Chapter 9
Utilizing Entities for an Enhanced Search <=
Experience

Over the past decade, search engines have not only improved the quality of search
results, but also evolved in how they interact with users. Modern search engines
provide assistance to users throughout the entire search process, from formulating
their information needs to presenting results and recommending additional content.
This chapter presents a selection of topics, where entities are utilized with the overall
aim of improving users’ search experiences.

First, in Sect. 9.1, we discuss techniques for assisting users with articulating their
information needs. These include query assistance services, such as query auto-
completion and query suggestions, and specialized query building interfaces. Next,
in Sect. 9.2, we turn to the question of result presentation. In conventional document
retrieval, the standard way of serving results is to display a snippet for each
document, consisting of its title and a short summary. This summary is automatically
extracted from the document with the aim of explaining why that particular
document is relevant to the query at hand. Moving from documents to entities as
the unit of retrieval, the question we need to ask is: How can one generate dynamic
summaries of entities when displaying them as search results? Finally, in Sect. 9.3,
we describe entity recommendation methods that present users with contextual
suggestions, encourage exploration, and allow for serendipitous discoveries. We
study the related entity retrieval problem in different flavors, depending on what
kind of input is available to the recommendation engine. Furthermore, we address
the question of explaining the relationship in natural language between entities
presented to the user. We refer to Table 9.1 for the notation used in this chapter.

9.1 Query Assistance

Chapter 7 dealt with query understanding from the machine’s point of view. In this
section, we bring the user’s perspective to the forefront. How can a semantic search
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Table 9.1 Notation used in this chapter

Symbol Meaning

e Entity (e € &)

E Graph edges

& Set of entities linked in query g (£, C &)
Es Set of entities clicked in session s (& C &)
Fe Knowledge base facts about entity e

q Query

Q Query log (set of unique queries)

Qs Set of queries issued within search session s
s Search session (s € S)

S Set of search sessions

t Term (r € V)

T Type taxonomy

Te Types of entity e

u Query template (u € U)

u Set of templates

Uy, Set of templates for query ¢

1% Graph vertices

y Entity type (t € T)

system assist the user in the process of articulating and expressing her information
need? First, we discuss automatic methods that provide users with query suggestions
while they are typing their query (Sect. 9.1.1) or after the query has been submitted
(Sect.9.1.2). Then, we present examples of specialized query building interfaces
that enable users to formulate semantically enriched (keyword++) queries, by
explicitly marking entities, types, or relationships (Sect. 9.1.3).

9.1.1 Query Auto-completion

Query auto-completion (QAC) provides users with query suggestions as they enter
terms in the search box. Query auto completion is a common feature in modern
search engines; see Fig. 9.1 for an illustration. It helps users to express their search
intent as well as to avoid possible spelling mistakes [15].

Most systems rely on the wisdom of the crowds, i.e., suggest completions
(matching the entered prefix) that have been most popular among users in the past,
based on query logs [5]. Typically, QAC is viewed as a ranking problem, where the
aim is “to return the user’s intended query at the top position of a list of [candidate]
query completions” [15].

Formally, we let go be the incomplete query that the user has typed in so far and
qs be a suggested candidate query suffix. Let c(go @ ¢5) be the number of times
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amsterdam thi

{=

amsterdam things to do
amsterdam this week

amsterdam this weekend
amsterdam things to do free
amsterdam things to do in may
amsterdam things to buy
amsterdam things to do in june
amsterdam things to do in july
amsterdam things to do in august
amsterdam things to do at night

Google Search I'm Feeling Lucky

Fig. 9.1 Query auto-completion in the Google search engine

we observe the query go @ ¢s issued in the query log Q, where @ is the string
concatenation operator. The baseline approach to QAC, referred to as most popular
completion in [5], is to rank suggestions according to:

c(qo @ gqs)
score(qs;40) = P(gs1qo) = 3 C(C;O Dqy)
qOEqu’EQ :

Given that many information needs revolve around entities, entities can be leveraged
to improve query auto-completion.

9.1.1.1 Leveraging Entity Types

Meij et al. [32] focus on a specific subset of queries that can be decomposed
into entity and refiner components, such as “ASPIRIN side effects” or “BRITNEY
SPEARS video” (refiners typeset in italics). They show that exploiting the type of
entities being sought can improve QAC for rare queries. Specifically, we let gg = e,
where the query entity e is recognized using entity linking techniques (cf. Sect. 7.3).
Further, let 7, denote the entity types assigned to e in the knowledge base. Their
best performing model (called M1 in [32]) looks at the most likely completion for a
given entity type y € T:

c(gs,y)

score(qs; qo0) = P(gsly) = ;
2 qoegyeQ €WsY)

where c(gs, y) is the number of times we can observe completion g5 with an entity

of type y in the query log. Note that entities commonly have multiple types assigned

to them. Selecting a single “best” type y out of the types of the query entity is an
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Related searches for amsterdam things to see

best time to go to amsterdam amsterdam netherlands things to do
visiting amsterdam for the first time amsterdam tourist attractions

must do in amsterdam first timers best way to see amsterdam
amsterdam attractions for adults amsterdam tourist information

Fig. 9.2 Query suggestions offered by the Bing search engine for the query “amsterdam things to

()

see

open issue that is not dealt with in [32]. Instead, they evaluate performance for all
possible types and then choose the type that led to the best performance on the
training set.

9.1.2 Query Recommendations

Unlike “as-you-type” query auto-completion, which assists users during the articu-
lation of their information need, query recommendations (a.k.a. query suggestions)
are presented on the SERP once an initial query has been issued. The idea is to help
users formulate more effective queries by providing suggestions for the next query.
These suggestions are semantically related to the submitted query and either dive
deeper into the current search direction or move to a different aspect of the search
task [37]. Query suggestions are an integral feature of major web search engines
and an active area of research [10, 11, 18, 25, 37, 43, 46]. Figure 9.2 shows query
recommendations in action in a major web search engine.

Generating query recommendations is commonly viewed as a ranking problem,
where given an input query ¢, the task is to assign a score to each candidate
suggestion ¢’, score(q’; q). Like QAC, query recommendation also relies on the
wisdom of the crowds by exploiting query co-occurrences and/or click-through
information mined from search logs. While log-based methods work well for
popular queries, it is a challenge for them to ensure coverage (i.e., provide
meaningful suggestions) for rare queries. Most query assistance services perform
poorly, or are not even triggered, on long-tail queries, simply because there is little
to no historical data available for them. In this section, we will discuss methods that
alleviate this problem by utilizing entities in a knowledge base.

We start by presenting the query-flow graph (QFG) method [10] in Sect. 9.1.2.1,
which is a seminal approach for generating query recommendations. Then, in
Sects.9.1.2.2-9.1.2.4, we introduce various extensions to the QFG approach that
tap into specific characteristics of entities, such as types and relationships. All these
methods rely on the ability to recognize entities mentioned in queries. We refer back
to Sect. 7.3 for the discussion of techniques for entity linking in queries. The set &,
denotes the entities identified in query g.
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9.1.2.1 Query-Flow Graph

The query-flow graph (QFG), proposed by Boldi et al. [10], is a compact represen-
tation of information contained in a query log. It is a directed graph G = (V, E, W),
where the set V of vertices is the distinct set Q of queries contained in a query
log, plus two special vertices, vs and vy, representing the start and terminal states
of sessions: V. = Q U {vs,v:}. A session is defined as a “sequence of queries of
one particular user within a specific time limit” [10]. Commonly, the session time
limit is taken to be 30 min. Further, E € V x V is a set of directed edges and
W : E — (0,1] is a weighting function assigning a weight w(qg;,q;) to each edge
(gi,qj) € E. Two queries, g; and g, are connected with a directed edge (g; — ¢;),
if there is at least one session in the log in which g; and g are consecutive.

