
Chapter 7
Understanding Information Needs

Understanding what the user is looking for is at the heart of delivering a quality
search experience. After all, it is rather difficult to serve good results, unless we can
comprehend the intent and meaning behind the user’s query.Query understanding is
the first step that takes place before the scoring of results. Its overall aim is to infer a
semantically enriched representation of the information need. This involves, among
others, classifying the query according to higher-level goals or intent, segmenting
it into parts that belong together, interpreting the query structure, recognizing
and disambiguating the mentioned entities, and determining if specific services or
verticals1 should be invoked. Such semantic analysis of queries has been a long-
standing research area in information retrieval. In Sect. 7.1, we give a brief overview
of IR approaches to query understanding.

In the rest of the chapter, we direct our focus of attention to representing infor-
mation needs with the help of structured knowledge repositories. The catchphrase
“things, not strings” was coined by Google when introducing their Knowledge
Graph.2 It aptly describes the current chapter’s focus: Capturing what the query
is about by automatically annotating it with entries from a knowledge repository.
These semantic annotations can then be utilized in downstream processing for result
ranking (see Chap. 4) and/or result presentation. Specifically, in Sect. 7.2, we seek
to identify the types or categories of entities that are targeted by the query. In
Sect. 7.3, we perform entity linking in queries, which is about recognizing specific
entity mentions and annotating them with unique identifiers from the underlying
knowledge repository.Additionally, we consider the case of unresolvable ambiguity,
when queries have multiple possible interpretations.

1A vertical is a specific segment of online content. Some of the most common verticals include
shopping, travel, job search, the automotive industry, medical information, and scholarly literature.
2https://googleblog.blogspot.no/2012/05/introducing-knowledge-graph-things-not.html.
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Finally, in Sect. 7.4 we automatically generate query templates that can be used
to determine what vertical services to invoke (e.g., weather, travel, or jobs) as well
as the parameterization (attributes) of those services.

7.1 Semantic Query Analysis

The purpose of this section is to provide an overview of the range of tasks and
techniques that have been proposed for semantic query analysis. These methods all
aim to capture the underlying intent and meaning behind the user’s query. Each of
these techniques addresses query understanding from a specific angle, has its own
particular uses, and is often complementary to the other means of query analysis.
Query understanding is a vast area, one which would probably deserve a book on
its own. In this chapter, we will discuss in detail only a selection of query analysis
techniques, chosen for their relevance to an entity-oriented approach. In contrast,
this section is meant to help see those methods in a broader perspective.

In particular, we will look at three groups of approaches.

• Query classification is the task of automatically assigning a query to one
or multiple pre-defined categories.

• Query annotation is about generating semantic markup for a query.
• Query interpretation aims at determining the meaning of a query as a

whole, by finding out how the segmented and annotated parts of the query
relate to each other.

7.1.1 Query Classification

Query classification is the problem of automatically assigning a query to one or
multiple pre-defined categories, based on its intent or its topic.

7.1.1.1 Query Intent Classification

The first group of techniques aims to classify queries into categories based on the
underlying user intent. Jansen and Booth [38] define user intent as “the expression
of an affective, cognitive, or situational goal in an interaction with a Web search
engine.” When we talk about user intent, we are more concerned with how the goal
is expressed and what type of resources the user desires to fulfill her information
need than with the goal itself (which is something “external”) [38].
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In his seminal work, Broder [16] introduced a taxonomy of query intents for web
search, according to the following three main categories of user goals:

• Navigational, where the intent is to reach a particular site (“take me to X”).
• Informational, where the intent is to acquire information about a certain topic

(“find out more about X”).
• Transactional, where the intent is to perform some web-mediated activity

(purchase, sell, download, etc.).

Broder’s categorization is broadly accepted and is the most commonly used one.
Rose and Levinson [63] classify queries into informational, navigational, and
resource categories, with further finer-grained subcategories for informational and
resource queries. Jansen et al. [39] employ a three-level classification, based on
[16] and [63], and elaborate on how to operationalize each category. Lee et al. [43]
classify queries as navigational or informational using past user-click behavior and
anchor-link distribution as features.

There are many other ways to categorize user intent. For example, Dai et al.
[21] detect whether the query has a commercial intent by training a binary classifier,
using the content of search engine result pages (SERPs) and of the top ranked pages.
Ashkan and Clarke [4] use query-based features along with the content of SERPs
to classify queries along two independent dimensions: commercial/noncommercial
and navigational/informational.Zhou et al. [83] predict the vertical intent of queries,
such as image, video, recipe, news, answer, scholar, etc.; this is also related to the
problem of vertical selection in aggregated search [3]. There have been studies
on specific verticals, e.g., identifying queries with a question intent, which can
be successfully answered by a community question answering vertical [75], or
determining news intent, in order to integrate content from a news vertical into web
search results [22]. Yin and Shah [81] represent generic search intents, for a given
type of entity (e.g., musicians or cities), as intent phrases and organize them in a
tree. An intent phrase is a word or phrase that frequently co-occurs with entities of
the given type in queries. Phrases that represent the same intent are grouped together
in the same node of the tree (e.g., “songs” and “album” for musicians); sub-concepts
of that intent are represented in child nodes (e.g., “song lyrics,” “discography,” or
“hits”). Hu et al. [35] classify search intent by mapping the query onto Wikipedia
articles and categories, using random walks and explicit semantic analysis [25].

