen and Bourennane HK remain always sensitive to noise.

The Matlab code is available on the MathWorks website: https://fr.
mathworks.com/matlabcentral/fileexchange/66853-edge-detection-methods-
based-on-oriented-half-kernels?s tid=srchtitle.

3 Evaluation and Results

The aim of the experiments is to obtain the best edge map in a supervised way.
In the experiments, 7 edge detection methods based on filtering gradient com-
putation are compared: isotropic Gaussian filter [5], AGK [9] and HK formed
by the DoB, Shen [24], Bourennane [4], Deriche [6], and Gaussian filters [15,17].
These HK possess the same spatial support (AGK has two times the spacial
support, Fig. 5(m)). Filters must be thin and elongated in order to compute

https://fr.mathworks.com/matlabcentral/fileexchange/66853-edge-detection-methods-based-on-oriented-half-kernels?s_tid=srchtitle
https://fr.mathworks.com/matlabcentral/fileexchange/66853-edge-detection-methods-based-on-oriented-half-kernels?s_tid=srchtitle
https://fr.mathworks.com/matlabcentral/fileexchange/66853-edge-detection-methods-based-on-oriented-half-kernels?s_tid=srchtitle
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Table 4. Parameters of the filters in function of their support size, i.e., the number
of pixels under the range of the filter. These parameters correspond to the derivative
part. The first row is tied to the range of the derivative of the DoB filter.

Spacial support: number of pixels D 3 5 7 9 11 13 15 17 19

Shen filter: values of α 2.15 1.52 1.10 0.86 0.69 0.58 0.49 0.43 0.38

Bourenanne filter: values of s 9.99 7.07 5.13 3.98 3.22 2.69 2.3 2 1.77

Deriche filter: values of α 3.16 2.01 1.46 1.14 0.93 0.79 0.68 0.6 0.49

Gaussian filter: values of σ 0.7 1.11 1.53 1.95 2.38 2.8 3.23 3.66 4.09

Table 5. Parameters of the half filters in function of their support size. These param-
eters are used for the length of the 2D filters, i.e., smoothing part. The first row is tied
to the range of the mean filter used in the DoB filter, i.e., number of pixels S.

Spacial support S 16 21 26 31 36 41 46 51 56 61 66

Shen filter: α 0.23 0.17 0.133 0.11 0.095 0.082 0.071 0.065 0.058 0.052 0.047

Bourenanne filter: s 1.05 0.78 0.62 0.51 0.44 0.38 0.33 0.3 0. 27 0.24 0.22

Deriche filter: α 0.33 0.25 0.2 0.17 0.14 0.12 0.11 0.1 0.09 0.08 0.07

Gaussian filter: σ 6.66 8.81 10.96 13.11 15.26 17.41 19.56 21.7 23.85 26 28.15

accurate contours and associated directions (cf. Fig. 3(d)–(g)). Thus, the deriva-
tive parameter concerning isotropic Gaussian filter [5] remains the same than
others (D = 7), see Fig. 5(l)–(q). HK and AGK are rotated each π/72 radian
angles. Finally, after a non-maximum suppression [26], an objective assessment
is performed by varying hysteresis thresholds on normalized thin edges until the
Relative Distance Error (RDE, inspired by [7]) evaluation obtains the minimum
score [2]:

RDE (Gt, Dc) =

√
1

|Dc| ·
∑

p∈Dc

d2
Gt

(p) +

√
1

|Gt| ·
∑

p∈Gt

d2
Dc

(p),

where Dc represents the desired contour map, Gt the ground truth edge image
(Fig. 5(b)), | · | the number of contour points of a set, and, dA(p) is the minimal
Euclidian distance between a pixel p and a set A [1,7]. These scores are recorded
and plotted as a function of the noise level in the original image, as presented
in Fig. 5(j). Hence, a plotted curve increases monotonously with the noise level
(Gaussian noise). The second evaluation measure concerns the gradient angle, η
(cf. Table 1). Once Dc is created, considering CDc

the set of contour chains in
Dc (i.e., at least 2 pixels per chain), the gradient evaluation as follows:

E(CDc
, η) =

1
|CDc

| ·
∑

p∈CDc

∑

dk∈W

[
1 − abs(π/2 − abs(−→ηp − −→ηdk

))
π/2

]
/ck,
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where dk represents a contour pixel belonging to W , a 3 × 3 window centered
on p, −→ηdk

the gradient orientation of dk and ck the number of contour pixels in
W, minus the central pixel. This evaluation linearly ranges from 0 for identical
angles of −→ηp and −→ηdk

to 1 for angles that differs (Fig. 4). Note that angles of−→ηdk
and −→ηp belong to [0; π[ and when one direction approximates 0 and the

other direction π, the evaluation of these two directions remains close to 0 (see
Fig. 4(c)).

Fig. 4. Illustration of ηp and ηdk directions, in a 3×3 window, where each white square
represents a contour pixel of Dc, whereas gray squares correspond to non-edge pixels.
Example of angular single error computation e = 1 − abs(π/2 − abs(ηp − ηdk ))/π/2.

The presented segmentations in Fig. 5 correspond to the original image for
a PSNR = 14 dB. Clearly, all the HK obtains better segmentations than the
isotropic Gaussian. The HK using Gaussian outperforms six other compared
filters, in terms of both RDE evaluation and visualization. AGK obtains good
scores, but the contour image presents undesirable straight contours disturbing
its interpretation. HK using DoB produces many false positive points, especially
close to the true edges; it performs in presence of salt&pepper noise, but not
concerning white Gaussian noise. Otherwise, HK using Shen and Bourennane
filters obtain close the same results, however, they remain too sensitive to noise,
and, especially, many edges are missing. HK with Deriche filter is more robust
to noise but edges are still missing. Concerning η evaluation,E(CDc

,η) indicates
that HK using Gaussian remains more reliable than other HK. This information
means that HK using Gaussian is less disturbed by noise than other kernels. The
gradient evaluation of AGK is close to 0 because almost all the edges obtained
are straight; consequently, the gradient angle remains close the same for all the
contour chain.
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Fig. 5. Edge detection corresponding of the minimum score of the RDE measure.

4 Conclusion

Oriented half kernels (HK) represent thin filters enable to describe the image
information all around a considered pixel. As they are robust against noise and
their edge directions are accurate, HK are utilized in the context of many image
processing problems [3,14,25]. This study presents different manners to build
HK devoted to edge detection in digital images. Five HK have been objectively
compared and HK using Gaussian remains the most reliable. Especifically, this
HK and the anisotropic Gaussian kernel obtain similar evaluation results kernel
but the obtained edges are more usable with HK. For this purpose, we plan in
a future study to implement multiscale and subpixel half Gaussian kernels.
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