The key aspect of the construction of the query-flow graph is how the weighing
function connecting two queries, w(g;,q;), is defined. A simple and effective
solution is to base it on relative frequencies of the query pair appearing in the query
log. Specifically, the weight of the edge connecting two queries is computed as:

1
oy ) z¢@igp) s (e(gigp) > T) V(g = vs) V(g = vr)
w(gi,q;) {07 otherwise ,

where c(g;,q;) is the number of times query g; follows immediately g; in a session.
The normalization coefficient Z is set to such that the sum of outgoing edge weights
equals to 1 for each vertex, i.e., Zj w(gi,q;) = 1. Thus, weight w(g;,q;) may be
seen as the probability that g; is followed by ¢g; in the same search session. This
normalization may be viewed as the transition matrix of a Markov chain. Figure 9.3
shows an excerpt from a query-flow graph.

website

0.506

hotels

terminal state barcelona

0.029

luxury barcelona
hotels

barcelona weather
online

Fig. 9.3 Example of a query-flow graph, based on [10]. Note that not all outgoing edges are
reported (thus, the sum of outgoing edges from each vertex does not reach 1). The terminal state
vertex (v;) is distinguished using a gray background
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Based on this graph-based representation, query recommendations can
be obtained by performing proximity-based top-k vertex retrieval, either
neighborhood-based or path-based. A simple recommendation scheme is to pick, for
an input query g, the top-k vertices connected with the largest edge weights. How-
ever, as observed by Boldi et al. [10], this method tends to drift off toward popular
but unrelated queries. A better recommendation would be to pick the most important
query ¢’ relative to the initial query g. The recommendation algorithm proposed
in [10] is a random walk with restart to a single vertex: a random surfer starts at
the initial query ¢, and at each step either (1) follows one of the outlinks from the
current vertex with probability « or (2) jumps back to g with probability 1 — «. This
process may also be viewed as applying “a form of personalized PageRank, where
the preference vector is concentrated in a single node [vertex]” [10]. More formally,
the process is described as computing the transition matrix A of a Markov chain:

A=aoP+ (1 —a)lil,

where P is the row-normalized weight matrix of the query-flow graph, 1 is the
identity matrix, and i; is a “one-hot” vector whose entries are all zeroes, except for
the jth vector whose value is 1. The parameter « is chosen to be 0.85in [10]. A has a
unique stationary distribution vector v, such that vTA = v. This distribution, called
the random-walk score relative to g, can be computed using the power iteration
method. Then, the highest scoring queries can be returned as the most relevant
query suggestions for ¢g. Notably, if the top-scoring query is the termination vertex
vy, then it means that the query chain is most likely to end at that point. In that case,
it may be wise not to offer any query suggestions to the user.

Instead of using the raw random walk scores, Boldi et al. [10] propose to use a
weighting scheme, so as to avoid returning very common queries as suggestions.
The variant that yields the best recommendations in their experiments is given by
the following formula:

"wgq (Q’)
Jw(g)’

where rwy(¢q') is the random walk score of the query g’ with respect to ¢
(personalized PageRank [26]) and rw(q’) is the random walk score of ¢’ computed
using a uniform preference vector (no personalization, i.e., starting at random at any
vertex).

Having introduced the QFG approach, we shall next look at a number of exten-
sions that utilize entities in a knowledge base, in order to improve recommendations
for long-tail queries.

score(q’;q) = ©.1)

9.1.2.2 Exploiting Entity Aspects

Reinanda et al. [39] define entity aspects as a set of refiners that represent the same
search intent in the context of an entity. For example, for the entity BARCELONA
E.C., the refiners “live,” “live streaming,” and “live stream” represent the same
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search intent, i.e., they amount to one particular aspect of that entity. For each entity
e, Reinanda et al. [39] mine a set of aspects A, = {ay,...,a,} from a search
log. First, the set of queries mentioning that entity, Q, C Q, is identified using
entity linking. Then, refiners r (referred to as query contexts in [39]) are extracted
by removing the mention of the entity from the queries. Next, refiners that express
the same intent are clustered together. Clustering relies on the pairwise similarity
between two refiners, sim(r;,7 ), which is taken to be the maximum of the following
three types of similarity:

* Lexical similarity, estimated by the Jaro-Winkler distance between r; and r;.

o Semantic similarity, using the cosine similarity of word embeddings of the
refiners, cos(r;,r;). Specifically, the vector representation of a refiner, r;, is
computed as the sum of Word2vec [33] vector of each term within.

* Click similarity, obtained using the cosine similarity between the vectors of
clicked sites.

For clustering refiners, hierarchical agglomerative clustering with complete linkage
is employed. Refiners are placed in the same cluster if their similarity is above a
given threshold. By the end of this step, each cluster of refiners corresponds to an
entity aspect.

The mined aspects are used for query recommendations as follows. During the
construction of the query-flow graph, a distinction is made between queries that
contain a mention of an entity (i.e., are entity-bearing) and those that are not. For an
entity-bearing query, the mentioned entity e and the refiner r are extracted.' Then, r
is matched against the appropriate entity aspect, by finding the aspect a; € A, that
contains r as its cluster member, r € ag;. This way, semantically equivalent queries
are collapsed into a single entity aspect vertex in the modified query-flow graph.
Non-entity-bearing queries are handled as in the regular query-flow graph, i.e., each
unique query corresponds to a vertex.

For an incoming new query, the process of generating recommendations works
as follows. First, entity linking is performed on the query to decide if it is entity-
bearing. Then, the query is matched against the appropriate graph vertex (using the
same procedure that was used during the construction of the query-flow graph).
Finally, recommendations are retrieved from the query-flow graph.? Note that entity
aspect vertices may contain multiple semantically equivalent queries. In that case, a
single one of these is to be selected (for each vertex), e.g., based on query popularity.
This approach (referred to as QFG+A) is shown to achieve small but consistent and
significant improvements over generic QFG query recommendations.

n this work, a single “main” entity is selected from each query (due to the fact that the average
query length is short, most queries mention just one entity or none).

2Reinanda et al. [39] use the simple recommendation scheme, based on raw edge weights.
However, it is also possible to apply random walks using the weighting scheme proposed in [10],
as is given in Eq. (9.1).
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9.1.2.3 Entity Types

An obvious limitation of query-flow graphs is that they cannot make recommenda-
tions for long-tail or previously unseen queries. Szpektor et al. [46] alleviates this
limitation by enhancing query-flow graphs with query templates.’> Templates are
defined by replacing the entity mention in the query by a placeholder, which is an
entity type. For example, the queries “New York hotels,” “Los Angeles hotels,” and
“Paris hotels” may be abstracted into a “(city) hotels” query template. Then, general
recommendation rules, like “(city) hotels” — “(city) restaurants,” may be extracted
from query logs. Using such rules, it is possible to generate the recommendation
“Yancheng restaurants” for the input query “Yancheng hotels,” even if none of those
queries have been observed before. Next, we detail the elements of this approach.

Generating Query Templates Each query ¢ in the query log Q is considered for
template construction. Given a query, every word n-gram (up to length 3 in [46]) is
checked whether it refers to an entity. If yes, then that query segment of the query is
replaced with the type(s) of the corresponding entity to produce the corresponding
template(s). Here, entity types are not taken to be a flat set but are considered to exist
in a hierarchical type taxonomy. We let 7T, denote the most specific type(s) that entity
e is assigned to in the knowledge base. For example, using the DBpedia Ontology
as the type taxonomy, the entity ALBERT EINSTEIN has a single most-specific type
T. = {Scientist}. By definition, the distance between an entity and (one of) its most
specific type(s) is set to 1. Since the type taxonomy is a subsumption hierarchy (cf.
Sect.2.3.1), if entity e is an instance of type y, then it will also be an instance of all
supertypes of y. We let 7, denote the set of all supertypes of the types in 7T.. For
the example entity ALBERT EINSTEIN, 7, = {Person,Agent} (since Scientist is a
subtype of Person, which is a subtype of Agent). Thus, the type assignments of an
entity are partitioned into most specific types and their supertypes (i.e., 7o = T U7,
and T, N T = (). Further, d(y, y’) is defined as the shortest path distance between
types y and y’ in the type taxonomy. The distance function d (e, y) between entity e
and type y is then defined as follows:

1, yeT
d(e,y)={ l+min, +d(y.y), yeT
00, otherwise .
For example, d(ALBERT EINSTEIN,Scientist) = 1, d(ALBERT EINSTEIN,

Person) = 2, and d (ALBERT EINSTEIN, Agent) = 3.