7.1.1.2 Query Topic Classification

User goals may also be captured in terms of topical categories, which may be
regarded as a multiclass categorization problem. The query topic classification task,
however, is considerably more difficult than other text classification problems, due
to data sparsity, i.e., the brevity of queries.

One landmark effort that inspired research in this area was the 2005 KDD Cup
competition. It presented the Internet user search query categorization challenge:
Classify 800,000 web queries into 67 predefined categories, organized in a two-
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level hierarchy. For each query, participants may return a set of up to five categories
(the order is not important). Evaluation is performed in terms of precision, recall,
and F1-score. Participants were given only a very small set of 111 queries with
labeled categories, necessitating creative solutions. We refer to Li et al. [48] for an
overview. In a follow-up study to their winning solution, Shen et al. [68] present a
method that uses as intermediate taxonomy (the Open Directory Project, ODP3), as
a bridge connecting the target taxonomy with the queries to be classified. Another
key element of their solution is that they submit both search queries and category
labels to a web search engine to retrieve documents, in order to obtain a richer
representation for the queries. The same idea of issuing the given query against a
web search engine and then classifying the highest scoring documents is employed
by Gabrilovich et al. [24] for classifying queries onto a commercial taxonomy
(which is intended for web advertising). The main differences with [68] is that they
(1) build the query classifier directly for the target taxonomy, which is two mag-
nitudes larger (approx. 6000 nodes), and (2) focus on rare (“tail”) queries. Instead
of viewing it as a text categorization problem, Ullegaddi and Varma [76] approach
query topic classification as an IR problem and attempt to learn category rankings
for a query, using a set of term-based features. They also use ODP as an intermediate
taxonomy and utilize documents that are assigned to each category. Again, the query
is submitted against a web search engine, then the top-k highest weighted terms are
extracted from the highest ranked documents to enrich its representation.

A related task is that of classifying questions in community-based question
answering sites; we refer to Srba and Bielikova [70, Sect. 5.3] for an overview.
In Sect. 7.2, we discuss the problem of identifying the target types of entity-oriented
queries, with reference to a given type taxonomy.

7.1.2 Query Annotation

Query annotation is an umbrella term covering various techniques designed to
automatically generate semantic markup for search queries, which can contribute
to a better understanding of what the query is about. Query annotation includes
a number of tasks, such as phrase segmentation, part-of-speech and semantic
tagging, named entity recognition, abbreviation disambiguation [79], and stopword
and “stop structure” detection [37]. Many of these annotation tasks have been
studied by the databases and natural language processing communities as well.
Most approaches focus on a particular annotation task in isolation. However, given
that these annotations are often related, it is also possible to obtain them jointly by
combining several independent annotations [9, 29]. Below, we lay our attention on
two of the most important and widely studied query annotation tasks: segmentation
(structural annotations) and tagging (linguistic and semantic annotations). We shall
discuss entity annotations of queries in detail in Sect. 7.3.

3http://dmoz.org/.

http://dmoz.org/
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7.1.2.1 Query Segmentation

Query segmentation is the task of automatically grouping the terms of the query into
phrases. More precisely, a segmentation s for the query q consists of a sequence of
disjunct segments 〈s1, . . . ,sn〉, such that each si is a contiguous subsequence of q

and the concatenation of s1, . . . ,sn equals q . For example, the query “new york
travel guides” may be segmented as “[new york] [travel guides].”

One of the first approaches to web query segmentation is by Risvik et al. [62],
who segment queries based on connexity, which is defined as a product of the
segment’s frequency in a query log and the mutual information within the segment.
Pointwise mutual information, as a measure of word association, has been used in
many of the later studies as well, computed either on the term level [40] or on the
phrase level [36, 71], and is commonly used as a baseline. Bergsma and Wang [11]
employ a supervised learning approach, where a classification decision, whether to
segment or not, is made between each pair of tokens in the query. They use three
groups of features: context features (preceding and following tokens in the query,
if available), dependency features (POS tags), and statistical features (frequency
counts on the Web). Another important contribution of this work is a manually
annotated gold standard corpus (Bergsma-Wang-Corpus, BWC) comprising 500
queries sampled from the AOL query log dataset. BWC has been used as a standard
test collection for query segmentation in subsequent work [15, 30, 47, 71]. Rather
than using a supervised approach that requires training data, Tan and Peng [71]
suggest an unsupervised method that uses n-gram frequencies from a large web
corpus as well as from Wikipedia. Many other works adopt a similar rationale
for segmentation, e.g., Huang et al. [36] use web-scale n-gram language models,
while Mishra et al. [56] exploit n-gram frequencies from a large query log. Hagen
et al. [30] present a simple frequency-based method, relying only on web n-gram
frequencies and Wikipedia titles, that achieves comparable performance to state-
of-the-art approaches while being less complex and more robust. Further, Hagen
et al. [30] enrich the Bergsma-Wang-Corpus by means of crowdsourcing; they also
introduce the Webis Query Segmentation Corpus, which is a larger sample from
the AOL query log, consisting of 50k queries. Finally, there is a line of work on
segmenting queries based on retrieval results, the idea being that it is hard to make
a segmentation decision based on the query terms alone. Instead, one can bootstrap
segmentation decisions based on the document corpus, using the top retrieved
results [8] or snippets [15]. Note that these methods involve an extra retrieval round
for obtaining the segmentation.

Evaluating against manual annotations “implicitly assumes that a segmentation
technique that scores better against human annotations will also automatically lead
to better IR performance” [65]. Instead, Saha Roy et al. [65] propose a framework
for extrinsic evaluation of query segmentation. This involves assessing how well
the given segmentation performs on the end-to-end retrieval task, while treating the
retrieval algorithm as a black box. Their results confirm that segmentation indeed
benefits retrieval performance. Further, they find human annotations to be a good
proxy, yet “human notions of query segments may not be the best for maximizing
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retrieval performance, and treating them as the gold standard limits the scope for
improvement for an algorithm” [65].

7.1.2.2 Query Tagging

It is possible to obtain semantically more meaningful segments than what is yielded
by query segmentation techniques.Query tagging (or semantic tagging) refers to the
process of annotating query terms with labels from a predefined label set. Part-of-
speech (POS) tagging is one of the basic techniques in natural language processing
to capture the meaning of text. The task is to label each word with a tag that describes
its grammatical role, such as noun (NN), verb (VB), adjective (JJ), etc. POS tags
may have different granularity; it is possible, e.g., to distinguish between singular
(NN) and plural (NNS) nouns or between regular (RB), comparative (RBR), and
superlative (RBS) adverbs. On regular text, POS tagging can be performedwith high
accuracy; e.g., the Stanford POS tagger [74], one of the most widely used systems,
achieves 97% accuracy on the Penn Treebank-3 corpus [52]. Applied to short
queries, that tend to lack proper grammar, punctuation, or capitalization, existing
NLP techniques are much less successful [6]. Based on a manually annotated
sample of queries from a commercial search engine, Barr et al. [6] show that the
distribution of POS tag types in queries is rather different from that of standard
(edited and published) text. Specifically, they find that among keyword queries the
“most common tag is the proper noun, which constitutes 40% of all query terms,
and proper nouns and nouns together constitute 71% of query terms” [6], while
many standard POS tags (e.g., verbs and determiners) seldom appear in web search
queries. In query annotation, therefore, a great emphasis is placed on detecting noun
phrases and entities. Barr et al. [6] further show that tagger performance is severely
affected by the lack of capitalization in queries.

Bendersky et al. [8] mark up queries using three types of annotations:
capitalization, POS tags, and segmentation indicators. Rather than relying on
the query itself, they draw on the (latent) information need behind the query
and leverage the document corpus using pseudo relevance feedback techniques.
In follow-up work, instead of solving the above annotation tasks in isolation,
Bendersky et al. [9] perform them jointly and leverage the dependencies between
the different types of markup.

Another line of work focuses on the identification of “key concepts” (i.e., the
most important noun phrases) in verbose natural language queries. By assigning
higher weights to these key concepts during document scoring, one can attain better
retrieval effectiveness. Bendersky and Croft [7] use the noun phrases in the query
as candidate concepts and use a supervised machine learning approach to classify
each as being a key concept or not, and set a concept’s importance based on the
classifier’s confidence score. Features include corpus-based frequency statistics,
computed from the document collection, from an external collection (Google n-
grams [14]), and also from a large query log.

Query tagging may also be performed with respect to an underlying domain-
specific schema. It is often assumed that queries have already been classified onto
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a given domain (like movies, books, products, etc.). The task then is to assign
each query term a label indicating which field it belongs to [46, 51]. A great
deal of attention has been directed toward the product search domain, “since this
is one representative domain where structured information can have a substantial
influence on search experience” [46] (not to mention the obvious commercial value).
Nevertheless, the proposed methods should be applicable to other domains as well.
In the product search domain, the set of fields comprises type, brand, model,
attribute, etc. It is possible to construct field-specific lexicons from a knowledge
repository that enumerate all possible values for each field. A simple lexicon-based
approach, however, is insufficient due to ambiguity (e.g., “iphone” may refer to
model or to attribute) and the presence of out-of-vocabulary terms [46]. Li et al. [46]
approach query tagging as a sequential labeling task and employ semi-supervised
conditional random fields (CRF). A small amount of hand-labeled queries are
combined with a large amount of queries with derived labels, which are obtained
in an unsupervised fashion (by leveraging search click-through data in conjunction
with a product database). Manshadi and Li [51] present a hybrid method, which
consists of a generative grammar model and parser, and a discriminative re-ranking
module. Li [44] further distinguishes between the semantic roles of the constituents
in noun phrase queries and makes a distinction between intent heads (corresponding
to attribute names) and intent modifiers (referring to attribute values). For example,
given the query “alice in wonderland 2010 cast,” “cast” is the intent head, while
“alice in wonderland” and “2010” are intent modifiers, with labels title and year,
respectively. Li [44] uses CRF-based models with transition, lexical, semantic
(lexicon-based), and syntactic (POS tags) features. Pound et al. [61] annotate queries
with semantic constructs, such as entity, type, attribute, value, or relationship. This
mapping is learned from an annotated query log, using a CRF model with part-of-
speech tags as features.