3The notion of query templates is similar to that in [1] (cf. Sect.7.4), with two main differences:
(1) Templates here are defined over a taxonomy of entity types as opposed to attributes and (2)
they are defined globally, i.e., are not restricted to any particular domain/vertical (such as travel or
weather).
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The set of templates constructed from a given query g is denoted as U{,;. Each
template u € U, is associated with a confidence score w(u,q), which expresses how
well u generalizes g . Intuitively, the higher a type is located in the type hierarchy, the
higher the risk of the corresponding template over-generalizing the query. Thus, the
confidence score can be set to be exponentially decaying with the distance between
entity e and type y:

w(g,u) = ad@y) 9.2)

where « is the decay rate (set to 0.9 in [46]). Note that template scoring in Eq. (9.2)
does not take into account the uncertainty associated with the type-annotation of the
query. The intuition is that by considering the transitions between templates (based
on subsequent queries from which they were generated) in a sufficiently large query
log, noise will be eliminated and meaningful transition patterns will surface. This
will be explained next.

Extending the Query-Flow Graph In the extended query-flow graph, referred to
as query-template flow graph, vertices represent not only queries but templates as
well. We let the set U/ denote all templates that are generated by queries in the
search log: U = quQ U, . In addition to query-to-query transition edges (Eyy)
of the original query-flow graph, we now have two additional types of edges: (1)
query-to-template edges (E,) and (2) template-to-template edges (Eu).

* There is a directed edge between query g and template u iff u € U,. The
corresponding edge weight w(g,u) is set proportional to the query-template
confidence score, which is given in Eq. (9.2).

* There is a directed edge between templates u; and u ; iff (i) they have the same
placeholder type and (ii) there is at least one supporting edge (qi,q;) € E4q such
that u; € Uy, uj € Uy;, and the substituted query segment is the same in ¢; and
qj. The set of all support edges is denoted as E(u;,u ;). Then, the edge weight
between u; and u j is set proportional to the sum of edge weights of all supporting
query pairs:

w(u;,uj) o Z w(gi,q;) -

(qi-qj)€Es (Ui, uj)

For example, for the template-to-template edge “(city) hotels” — “(city) restau-
rants,” the set of support edges includes {“Paris hotels” — “Paris restaurants,’
New York hotels” — “New York restaurants,” . .. }.

Normalization is performed in both cases to ensure that the outgoing edge weights
of graph vertices sumup to 1.

Generating Query Recommendations Using the regular query-flow graph, candi-
date query recommendations ¢’ for an input query ¢ would be those for which there
exists a directed edge (q,q9") € Eg4q. With the extended query-template flow graph,
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candidate recommendations also include queries that have not been observed in the
logs before but can be instantiated via a template. Specifically, there needs to be a
mapping edge (¢,u) € E4, and a template-to-template transition edge (u,u’) € Eu,
such that by instantiating &’ with the entity extracted from ¢, it yields ¢’ as the result.
Then, candidate recommendations are scored according to the following formula:

score(q/;q) = w(q,q’) + Z w(q,u) wu,u'),
uelly
(M,M’)EEW
ins(u',q,u)=q’

where ins(u’,q,u) denotes the query that is the result of instantiating template u’
based on query g and template u. Given that edge weights are normalized, the
resulting score will be in the range [0, 1] and “can be interpreted as the probability
of going from g to ¢’ by one of the feasible paths in the query-template flow
graph” [46].

9.1.2.4 Entity Relationships

Bordino et al. [12] extend the query-flow graph with entity relationship information,
and Huang et al. [25] capitalize on this idea for generating query recommendations.
Suppose that two queries g; and g; appear in the same session and they mention
entities e¢; and e, respectively. Then, in addition to the flow from g; to g; in
the query-flow graph, we can also utilize the relationships between e; and e; in
the knowledge base. More formally, the enhanced graph, referred to as EQGraph
in [12], has query vertices Vg and entity vertices Vg, with query-to-query edges
E 4, entity-to-query edges E.,, and entity-to-entity edges E... See Fig.9.4 for an
illustration.

Entities in a knowledge base Original query-flow graph

Fig. 9.4 Entity-query graph (EQGraph), extending the regular query-flow graph with entities from
a knowledge base
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Entity-to-Query Edges Each entity is connected to all the queries that mention it.
The edge between entity e and query ¢ is given a weight proportional to the relative
frequency of that query in the log:

wie.q) = c(q)
’ Zq’:eegq, C(q/) ’

where c(g) is the number of times g appears in the query log, and &, denotes the

set of entities that are extracted from ¢’ via entity linking. Note that the outgoing

edge weights sum up to one for each entity vertex.

Entity-to-Entity Edges Edge weights w(e,e’) represent the transition probability
between a pair of entities ¢ and ¢’. Bordino et al. [12] derive these weights based
on the query log, by considering all query-to-query transitions ¢ — ¢’, where g
mentions ¢ and ¢’ mentions ¢’

weHh=1- [ ( w(g.q") ).

& % &y
(9.9')€Eqq 4 a
(e,9), (6/,61')€Eeq

This formulation distributes the probability mass uniformly among the possible
(1&41 x |&4'1) entity-to-entity transitions derived from ¢ — ¢’

Generating Query Recommendations Huang et al. [25] generate query recom-
mendations by computing personalized PageRank [26] on the EQGraph, starting
from entities. The core of their approach lies in the idea that instead of considering
the entities that are mentioned in the query (&, ), they consider related entities from
the knowledge graph. This set of related entities, denoted as g, is derived based
on the notion of meta-paths [45]. A meta-path M in the knowledge graph is a

sequence of entity types yi, ..., y, connected by predicates (i.e., relationship types)
Pl,--->Pn—1,suchthat M = y; AN V2. Yn—1 Py vn. Each of these meta-paths

represents a specific direct or composite (“multi-hop”) relationship between two
entities. Two entities may be connected by multiple meta-paths; a natural approach,
followed in [25], is to select the shortest meta-path between them to represent their
relationship. Let M be the set of meta-paths over the entity types in the KG, and
M, C M be the set of outgoing meta-paths for type y. Related entities are collected
by performing a path-constrained random walk [29] on knowledge graph predicates,
with each meta-path M € M,, for each of the types associated with the linked
entities in the query (y € T.,e € &;). Each of these related entities e € &g
accumulates weight, w(e), based on the various meta-paths it can be reached on.
See Algorithm 9.1 for the detailed procedure.

The most relevant queries, with respect to the related entities £g, are returned as
recommendations. Specifically, for each of the related entities, e € g, personalized
PageRank is performed on the EQGraph, starting from e with initial probability
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Algorithm 9.1: Related entity finding for query recommendation [25]

Input: query-flow graph, knowledge graph, query ¢
Output: related entities £ with weights w

1 &, < perform entity linking on ¢
2 & R < [
3 foreach ¢ € £, do

4 foreach y € 7, do
5 foreach M € M, do
6 &' <« pathConstrainedRandomWalk (e, M)
7 foreach ¢’ € £ do
8 Er < ERU{e}
9 w(e') < w(e) + \&,\]xw’\
10 end
1 end
12 end
13 end

14 return Eg, w

w(e). The resulting probability distributions are aggregated, and the top-k queries
with the largest aggregated score are offered as recommendations.

Note that this recommendation method considers only the entities mentioned in
the query but not the other contextual terms in the query. It means that if two queries
g and ¢’ mention the same entities (£, = &£;/) then generated recommendations will
be exactly the same for the two.