7.1.3 Query Interpretation

Instead of labeling individual query terms (or sequences of terms), query interpre-
tation (a.k.a. semantic query understanding) aims to determine the meaning of the
query as a whole, by figuring out how the segmented and annotated query tokens
relate to each other and together form an “executable” expression.

NLP approaches to question answering assume that the user’s input is a grammat-
ically well-formed question, from which a logical form (λ-calculus representation)
can be inferred via semantic parsing [10, 80]. Viewing the knowledge base as a
graph, these logical forms are tree-like graph patterns; executing them is equivalent
to finding a matching subgraph of the knowledge graph.

In contrast, the database and IR communities generally operate with “tele-
graphic” queries. Due to the inherent ambiguity of such short keyword queries,
systems typically need to evaluate multiple possible interpretations. In databases,
the objective is to map queries to structured data tables and attributes; this task
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may also be referred to as structured query annotation [66]. For example, the
query “50 inch LG lcd tv” could be mapped to the table “TVs,” with attributes
diagonal=“50 inch,” brand=“LG,” and TV_type=“lcd.” We note that this is very
similar to the problem of query tagging, which we have discussed in the previous
subsection [44, 46, 51]. Nevertheless, there are two main differences. First, query
tagging involves supervised or semi-supervised learning (typically using a CRF-
based model), while the works on query interpretation presented here strive for an
unsupervised solution. Second, query tagging does not describe how the various
recognized semantic constructs interact; capitalizing on that structured data is
organized in tables, the methods here do not allow for arbitrary combinations of
attributes. Commonly, a two-tier architecture is employed, consisting of an offline
and an online component [26, 59, 61, 66]. A collection of structured query templates
are generated offline by mining patterns automatically from query logs. In the
online component, all plausible interpretations are generated for an incoming query,
where an interpretation is represented as a semantically annotated query and a query
template. These interpretations are then scored to determine a single one that most
likely captures the user’s intent.

Very similar techniques are used in web search for querying specific verticals,
by identifying the domain (vertical) of interest and recognizing specific attributes;
we discuss some of these techniques in Sect. 7.4. Generally speaking, compared to
NLP and databases, the goals in IR approaches to entity retrieval are somewhat more
modest. The structural interpretation of queries consists of identifying mentions
of entities and target types, with respect to an underlying knowledge base; see
Sects. 7.2 and 7.3. The remaining “un-mapped” query words are used for scoring
the textual descriptions of candidate entities. Notably, instead of aiming for a
single “best” query interpretation, the system ranks responses for each possible
interpretation, and then takes a weighted combination of scores over all interpre-
tations [33, 67].

7.2 Identifying Target Entity Types

One way to understand the meaning behind a search query is to identify the entity
types that are targeted by the query. In other words, we wish to map the query to a
small set of target types (or categories), which boils down to the task of estimating
the relevance of each type with respect to the query. The top-ranked types can then
be leveraged in the entity ranking model (as we have seen earlier in this book, in
Sect. 4.3) or offered to the user as facets. The latter form of usage is very typical,
among others, on e-commerce sites, for filtering the search results; see Fig. 7.1 for
an illustrative example. We note that the methods presented in this section are not
limited to type taxonomies of knowledge bases, but are applicable to other type
categorization systems as well (e.g., product categories of an e-commerce site).
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Fig. 7.1 Product categories displayed on Amazon in response to the query “gps mount”

7.2.1 Problem Definition

The problem of finding the target entity type(s) of the query can be formulated in
different ways. The entity type ranking task, introduced by Vallet and Zaragoza [77],
is as follows: Given an input query q , return a ranked list of entity types from a set T
of possible types. Balog and Neumayer [5] investigate a variant of this task, called
hierarchical target type identification (HTTI), which considers the hierarchical
nature of entity type taxonomies. They aim to “find the single most specific type
from an ontology [type taxonomy] that is general enough to cover all entities that are
relevant to the query” [5]. Garigliotti et al. [27] refine this task definition (HTTIv2)
to allow for a query to possibly have multiple “main” target types, provided they
are sufficiently different, i.e., they lie on different branches in the type taxonomy.
Furthermore, a query is also allowed to not have any target types, by assigning a
special NIL-type. We adopt the revised task definition in [27], which is as follows:

Definition 7.1 Target entity type identification is the task of finding the target
types of a given input query, from a type taxonomy, such that these types
correspond to most specific types of entities that are relevant to the query.
Target types cannot lie on the same branch in the taxonomy. If no matching
entity type can be found in the taxonomy, then the query is assigned a special
NIL-type.
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Table 7.1 Notation used in Sect. 7.2

Symbol Meaning

c(t;x) Count of term t in x (x can be, e.g., an entity e or a type y)

e Entity (e ∈ E)
E Entity catalog (set of all entities)

Eq (k) Top-k ranked entities for query q

q Query (q = 〈q1, . . . ,qn〉)
t Term

T Type taxonomy

Te Set of types assigned to entity e

y Entity type (y ∈ T )

Approached as a ranking problem, target entity type identification is the task of
estimating the relevance of an entity type y ∈ T given a query q , expressed
as score(y;q). We present both unsupervised and supervised approaches in
Sects. 7.2.2 and 7.2.3. Note that the NIL-type element of the problem is currently
not considered. The different variants of the task definition essentially boil down to
how the relevance assessments are obtained. We discuss this in Sect. 7.2.4. Table 7.1
summarizes the notation used in this section.