9.1.3 Query Building Interfaces

In Chap.4, we have seen that leveraging semantically enriched queries, referred
to as keyword++ queries, yields improved retrieval performance. Such keyword++
queries may contain annotations of specific entities, target types, or relationships.
One way to obtain those annotations is via automated techniques aimed at query
understanding—which we have discussed in Chap.7. Alternatively, it may be
delegated to the user to provide semantic annotations for queries, and thereby more
explicitly express the underlying information need. This, however, can be challeng-
ing for ordinary users, due to their unfamiliarity with the underlying knowledge
base. Furthermore, even those that are acquainted with the knowledge base will
find it problematic to navigate the large space of entities, types, and relationships
without some support. In order to aid users in the process of formulating complex
queries, specialized query building interfaces have been proposed [6, 24, 42]. A
common feature of these systems is that they provide context-sensitive suggestions.
The STICS system offers suggestions for entities and categories, as users type query
terms; a screenshot is shown in Fig.9.5. Schmidt et al. [42] present a corpus-



9.1 Query Assistance
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Fig. 9.5 Screenshot of the STICS system [24], http://stics.mpi-inf.mpg.de/
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v Classes:

Food 9)
Ingredient 9)
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V Relations:
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President Viktor Yanukovich, tha EL considers a big loan to the ...

demonstratons continue 1o call for the resignation of Ukrainian

President Viktor Yanukovich, the ELl considers a big loan to the ...

Your Query:

occurs-with % edible leaves ¥+

Vitamin C per 100g in mg % >50 ¥

Hits:
Broccoli

Ontology fact
Broccoli: is a plant; Vitamin C per 100g in mg 89.2

Document: Edible plant stem
The edible portions of Broccoli are - the leaves.

Garden cress

Ontology fact
Cabbage: is a plant; Vitamin C per 100g in mg 69

Document: Cress

Plants cultivated for their edible leaves : Garden cress

311

1-20f9

Fig. 9.6 Screenshot of the Broccoli system [6], http://broccoli.informatik.uni- freiburg.de/

adaptive extension, where the ranking of candidate suggestions also takes into
account the underlying document collection. That is, they only suggest entities
and categories “that lead to non-empty results for the document collection being
searched” [42]. They further introduce a data structure for storing pre-computed
relatedness scores for all co-occurring entities, in order to keep response times
below 100 ms. Another example is the Broccoli system, which targets expert users
and allows them to incrementally construct tree-like SPARQL queries, using similar
techniques (i.e., corpus-based statistics) for generating suggestions [6]. Figure 9.6
presents a screenshot of the system.
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9.2 Entity Cards

In recent years, there has been an increasing trend of surfacing structured results in
web search in the form of various knowledge panels. Being served with rich and
focused responses, users no longer need to engage with the organic (document-
oriented) search results to find what they were looking for. This marks a paradigm
shift in search engines evolving into answer engines. One group of knowledge
panels, often referred to as direct displays, provide instant answers to a range of
popular information needs, e.g., weather, flight information, definitions, or how-to
questions. Some direct displays invite users to engage and interact with them (like
currency conversion or finance answers), while others yield a clear inline answer
(such as dictionary or reference answers) with no further interaction expected. Our
focus in this section will be on another type of knowledge panel, called entity
card, which summarizes information about a given entity of interest. Unlike direct
displays, whose mere goal is to provide a succinct answer, entity cards intend to
serve an additional purpose—to present the user with an overview of a particular
entity for contextualization and further exploration.

An entity card portrays a summary of a selected entity, commonly including
the entity’s name, type, short description, a selection of key attributes and
relationships, and links to other types of relevant content.

Entity cards are an integral component of modern search engine result pages, on
both desktop and mobile devices [14, 28]. Triggered by an entity-bearing query, a
rich informational panel is displayed (typically on the top-right of the SERP on a
desktop device), offering a summary of the query entity, as shown in Fig.9.7a, b.

It has been long known that providing query-biased snippets for documents in the
result list positively influences the user experience [49]. Entity cards may be viewed
as the counterpart of document snippets for entities, and, as we shall show in this
section, may be generated in a query-dependent fashion. It has been shown that
entity cards attract users’ attention, enhance their search experience, and increase
their engagement with organic search results [14, 36]. Furthermore, when cards are
relevant to their search task, users issue significantly fewer queries [14] and can
accomplish their tasks faster [36].

We shall begin with an overview of what is contained in an entity card. Then,
we will focus on the problem of selecting a few properties from an underlying
knowledge base that best describe the selected entity, with respect to a given query,
which will serve as the factual summary of that entity.
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Fig. 9.7 (a) Entity card in Google. (b) Entity card in Bing

9.2.1 The Anatomy of an Entity Card

Entity cards are complex information objects that are dynamically generated in
response to an entity-oriented query, after determining the intended entity for that
query (cf. Sect.7.3). Figure 9.8 shows a card layout that is commonly used in
contemporary web search engines, comprising (1) images, (2) the name and type
of the entity, (3) a short textual description, (4) entity facts, and (5) related entities.
Additionally, depending on the type of the entity and the intent of the search query,
other components may also be included, such as maps, quotes, tables, or forms.
Most elements of entity cards have their own set of associated research chal-
lenges. An entity may be associated with multiple types in the KB. For example,
the types of ARNOLD SCHWARZENEGGER in Freebase include, among others,
tv.tv actor,sports.pro athlete,and government.politician. The prob-
lem of selecting a single “main” type to be displayed on the card has been
addressed using both context-independent [7] and context-dependent [50] methods.
For emerging entities, that already have some facts stored about them in the KB, but
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Fig. 9.8 Common entity card layout

lack a Wikipedia-style summary, natural language descriptions may be produced
automatically [17, 41]. The factual summary, a truncated view of facts about the
entity, is a central element of entity cards. We devote the remainder of this section
to this very problem. Finally, related entity suggestions typically utilize search logs
and entity co-occurrence information; we shall discuss specific methods in Sect. 9.3.
Clicking on one of the related entities typically launches a new query with the
related entity.

9.2.2 Factual Entity Summaries

The problem of generating informative entity summaries from RDF data has
generated considerable interest over the recent years [16, 22, 23, 47, 48]. Since
descriptions of entities in a knowledge base typically include hundreds of factual
statements, “for human users it becomes difficult to comprehend the data unless
a selection of the most relevant facts is provided” [47]. Below, we present the
approach by Hasibi et al. [23] that is shown to be more effective than other
relevance-oriented fact ranking methods, which employ variations of the PageRank
algorithm [16, 47, 48]. Notably, it considers facts with both entity and literal object
values.
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Let F, denote all the facts stored about a given entity e in the knowledge base
IC. That is, F, consists of all predicate-object pairs out of those SPO triples, where
e appears as subject:

Fe ={(p,0) : (s,p,0) € K,s =e}.

For notational convenience, we shall use the shorthand f to denote a single fact,
which is essentially a property-value pair; further, we shall write py and oy
to denote the predicate and object elements of the fact, respectively. Since F,
is typically large (on the order of hundreds), the challenge is to select a small
subset of them, to be displayed in the summary section of the entity card, that
are deemed to have the highest utility for the user. Hasibi et al. [23] argue that
factual entity summaries serve a dual purpose: “they offer a synopsis of the entity
and, at the same time, can directly address users’ information needs.” Therefore,
when selecting which facts to include in the summary, one should consider both
their general importance, irrespective of any particular information need, as well as
their relevance to the given user query. These two quantities are combined under the
notion of utility. The utility of fact f is defined as a linear combination of its general
importance and its relevance to the user query g:

utility(f,q) = a importance(f) + (1 — «) relevance(f,q) . 9.3)

For simplicity, importance and relevance are given equal weights in [23]. The
generation of factual summaries is addressed in two stages. First, facts are ranked
according to their utility. Then, the top-ranked facts are visually arranged in order
to be displayed on the entity card.

9.2.2.1 Fact Ranking

The ranking of facts is approached as a learning-to-rank problem, using two main
groups of features, aimed at capturing either the importance or the relevance of a
fact. To learn the ranking function, target labels are collected via crowdsourcing for
each dimension separately on a 3-point scale (0..2). Then, the two are combined
with equal weights (cf. Eq.(9.3)), resulting in a 5-point scale (0..4). Below, we
shall introduce some of the most effective features developed for relevance and
importance, respectively. Table 9.2 provides an overview. For a complete list of
features, we refer to [23].