7.2.2 Unsupervised Approaches

According to one strategy, referred to as the type-centric model in [5], a term-based
representation is built explicitly for each type; types can then be matched against the
query using existing document retrieval models. Another strategy is to rank entities
with respect to the query and then determine each type’s relevance by considering
the retrieval scores of entities of that type [41, 77]. Since types are not modeled
directly, this approach is referred to as the entity-centric model [5].

An analogy can be drawn between these two approaches and the methods we
have looked at earlier in the book for ranking entities. Specifically, the type-
centric model corresponds to constructing term-based entity representations from
documents mentioning those entities (Sect. 3.2), while the entity-centric model is
akin to ranking entities without direct representations (Sect. 3.4). Essentially, one
simply needs to replace entities with types and documents with entities in the
equations. Zhang and Balog [82] further generalize these two retrieval strategies
as design patterns for ranking arbitrary objects, called early fusion and late fusion,
respectively.

7.2.2.1 Type-Centric Model

We construct a term-based representation (“type description”) for each type, by
aggregating descriptions of entities that are assigned that type. Then, those type
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representations can be ranked using conventional document retrieval methods. The
term pseudo-counts for a type are computed using the following formula:

c̃(t;y) =
∑

e∈E
c(t;e) w(e,y) , (7.1)

where c(t;e) is the count of term t in the description of entity e and w(e,y) denotes
the entity-type association weight. This latter quantity may be interpreted as the
importance of entity e for type y. A naïve but effective option is to set this weight
uniformly across all entities that are typed with y:

w(e,y) =
{

1
|{e′:y∈Te′ }|, y ∈ Te

0, y �∈ Te ,
(7.2)

where Te denotes the set of types assigned to entity e. Substituting Eq. (7.2) back to
Eq. (7.1) we get:

c̃(t;y) = 1

|{e : y ∈ Te}|
∑

e∈E
1(y ∈ Te) c(t;e) ,

where 1(y ∈ Te) returns 1 if entity e has y as one of its assigned types, otherwise
returns 0. As the rewritten equation shows, this particular choice of entity-type
association weighting merely serves as a normalization factor, so that types have
comparable term pseudo-counts (representation lengths), irrespective of the number
of entities that belong to them.

Given the term-based type representation, as defined by c̃(t;y), types can be
ranked using any standard retrieval method. Following [82], the final scoring may
be formulated (for bag-of-words retrieval models) as:

scoreTC(y;q) =
n∑

i=1

score(qi;c̃,ϕ) , (7.3)

where score(qi;f̃ ,ϕ) assigns a score to each query term qi , based on the term
pseudo-counts c̃, using some underlying term-based retrieval model (e.g., LM or
BM25), which is parameterized by ϕ.

7.2.2.2 Entity-Centric Model

Instead of building a direct term-based representation of types, the entity-centric
model works as follows. First, entities are ranked based on their relevance to the
query. Then, the score for a given type y is computed by aggregating the relevance
scores of the top-k entities with that type:

scoreEC(y;q) =
∑

e∈Eq (k)

score(e;q) w(e,y) , (7.4)



236 7 Understanding Information Needs

where Eq(k) denotes the set of top-k ranked entities for query q . The retrieval score
of entity e is denoted by score(q;e), which can be computed using any of the entity
retrieval models discussed in Chaps. 3 and 4. The entity-type association weight,
w(e,y), is again as defined by Eq. (7.2). One advantage of this approach over the
type-centric model is that it can directly benefit from improved entity retrieval.
Also, out of the two unsupervised approaches, the entity-centric model is the more
commonly used one [5, 41, 77].

7.2.3 Supervised Approach

Balog and Neumayer [5] observe that “the type-centric model tends to return
more specific categories [types], whereas the entity-centric model rather assigns
more general types.” The complementary nature of these two approaches can be
exploited by combining them. Additionally, one can also incorporate additional
signals, including taxonomy-driven features [73] and various similarity measures
between the type label and the query [78]. Table 7.2 presents a set of features for
the target entity type identification task, compiled by Garigliotti et al. [27].

Here, we only detail two of the best performing features, both of which are based
on distributional similarity between the type’s label and the query. The first one,
simAggr, considers the centroids of embedding vectors of terms in the type’s label
and terms in the query:

simAggr(y,q) = cos(y,q) ,

where y and q denote the respective centroid vectors.
The second one, simMax, takes the maximum pairwise similarity between terms

in the type’s label and in the query:

simMax(y,q) = max
ty∈y,tq∈q

cos(ty,tq) ,

where ty and tq are the embedding vectors corresponding to terms ty and tq ,
respectively. In both cases, pre-trained 300-dimensional Word2vec [55] vector
embeddings were used. Further, the set of terms considered is limited to “content
words” (i.e., nouns, adjectives, verbs, or adverbs) [27].

7.2.4 Evaluation

Next, we present evaluation measures and test collections for the target entity type
identification task.
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Table 7.2 Features for target entity type identification

Group Feature Description

Baseline features

scoreTC(y;q) Type-centric type score (cf. Eq. (7.3))a

scoreEC(y;q) Entity-centric type score (cf. Eq. (7.4))a,b

Type taxonomy features

depth(y) Hierarchical level of y, normalized by the taxonomy
depth

children(y) Number of children of type y in the taxonomy

siblings(y) Number of siblings of type y in the taxonomy

numEntities(y) Number of entities in the KB with type y

(|{e ∈ E : y ∈ Te}|)
Type label features

ly Length of (the label of) type y in terms

sumIDF(y) Sum of IDF for terms in (the label of) type y

(
∑

t∈y IDF(t))

avgIDF(y) Avg. of IDF for terms in (the label of) type y

( 1
ly

∑
t∈y IDF(t))

simJAC(y,q) Jaccard similarity between terms of the type label and
of the query

simJACnouns(y,q) Jaccard similarity between the type and the query,
restricted to terms that are nouns

simAggr(y,q) Cosine sim. between the centroid embedding vectors of
q and y

simMax(y,q) Max. cosine similarity of the embedding vectors
between each pair of query and type label terms

simAvg(y,q) Avg. cosine similarity of the embedding vectors
between each pair of query and type label terms

a Instantiated using both BM25 and LM as the underlying term-based retrieval model
b Instantiated with multiple cutoff thresholds k ∈ {5,10,20,50,100}

7.2.4.1 Evaluation Measures

Being a ranking task, type ranking is evaluated using standard rank-based measures.
The ground truth annotations consist of a small set of types for each query, denoted
as T̂q . It might also be the case that a query has no target types (T̂q = ∅); in that
case the query might be annotated with a special NIL-type. Detecting NIL-types,
however, is a separate task, which is still being researched, and which we do not
deal with here. That is, we assume that T̂q �= ∅. The default setting is to take type
relevance to be a binary decision; for each returned type y, it either matches one
of the ground truth types (1) or not (0). The evaluation measures are mean average
precision (MAP) and mean reciprocal rank (MRR). We shall refer to this as strict
evaluation.

However, not all types of mistakes are equally bad. Imagine that the target
entity type is racing driver. Then, returning a more specific type (rally driver)
or a more general type (athlete) is less of a problem than returning a type from
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a completely different branch of the taxonomy (like organization or location).
Balog and Neumayer [5] accommodate this by introducing lenient evaluation, where
relevance is graded and near-misses are rewarded. Specifically, let d(y,ŷ) denote the
distance between two types, the returned type y and the ground truth type ŷ, in the
taxonomy. This distance is set to the number of steps between the two types, if they
lie on the same branch (i.e., one of the types is a subtype of the other); otherwise,
their distance is set to ∞. With the help of this distance function, the relevance level
or gain of a type can be defined in a linear fashion:

r(y) = max
ŷ∈T̂q

(
1 − d(y,ŷ)

h

)
,

where h is the depth of the type taxonomy. Notice that we consider the closest
matching type from the set of ground types T̂q . Alternatively, distance may be turned
into a relevance level using an exponential decay function:

r(y) = max
ŷ∈T̂q

(
b−d(y,ŷ)

)
,

where b is the base of the logarithm (set to 2 in [5]). If d(y,ŷ) = ∞, then the
value of the exponential is taken to be 0. In the lenient evaluation mode, the final
measure is normalized discounted cumulative gain (NDCG), using the above (linear
or exponential) relevance gain values.

7.2.4.2 Test Collections

Balog and Neumayer [5] annotated 357 entity-oriented search queries with a single
target type, using the DBpedia Ontology as the reference type taxonomy. These
queries are essentially a subset of the ones in the DBpedia-Entity collection (cf.
Sect. 3.5.2.7). According to their task definition, an “instance of” relation is required
between the target type and relevant entities (as opposed to mere “relatedness,” as
in [77]). The guideline for the annotation process was to “pick a single type that
is as specific as possible, yet general enough to cover all correct answers” [5]. For
33% of the queries, this was not possible because of one of the following three main
reasons: (1) the query has multiple (legitimate) target types; e.g., “Ben Franklin”
is a Person but may also refer to the ship (MeanOfTransportation) or the musical
(Work); (2) there is no appropriate target type in the taxonomy for the given query;
or (3) the intent of the query is not clear.