Importance features are mostly based on statistics derived from the knowledge
base. We introduce the concepts of fact frequency and entity frequency, which are
loosely analogous to collection frequency and document frequency in document
retrieval. Specifically, the fact frequency of object is the number of SPO triples in
the KB with a given object value:

FF,(o5) = |{(s,p,0) 2 (s,p,0) € Ko = 0f}| .
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Table 9.2 Features for fact ranking

Group Feature Description

Importance
NEF ,(f) Normalized entity frequency of the fact’s predicate
typelmp(f,e) Type-based importance of the fact’s predicate
predSpec(f) Predicate specificity
isEntity(f) Whether the fact’s object is an entity

Relevance
lexSim,(f,q) Lexical similarity between the fact’s object and the query
semSimAvg,(f,q) Semantic similarity between the fact’s object and the query
iRank(f,q) Inverse rank of the fact’s object
conLen(q) Context length

Entity frequency of predicate is the number of entities in the KB that have at least
one fact associated with them with a given predicate:

EF,(pp)=|{ec&:3f € Fe,pp =ps}| .

Another type-aware variant of the above statistic considers only those entities that,
in addition to having the given predicate, also are of a given type y:

EF,(pry) =|{e€€:yeTeaf € Fopp =prl -

Furthermore, we define the type frequency of a predicate to be:

TF,(pp)=|{y:3ec& f € Fepy =pr.y €T} .

With the help of these statistics, we define the following features for measuring the
importance of fact f for entity e:

* Normalized entity frequency of predicate is the relative frequency of the fact’s
predicate across all entities:

EFp(pf)

NEF,(f) = el

where |£| is the total number of entities in the KB.
* Type-based importance also considers the frequency of the fact’s predicate, but
with respect to the types of the entity. Following [52], it is estimated using:

Tl

I
1) e) = EF ,y) lo ,
typelmp(f,e) E p(pf,y)log TF,(py)

yeTe

where |7 is the total number of types in the KB.
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* Predicate specificity aims to identify facts with a common object value but a rare
predicate:

€]
predSpec(f) = FF,(or) log .
T ER(pp)
For example, the fact (capital, OTTAWA) would have relatively high predicate
specificity, given that the object is frequent, while the predicate is relatively rare.
» [IsEntity is a binary indicator that is true if the fact’s object is an entity.

Relevance features capture the relevance of a fact with respect to the search query.

* Lexical similarity is measured by taking the maximum similarity between the
terms of the fact’s object and of the query using:

lexSim,(f,q) = max (1 — dist(t,t/)) ,

teoy,t'eq

where dist() is a string distance function, taken to be the Jaro edit distance in [23].
» Semantic similarity aims to address the vocabulary mismatch problem, by
computing similarity in a semantic embedding space. Specifically, we compute
the average cosine similarity between terms of the fact’s object and of the query:

Zt@f’t,eq cos(t,t")

semSimAV 5 = ’
8,(f.9) [t teop x I 1" € g}l

where t denotes the embedding vector corresponding to term . Hasibi et al. [23]
use pre-trained Word2vec [33] vectors with 300 dimensions. The denominator is
the multiplication of the number of unique terms in the fact’s object and in the
query, respectively.

» [Inverse rank promotes facts with an entity that is highly relevant to the query as
the object value. Entities in the KB are ranked with respect to the query. Then,

iRank(f,q) = rank(o,&(q))

where & (q) is the set of top-k ranked entities returned in response to g, and
rank() returns the position of an entity in the ranking (or oo if the entity cannot
be found among the top-k results).

* Context length is the number of query terms that are not linked to any entity:

conLen(q) = |{t : t € q,t ¢ linked(q)}| ,

where linked(q) denotes the set of query terms that are linked to an entity.
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9.2.2.2 Summary Generation

The ranked list of facts we just obtained is yet to be arranged into a summary that
can be presented to the user. Visually, a summary consists of a number of lines, each
subdivided into heading and value parts. Additionally, it has a maximum display
size, defined in terms of the maximum number of rows (7;) and the maximum
number of characters within each row (ty,); see Fig. 9.9. A straightforward approach
is just to fill this structure with the top-ranked facts, by using the predicate label
from the KB as the heading and the subject as the value part in each line. There are,
however, some additional considerations that, if addressed, can yield higher quality
summaries.

* There might be semantically identical predicates, even within a single KB, e.g.,
<foaf :homepage>and <dbp:website>in DBpedia. Such duplicates need to be
identified and resolved, such that only one of them is included in the summary.

* There may be multiple facts with the same predicate, e.g., parents of a person or
founders of a company. While these constitute separate facts, the object values of
these so-called multi-valued predicates can be concatenated together into a single
list for display purposes.

Hasibi et al. [23] address these issues with a summary generation algorithm, shown
in Algorithm 9.2. Input to this algorithm is the list of top-k facts, generated by the
fact ranking step, denoted as F,. The first line of the summary generation algorithm
creates a mapping from predicates in F, to their human-readable labels; these are
commonly provided as part of the KB schema. Predicates that are mapped to the
same label are then recognized as semantically identical. The mapping function
may implement additional heuristics, specific to the underlying knowledge base.
The summary is built in three stages. First (lines 2—-8), up to 75 unique line headings
are selected. Second (lines 9—14), the values for each line are assembled. This is the
part where multi-valued predicates are grouped. Third (lines 15-24), the heading
and value parts are combined for each line.
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Algorithm 9.2: Summary generation [23]

Input: ranked list of facts ]:'e, max height t;, max width 7,
Output: entity summary lines

M <« predicate-name mapping from Z,
headings < [] /* Determine line headings */
foreach f € ]:"e do

label < M[py]

if (label & headings) and (|headings| < tj,) then

headings.append ((p . label))

end
end
values < [] /* Determine line values */

foreach f € ]:"e do
if ps € headings then
values[p r].append (o s)
end
end
lines < [] /* Construct lines */
foreach (p,label) € headings do
line < label + 2’
foreach v € values[py] do
if len(/ine) + len(v) < 7y, then
line < line +v /* Add comma if needed */
end
end
lines.append(line)
end

[ N I I
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9.3 Entity Recommendations

Earlier in this chapter, we have discussed tools that help users with expressing
their information needs and with getting direct answers to those needs. There
are also situations where users’ information goals are less clearly defined, and
they would just like to browse and explore, without looking for anything specific.
Examples include learning about people in the news or exploring future travel
destinations. Therefore, in addition to traditional search assistance tools, such as
query suggestions and direct answers, exploration and discovery should also be
regarded as central elements of next-generation search systems [55]. This section
presents recommendation techniques that enable exploration, with the goal of
increasing user engagement.

Specifically, our objective is to provide related entity recommendations (a.k.a.
related entity suggestions) to users, based on their context. We shall consider
multiple contexts that may serve as input data: (1) a particular entity (Sect. 9.3.1), (2)
the user’s current search session (Sect. 9.3.2), and (3) a given entity in a particular
text context (Sect. 9.3.3).
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The entity recommendation task is approached as a ranking problem: given
some context (e.g., a particular entity or a search session) as input, return a
ranked list of entities (e, ..., ex) from an entity catalog £ that are related to
the user’s context.

How does this problem relate to other tasks that have been discussed earlier in this
book? A core component underlying all recommendation methods is a measure
of relatedness between an input entity and a candidate entity. Pairwise entity
relatedness has already been used in entity linking, for entity disambiguation (cf.
Sect. 5.6.1.3), and those methods are applicable here as well. Another related task
is that of finding similar entities (cf. Sect. 4.5), which also boils down to a pairwise
entity measure. The similar entity finding task, however, has a different objective—
it aims to complete an input set of entities, with similar entities. Consequently, it
measures pairwise entity similarity as opposed to entity relatedness.

The degree of entity relatedness may be estimated using simple measures of
statistical association, based on entity co-occurrence information (e.g., in search
logs or in Wikipedia articles). Another family of methods makes use of entity
relationship information stored in knowledge graphs and employs graph-theoretic
measures (e.g., PageRank). Yet another group of approaches infers relatedness based
on the content (i.e., attributes or descriptions) of entities.

In addition to receiving entity recommendations, users may also be interested in
finding out why certain suggestions were shown to them. The problem of explaining
recommendations boils down to the task of generating a human-readable description
of the relationship between a pair of entities. This is discussed in Sect. 9.3.4.

9.3.1 Recommendations Given an Entity

We start by discussing the case of recommending entities related to a given input
entity. A common application scenario is that of entity cards in web search, which
are triggered by an entity-bearing query. These cards often include a “People also
search for” section, displaying entities that are related to the query entity; see
Fig.9.8. This task may be formalized as the problem of estimating the probability
of a candidate entity ¢’, given an input entity e, P(¢’|e).

Blanco et al. [9] present the Spark system (with previous versions of the system
described in [27, 58]), which had been powering related entity suggestions in Yahoo!
Web Search. Spark extracts several signals (over 100 features) from a variety of
proprietary and public data sources (including Yahoo!’s knowledge graph and web
search logs, and social media platforms Flickr and Twitter) and combines them
in a learning-to-rank framework. The training data consists of 47K entity pairs,
labeled by professional editors on a five-point scale. Aggarwal et al. [2] show that
comparable accuracy may be achieved by utilizing only publicly available data, in
particular, Wikipedia, and using only 16 features.
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Table 9.3 Features for related entity recommendation, given an input entity

Group Feature Description
Co-occurrence

P(ee) Joint probability (c(e,e’;C)/|C])

P(le) Conditional probability (c(e,e’;C)/c(e; C))

P(ele)) Reverse conditional probability (c(e,e’;C)/c(e’;C))

PMI(e, ") Pointwise mutual information

WLM (e, e’) Wikipedia link-based measure (cf. Eq. (5.4))
Graph-theoretic

PR(e) PageRank score of the entity (cf. Eq. (4.4))
Content-based features

cos(e, €) Cosine similarity between vector representations of entities
Popularity

c(e;C) Frequency of the entity

P(e) Relative frequency of the entity (c(e;C)/|C])

Unary features are computed for both e and ¢’. All statistics are computed over some data collection
C, where |C| denotes the total number of items (documents, queries, etc.); c(e; C) is the frequency
of entity e, i.e., the number of items in which e occurs; c(e,e’; C) denote the number of items in
which e and ¢’ co-occur

We distinguish between four main groups of features: co-occurrence features,
graph-theoretic features, content-based features, and popularity features. Popularity
features and graph-theoretic features are unary, expressing the importance of an
entity on its own. The remaining features are binary, capturing the strength of
association between two entities. Table 9.3 presents a non-exhaustive selection of
features.

Co-occurrence features Intuitively, entities that are observed to occur frequently
together are likely to be related to each other. One question here is what data
collection C to use for extracting co-occurrence information. Another question
is what co-occurrence statistic to compute based on those observations. Prior
work has considered a wide variety of data sources, including search logs [9],
web pages [3], Wikipedia [2, 35, 44], Twitter [9], and Flickr [9]. Co-occurrence
measures include joint, conditional, and reverse conditional probabilities, point-
wise mutual information, KL divergence, entropy, and the Wikipedia link-based
measure (WLM) [35].

Graph-theoretic features The most commonly used feature in this group is the
PageRank score of an entity in the knowledge graph. PageRank may also be
computed on a hyperlink graph obtained from the Web [9]. For details on
PageRank and for additional centrality measures, we refer back to Sect. 4.6.

Content-based features This set of features aims to capture the similarity
between a pair of entities based on their content. A standard approach is to
represent entities either as term vectors or embedding vectors, and then compute
the cosine similarity of those vectors. See Sect.4.5.1 for alternative ways of
measuring pairwise entity similarity.
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Popularity features Popularity is based on the frequency of an entity in a given
data source, e.g., search queries and sessions, or number of views or clicks in web
search. Additional popularity features were discussed in Sects.4.6.1 and 5.6.1.1.

9.3.2 Personalized Recommendations

Rather than suggesting entities related to a given input entity, in this section
we discuss methods that provide personalized entity recommendations based on
the user’s current search session. A number of approaches have been proposed
for learning models for specific domains, such as movies or celebrities [8, 57].
Such model-based methods rely on manually designed domain-dependent features,
related to specific properties of entities (e.g., the genre of a movie or how many
pop singers were viewed by a specific user). There is an obvious connection to
make here to traditional item-based recommender systems (e.g., the ones used in
e-commerce systems), such as collaborative filtering [19]. One main difference is
that in collaborative filtering approaches the user-item matrix is given. For entity
recommender systems, user preferences of entities are more difficult to observe.
Another difference is the sheer scale of data (i.e., millions of entities vs. thousands of
products in an e-commerce scenario) coupled with extreme data sparsity. Ferndndez-
Tobias and Blanco [20] perform personalized entity recommendations using a
purely collaborative filtering approach. Inspired by nearest neighbor techniques,
these memory-based methods exploit user interactions that are available in search
logs. Since they do not depend on descriptions or properties of entities, memory-
based methods generalize to arbitrary types of entities and scale better to large
amounts of training data than model-based methods.

Next, we present three probabilistic methods for estimating P(e’|s), the
probability of recommending entity ¢’ to a user based on her current search
session s.* These methods are named after how item-to-item similarity aggregation
is performed: entity-based, query-based, or session-based. In their paper, Ferndndez-
Tobias and Blanco [20] define multiple alternatives for each component of these
models. Here, we will discuss a single option for each, the one that performed best
experimentally. According to the results reported in [20], the entity-based method
performs best, followed by the query-based and then the session-based approaches.

We shall use the following notation below. Let Q be the set of unique queries
in the search log and S be the set of all user sessions. For a given session s € S,
Qs C Q denotes the set of queries issued and & C & denotes the set of entities
clicked by the user within that search session.

4For notational consistency, we shall continue to denote the candidate entity recommendation,
which is being scored, by ¢'.
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9.3.2.1 Entity-Based Method

The intuition behind the first method is that an entity ¢’ is more likely to be relevant
to the user’s current session s if it is similar to other entities that have previously
been clicked by the user in the same session. Formally, this is expressed as:

Pep(els) = Y P(e'le)P(els),

ec&y

where P (¢’|e) captures the similarity between a pair of entities and P (e|s) expresses
the relevance of e given the search session s. Pairwise entity similarities are
estimated in a collaborative fashion, by measuring the co-occurrence of entities
within all user sessions using the Jaccard coefficient. To estimate the relevance of a
clicked entity e within a session s, we aggregate the importance of e for each query
q in that session, weighted by the query likelihood in that session:

P(els)= )" P(elq.5)P(qls) . 9.4)

qEQs

A given entity’s relevance may be measured based on dwell time, i.e., how much
time the user spent on examining that result, relative to all other entities that were
returned for the same query:

dwell(e,q,s)
Y eee, dwell(e',q,s) ’

where dwell(e, q,s) is the time spent on examining entity e for query ¢ in session s.
In case the user did not click on e as a result to g, P(elq,s) is taken to be 0.

The probability P(q|s) in Eq. (9.4) captures how important that query is within
its session. It tends to reason that more recent queries should be considered more
important, as they represent more accurately the user’s current interests (which may
have shifted over time). This notion of temporal decay is formally expressed as:

P(elg,s) = 9.5)

P(qls) occe”s71a) | (9.6)

where € is the mathematical constant (the base of the natural logarithm), ¢, is the
timestamp of query ¢, and f; is the timestamp of the last query in the session.

9.3.2.2 Query-Based Method

The second approach works by first identifying queries from other sessions in the
search log that are potentially relevant to the current session. Then, it retrieves
entities from those sessions. Formally:

Pog(e'|s) = Z P(c'Ig)P(qls) .7)

qeQ
q¢9Qs
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where P(q|s) is the probability that query ¢ is relevant to the current session s and
P(¢'|q) measures how relevant e is for query ¢ (across all sessions). Note that, in
contrast to the entity-based method, the queries ¢ we aggregate over are not present
in the current session. Rather, these are chosen from the queries submitted by other
users, performing similar tasks. The relevance of an entity given a query is estimated
by considering all sessions in the search log that contain that query:

P(¢lq) o< Y P(e'lg,$)P(qls)P(s) , 9.8)
s'eS

where as before, P(¢’|q,s) is measured using dwell time (cf. Eq. (9.5)) and P(g|s)
is estimated based on temporal decay (cf. Eq. (9.6)). Note that P(q|s) here expresses
the probability of choosing the query ¢ from session s containing that query (g €
Q) and is not to be confused with P(g|s) in Eq. (9.7), where it is used to capture
the relevance of a query that is not observed in the given session (¢ ¢ Q). Finally,
P(s) is assumed to be uniform for simplicity.