In follow-up work, Garigliotti et al. [27] annotated the complete set of queries
from the DBpedia-Entity collection, in accordance with their revised task definition
(cf. Sect. 7.2.1). Correspondingly, queries can have multiple target types or none
(NIL-type option). The relevance assessments were obtained via crowdsourcing,
using a newer (2015-10) version of the DBpedia Ontology as the type taxonomy.
Around 58% of the queries in the collection have a single target type; the rest of the
queries have multiple (mostly two or three) target types, including the NIL-type.
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7.3 Entity Linking in Queries

Identifying entities in queries is another key technique that enables a better
understanding of the underlying search intents. According to Guo et al. [28], over
70% of queries in web search contain named entities. The study by Lin et al.
[49] reports a lower number, 43%, albeit using different annotation guidelines. The
bottom line is that by being able to recognize entities in queries, the user experience
can be improved for a significant portion of search requests (e.g., by enhanced result
ranking or presentation). In Chap. 5, we have dealt in detail with the problem of
entity linking, i.e., annotating documents with entities from a reference knowledge
repository. Why can we not simply apply the same techniques to search queries?
The reasons are at least threefold.

• One challenge is that queries are very short, typically consisting only of a few
terms, and lack proper spelling and grammar. There is experimental evidence
showing that methods perform substantially worse on very short and poorly
composed texts (tweets) than on longer documents (news) [18, 50]. What is more,
even methods that are designed in particular for short text perform significantly
worse on queries than those that are specifically devised for queries [19].

• Another fundamental difference is that when documents are annotated with
entities, “it is implicitly assumed that the text provides enough context for each
entity mention to be resolved unambiguously” [32]. For queries, on the other
hand, there is only limited context, or none at all.4 It may be impossible to
annotate entity mentions unambiguously in the case of queries. That is, a given
query segment can possibly be linked to more than a single entity, leading to
multiple legitimate interpretations of the query.

• Finally, obtaining entity annotations for queries is an online process that needs
to happen during query-time, under serious time constraints. This is unlike
annotating documents, which is typically performed offline. Therefore, we
are not necessarily looking for the most effective solution, but for “one that
represents the best trade-off between effectiveness and efficiency” [34].

The task of annotating queries with entities has been studied in a number of different
flavors; we start with presenting an overview of these in Sect. 7.3.1. Then, in
Sect. 7.3.2, we introduce a unified pipeline approach. The two main components
of this pipeline are detailed in Sects. 7.3.3 and 7.3.4. Table 7.3 shows the notation
used in this section.

4Search history information may provide contextual anchoring; this, however, is often unavailable.
For example, if it is the first query in a search session, with no information about the previous
searches of the user (which corresponds to the commonly studied ad hoc search scenario), then the
query text is all we have.
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Table 7.3 Notation used in
Sect. 7.4

Symbol Meaning

A Annotation (set of mention-entity pairs)

C Candidate entity annotations (ordered list)

e Entity (e ∈ E)
E Entity catalog (set of all entities)

I Query interpretation (I = {A1, . . . ,An})
lx Length of x (number of terms)

m Entity mention

Mq Set of entity mentions identified in query q

q Query

t Term

7.3.1 Entity Annotation Tasks

We distinguish between three entity annotation tasks, formulated for queries rather
than for regular text. Table 7.4 highlights the differences between them, along with
some illustrative examples.

• Named entity recognition is the task of identifying mentions of named
entities and tagging the mentions with their respective types.

• Semantic linking seeks to find a ranked list of entities that are semantically
related to the query string.

• Interpretation finding aims to discover all plausible meanings of the query;
each interpretation consists of a set of non-overlapping and semantically
compatible entity mentions, linked to a knowledge repository.

7.3.1.1 Named Entity Recognition

The task of named entity recognition in queries (NERQ) is analogous to the problem
of named entity recognition in text (NER, cf. Sect. 5.1.1), namely: Identify named
entities in the query text and classify them with respect to a set of predefined types
from a taxonomy. NERQ was introduced and first studied by Guo et al. [28], who
employed topic modeling techniques with weak supervision (WS-LDA). Pantel
et al. [58] expanded upon this work by incorporating latent user intents and click
signals.
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Table 7.4 Comparison of various entity annotation tasks for queries

Named entity Semantic Interpretation

recognition linking finding

Result format Set/ranked list Ranked list Sets of sets

Explicit entity mentions? Yes No Yes

Mentions can overlap No Yes Nob

Evaluation criteria Recognized entitiesa Relevant entities Interpretations

Evaluation measures Set/rank-based Rank-based Set-based

Examples
“obama mother” “obama”/PER BARACK OBAMA

{{BARACK OBAMA}}

ANN DUNHAM

“new york pizza “new york”/LOC NEW YORK CITY
{{NEW YORK CITY,

manhattan” “manhattan”/LOC NEW YORK-STYLE PIZZA MANHATTAN},
MANHATTAN {NEW YORK-STYLE PIZZA,

MANHATTAN PIZZA MANHATTAN}}

. . .

a Along with their respective types
b Not within the same interpretation

7.3.1.2 Semantic Linking

Semantic linking refers to the task of identifying entities “that are intended or
implied by the user issuing the query” [53]. This problem was introduced as query
mapping by Meij et al. [53] and is also known as semantic mapping [32] and as
(ranked) concepts to Wikipedia [18]. As the name we have adopted suggests, we
seek to find entities that are semantically related to the query. Notably, the entities
to be linked are meant for human and not for machine consumption (e.g., to help
users acquire contextual information or to provide them with valuable navigational
suggestions [53]). Therefore, we are not so much interested in detecting the specific
entity mentions in the query, nor do we require the returned entities to form a
coherent set. Further, an entity may be semantically related (i.e., relevant) even
if it is not explicitly mentioned in the query. Take, e.g., the query “charlie sheen
lohan,” for which ANGER MANAGEMENT (TV SERIES) would be a relevant entity.
Mind that this is different from the task of entity retrieval; our goal is not to answer
the user’s underlying information need with a ranked list of entities, but to identify
entities that are referenced (either explicitly or implicitly) in the query.