The query relevance probability, P(g|s) in Eq. (9.7), is defined to select queries
from the search log (¢ € Q \ Q) that are similar to the ones in the current session:

P(gls) =Y P(qlg)P(q'ls).

qlEQs

where P(qlq’) expresses the similarity between a pair of queries and is computed
based on the co-occurrence of ¢ and g’ within all sessions in the search log using
the Jaccard coefficient. As before, P(g’|s) uses the temporal decay estimator (cf.
Eq. (9.6)).

9.3.2.3 Session-Based Method

The last approach works by finding sessions similar to the current session, then
recommending entities from those sessions:

Psg(e'ls) = Y P(e/ls)P(s'ls)

s'eS

where P(¢'|s’) is the importance of an entity given a session, computed as given
by Eq. (9.4). The pairwise session similarity, P(s’|s), is estimated based on entity
embeddings. Specifically, Fernandez-Tobias and Blanco [20] use Word2vec [33]
(where sessions correspond to documents and entities within sessions correspond
to words within documents) and extract embedding vectors of dimension 100. The
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non and other military stores at the
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Fig. 9.10 An example of contextual entity recommendations. Image is based on [31]

similarity between two sessions is then computed based on the distance between the
centroids of entities within them:

-1

P(s'|s) |5|Ze |5,|Z/ :

ey

where e is the embedding vector corresponding to entity e.

9.3.3 Contextual Recommendations

Web search is a prominent application area for entity recommendations but is
certainly not the only one. Entity recommendation may also be offered directly
within the application where content is consumed. As one such example, Lee et al.
[31] present the scenario of a user reading a document on a tablet or e-reader device.
At some point, the user might stumble upon an entity that she wishes to learn more
about. Instead of leaving the application and switching to a web search engine to
query for that entity, the user might just highlight and tap on an entity of interest.
She will then be presented with a list of contextually relevant entities, as it is shown
in Fig. 9.10.

According to the outlined scenario, the input to the contextual entity recommen-
dation problem consists of an input entity e and some context c. Specifically, the
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Context-selection betweenness

0.50 0.00

Focused subgraph construction

Score aggregation
o O
O
O
O Personalized random walk
0.18 .08
O \
O

Fig. 9.11 Overview of the approach by Lee et al. [31]. The input entity (e) vertex is marked black,
contextual entity vertices (E) are marked gray

context is a window of text around the selected entity mention (100 terms before
and after in [31]). The approach proposed by Lee et al. [31] consists of three main
steps, which are illustrated in Fig. 9.11.

1. A focused subgraph is extracted from the underlying knowledge graph G. The
vertices of this focused subgraph are V = {e}UE.UE!, where e is the input entity,
E. is the set of context entities, recognized in ¢ by performing entity linking, and
&/ is the set of entities reachable from &, via paths of length one in the knowledge
graph. The edges between these vertices are induced from G.

2. Each candidate entity ¢’ in the focused subgraph is scored using two different
methods: context-selection betweenness and personalized random walk. Context-
selection betweenness (CSB) captures the extent to which the candidate entity
¢’ serves as a bridge between the input entity ¢ and the context entities &.
Intuitively, a higher CSB score means that the candidate entity plays a more
important role in connecting the input and context entities. Formally, CSB
considers all shortest paths between the input and context entities, which go
through the candidate entity:

CSB(e) = ; Z w(e,e”)

" "’
oo oy 1SP(e.€)] X I(e.e”)

where SP(e,e”) is the set of all shortest paths between the ¢ and ¢”, and I(e,e”)
is the length of that path. Each path between the input and a context entity is
weighted by their semantic distance, based on the Wikipedia link-based measure
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(WLM, cf. Eq. (5.4)):
w(e,e”) = max (WLM(e,e”) — y,0) .

The threshold y is used for emphasizing context entities that are semantically
related to the input entity (y = 0.5 in [31]). The normalization factor is set to:

7 Z w(e,e”) .
l(e,e")
e'e&.

The other scoring method is personalized random walk (PRW, a.k.a. personalized
PageRank [26]), which aims to measure the relevance of entities given the user’s
selection. To compute these scores, the random jump probabilities are initialized
as follows. The input entity vertex is assigned probability 0 < x, < 1, the context
entity vertices are assigned probability x./|E.|, where 0 < x. < x,, and all other
entity vertices are assigned probability 0. Lee et al. [31] use x, = 0.05 and
Xxc = 0 in their experiments, and report that x, > 0 does not lead to significant
improvements.

3. The final score for each entity vertex is computed by taking a weighted
combination of the context-selection betweenness and personalized random walk
scores:

|Eel

v CSB(e') + |V| x PRW(¢'),

score(e';e,E) =

where |V| is the number of vertices in the focused subgraph and « is a scaling
factor. The multipliers serve normalization purposes, making the two scores
compatible.

9.3.4 Explaining Recommendations

Thus far in this section, we have presented both non-personalized and personalized
methods for recommending related entities (¢’) given an input entity (e). In addition
to the recommendations themselves, users might also be interested in finding out
why certain entities were shown to them. This brings us to answering the question:
How are the input entity and the recommended entity related? Such explanations are
offered, e.g., on entity cards in modern web search engines by hovering the mouse
over a recommended entity; see Fig.9.12. Another typical application scenario for
explaining entity relationships is timeline generation [3].

5Mind that we define WLM as a similarity measure, as opposed to a distance measure, hence the
equation differs from the one in [31].
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Fig. 9.12 Excerpt from a
Google entity card displayed
for BARACK OBAMA. When
hovering over a related entity,
an explanation of the
relationship is shown

Barack Obama <

44th U.S. President

People also search for

Bam:k Obaﬂ\a was the Adth and Donald Trumg
is the 45th President of the United States.

Donald Hullar} Michelle George W. Ann
Trurmp Clinten Obama Bush Dunham

One of the earliest works addressing the problem of explaining the relationship
between two entities is the dbrec music recommendation system [38]. It offers
explanations in the form of a list of shared property-value pairs between the
input and recommended entities, as shown in Fig. 9.13. This form of presentation,
however, was considered as “too geeky” by 6 out of the 10 test subjects participating
in the user evaluation [38]. Instead, human-readable descriptions that verbalize the
relationship are more natural to use. The use of natural language has also shown
to improve confidence in decision-making under uncertainty [21]. Three main lines
of approaches have been proposed in prior work for generating natural language
descriptions of entity relationships: (1) by manually defining templates [3], (2)
by retrieving sentences from a text corpus [54], and (3) by automatically creating
templates for a specific relationship and then filling the template slots for a new
relationship instance [53]. Below, we briefly elaborate on the latter two.

All existing approaches solve a simplified version of the task of explaining entity
relationships, by focusing on a specific relationship between a pair of entities. This
corresponds to generating a textual description for an SPO triple, where the subject
is e, the predicate is p, and the object is ¢’. We shall refer to the triple (e, p,e’)
as relationship instance. When referring to predicate p, we shall use the terms
predicate and relationship interchangeably. As it is illustrated in Fig. 9.13, entities
may be connected via multiple relationships. Selecting p from the set of possible
predicates that connect two entities remains an open research challenge to date.

9.3.4.1 Explaining Relationships via Sentence Ranking
Voskarides et al. [54] approach the task as a sentence ranking problem: automati-

cally extracting sentences from a text corpus and ranking them according to how
well they describe a given relationship instance (e, p,¢’).
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There are shared 'associated acts’ between Johnny Cash and Elvis Presley
o Charlie McCoy (3 artists sharing it)
o Buddy Haman (5 artists sharing it)
o The Jordanaires (2 artists sharing it)

There are shared ‘alt artist’ between Johnny Cash and Elvis Presiey
o Peace in the Valley (5 artists sharing it)

There are shared 'associated band’ between Johnny Cash and Elvis Presley
o Charlie McCoy (3 artists sharing it)
o Buddy Harman (5 artists sharing it)
o The Jordanaires (2 artists sharing it)

Johnny Cash and Elvis Presley share the same value for "type’
o American Male Singers (1038 artists sharing it)
o Sun Records Artists (19 artists sharing it)
o American Country Singers (505 artists sharing it)

Johnny Cash and Elvis Presiey share the same value for ‘died'
o Tennessee (16 artists sharing it)

Johnny Cash and Elvis Presley share the same value for "voice type'
o Baritone (109 artists sharing it)

Johnny Cash and Elvis Presley share the same value for "death place’
o Tennessee (16 artists sharing it)

Johnny Cash and Elvis Presley share the same value for "instrument’
o Piang (2089 artists sharing it)
o Guitar (4670 artists sharing It)

Johnny Cash and Elvis Presley share the same value for "subject’

Fig. 9.13 Explanation for recommending ELVIS PRESLEY for the input entity JONNY CASH from
the dbrec music recommendation system. Figure taken from Passant [38] (C) Springer 2010,
reprinted with permission

First, a set X' of candidate sentences is extracted from a corpus of documents.
In [54], this corpus is Wikipedia. Other document collections may also be used, as
long as documents are pertinent to the entities of interest. A sentence is considered
as a candidate if (1) it originates from the Wikipedia page of e or ¢’ and contains
a mention to the other entity or (2) it mentions both ¢ and ¢’. In order to make
sentences self-contained outside the context of the source document, pronouns “she”
and “he” are replaced with the name of the respective entity. Further, sentences are
annotated with entities by performing entity linking. As an illustration, consider the
sentence ‘“He gave critically acclaimed performances in the crime thriller Seven. ..,”
which, after these enrichment steps, becomes “BRAD PITT gave critically acclaimed
performances in the crime thriller SEVEN...”

Next, candidate sentences x € X are ranked using supervised learning. Four
groups of features are employed:

e Textual features consider the importance of the sentence on the term level.
These include sentence length, aggregated IDF scores, sentence density [30], and
fractions of verbs, nouns, and adjectives.

» Entity features characterize the sentence based on the mentioned entities. These
include, among others, whether e and ¢’ are linked in x, and the distance between
the positions of their mentions. Another group of features focuses on other
entities mentioned in the sentence and whether those are related to e and e’.
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<dbo:starring> <dbo:country>

<dbr:Brad_Pitt> <dbr:Troy_(film)> <dbr:United_States>

Fig. 9.14 Dependency graph for the sentence “Brad Pitt appeared in the American epic adventure
film Troy,” using entities and predicates from DBpedia

* Relationship features indicate whether the relationship p occurs in x. Exact term-
based matching has low coverage (e.g., “spouse” vs. “husband” or “married”),
therefore both synonym-based matches (using Wordnet) and word embeddings
(using Word2vec [33]) are considered.

» Source features describe the position of x and the number of occurrences of e
and ¢’ in the document from which x originates.

Voskarides et al. [54] train their models on a set of manually annotated sentences,
using a five-level graded relevance scale. They show that learning relationship-
specific models, as opposed to a single global model, can yield additional improve-
ments.

9.3.4.2 Generating Descriptions of Relationships

The previous approach is limited by the underlying text corpus, which may not
contain descriptions for certain relationship instances. Voskarides et al. [53] propose
to overcome this by automatically generating descriptions. The idea is to learn how
a given relationship p is typically expressed (in the document corpus), and create
sentence templates for that relationship. Then, for a new relationship instance, the
appropriate template can be instantiated.

As before, it is assumed that a given relationship between two entities can be
expressed as a single sentence. This sentence should mention both ¢ and €', and
possibly other entities that may provide additional contextual information. The
following example sentence is given as an illustration in [53] for the (BRAD PITT,
stars in, TROY) relationship instance: “Brad Pitt appeared in the American epic
adventure film Troy.” It not only verbalizes the “stars in” predicate but also mentions
other entities and attributes (the film’s genre and origin) to offer additional context.
To be able to provide such contextual information, each sentence is augmented
with an entity dependency graph. In this graph, vertices represent entities and edges
represent relationships (predicates). The graph is created by traversing paths in the
knowledge base between each pair of entities that are mentioned in the sentence.
See Fig. 9.14 for an illustration.®

SIn their paper, Voskarides et al. [53] use Freebase as the underlying knowledge base and pay
special attention to compound value type (CVT) entities. CVT entities are specific to Freebase, and
are used for modeling attributes of relationships (e.g., date of a marriage). For ease of presentation,
we will not deal with CVT entities in our discussion.
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The template creation process then takes as input, for each predicate, a set of
relationship instances, sentences describing those relationship instances, and entity
dependency graphs corresponding to those sentences. The following sequence of
steps are performed:

1. Entities sharing the same predicates are clustered together across the dependency
graphs. This will group entities of the same type, such as persons and films.

2. A compression graph G¢ is created from sentences where vertices are either
words or entity clusters.

3. G is traversed for finding valid paths between all pairs of entity cluster vertices.
A path is considered valid if (i) it contains a verb and (ii) it can be observed as a
complete sentence at least once in the corpus.

4. A template is constructed from each path, which is supported by a minimum
number of sentences in the corpus.

With a set of templates at hand, generating a description for a new relationship
instance (e, p,e’) goes as follows. First, the available templates for predicate p
are ranked. Two template scoring functions are presented in [53], one based on
cosine similarity of TF-IDF term vectors and another using feature-based supervised
learning. The top-ranked template is then instantiated by filling its slots with entities
from the knowledge base. If multiple instantiations exist, then one of those is
chosen randomly. If the template cannot be instantiated, then we proceed to the
next template in the ranking.

9.4 Summary

This chapter has introduced search assistance tools that help users (1) express their
information needs, (2) get direct answers, and (3) explore related content with the
help of entities. We have started with query assistance features, such as query auto-
completion and query recommendation, which users would expect today as standard
functionality from a modern search engine. An issue with traditional methods,
which rely solely on query logs, is that of coverage. That is, they fail to provide
meaningful suggestions for long-tail queries. We have discussed how knowledge
bases may be utilized to alleviate this problem, yielding small but significant
improvements over traditional methods. Next, we have looked at entity cards, a new
type of search result presentation that has been adopted by major web search engines
and intelligent personal assistants. Each card presents a concise summary of a spe-
cific entity, and can satisfy the user’s information need directly, while also encour-
aging further engagement with search results and exploration of related content. We
have addressed, in detail, the question of which facts to highlight about an entity
in the limited screen space that is available on the card. Finally, we have presented
techniques for promoting exploratory search by recommending related entities to
users. We have further discussed how to generate a natural language explanation for
the relationship between an input entity and a recommended related entity.
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9.5 Further Reading

Web search result pages are becoming increasingly complex, featuring direct
displays, entity cards, query suggestions, advertisements, etc., arranged in a non-
linear page layout. With these novel interfaces, determining the user’s satisfaction
with the search results is becoming more difficult. Research in this area includes the
topics of evaluating whole page relevance [4], understanding how users examine
and interact with nonlinear page layouts [13, 36], and detecting search satisfaction
without clicks [28, 56].

Entity cards are the most widely used and universally applicable tools for
summarizing entity information, but there are other possibilities that could serve
users better in certain application scenarios. One such alternative that has garnered
research interest is entity timelines, which organize information associated with
an entity, arranged along a horizontal time axis. Timeline visualizations are often
coupled with interactive features to enable further exploration. For example, Rybak
et al. [40] visualize how a person’s expertise changes over the course of time. Tuan
etal. [51] and Althoff et al. [3] generate a timeline of events and relations for entities
in a knowledge base.

In this chapter, we have focused on the algorithmic aspects of generating entity
recommendations. For a study on how people interact with such recommendations,
see, e.g., [34].
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