7.3.1.3 Interpretation Finding

Interpretation finding is the query counterpart to entity disambiguation, where the
inherent ambiguity of queries is addressed head-on. A query “can legitimately
have more than one interpretation” [17], where an interpretation is a set of “non-
overlapping linked entity mentions that are semantically compatible with the query
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Fig. 7.2 Entity linking in queries pipeline

text” [17]. For example, the query “new york pizza manhattan” might be interpreted
as the user wanting to eat a pizza in the MANHATTAN borough of NEW YORK

CITY, or the user desiring a specific pizza flavor, NEW YORK-STYLE PIZZA,
also in MANHATTAN. Interpretation finding aims at machine understanding of
queries. The resulting annotations are utilized in the subsequent ranking process.
A pioneering effort in this area was the Entity Recognition and Disambiguation
(ERD) Challenge in 2014, organized by representatives of major web search engine
companies [17]. Our ultimate interest in this section is on interpretation finding. In
the next subsection, we shall present a pipeline architecture for addressing this task.

7.3.2 Pipeline Architecture for Interpretation Finding

We present a pipeline architecture for entity linking in queries, i.e., for the
interpretation finding task, shown in Fig. 7.2. Notice that it is very similar to the
one we employ for entity linking for documents (see Sect. 5.3). One important
characteristic of this pipeline approach is it unifies the three tasks we discussed in
the previous section under a common framework and shows how these tasks build
on each other.

• The first step, mention detection, can be performed exactly the same way for
queries as it is done for documents, i.e., using an extensive dictionary of entity
surface forms; see Sect. 5.4.

• The candidate entity ranking step, as the name suggests, produces a ranking of
candidate entities for the query. Specifically, given a set of mentions as input from
the previous step, it emits a list of mention-entity pairs ordered by their degree
of semantic relatedness to the query. Notice that this step directly translates to
the task of semantic linking. One thing to point out here is that for the semantic
linking task the actual mentions are ignored (i.e., for each entity only the highest
scoring mention counts), while for interpretation finding the mentions also need
to be passed along.

• Finally, producing interpretations is the query counterpart of the disambiguation
component in conventional entity linking. The candidate entities identified in the
previous step are used to form one or multiple query interpretations, where each
interpretation consists of a set of semantically coherent entity linking decisions,
with non-overlapping entity mentions.
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In the next two subsections, we look at the candidate entity ranking and inter-
pretation finding steps in detail. The details of mention detection are relatively
straightforward, as it is done analogously to entity linking in documents; see
Sect. 5.4.

7.3.3 Candidate Entity Ranking

Given a query q , the problem of candidate entity ranking is to return a ranked list
of entities 〈e1, . . . ,ek〉 from an entity catalog E that are semantically related to the
query. We shall assume that a setMq of entity mentions has already been identified
in the query (see Sect. 5.4 for methods). For each mention m ∈ Mq , let Em denote
the set of candidate entities, i.e., entities that have a surface form matching m.
This candidate set may be further restricted to entities above a certain commonness
threshold (cf. Sect. 5.5). For example, in [32], a commonness threshold of 0.1 is
used. The goal, then, is to rank all candidate entities mentioned in q , Eq = {e :
e ∈ Em,m ∈ Mq}, based on score(e;q,m), their semantic relatedness to the query.
Below, we present both unsupervised and supervised solutions for estimating this
score. Additionally, in Sect. 7.3.3.3, we introduce the “piggybacking” technique,
which is directed to alleviating the brevity of queries.

7.3.3.1 Unsupervised Approach

Hasibi et al. [32] propose to rank entities by combining term-based similarity score
with the commonness measure, using the following formula:

score(e;q,m) = P(e|q,m) ∝ P(e|m)P(q|e) .

For the commonness computation,P(e|m), we refer back to Eq. (5.3). While written
as a probability, the term-based similarity, P(q|e), may in fact be computed using
any of the methods we presented in Chap. 3. What is important is that if the final
task is interpretation finding, these scores need to be comparable across queries.
One specific instantiation of this approach, referred to asMLMcg in [32], estimates
P(q|e) using the query length normalized language model similarity [42]:

P(q|e) =
∏

t∈q P (t|θe)
P (t |q)

∏
t∈q P (t|E)P (t |q)

, (7.5)

where P(t|θe) and P(t|E) are the entity and collection language models, respec-
tively, computed using the mixture of language models (MLM) approach, cf.
Sect. 3.3.2.1. P(t|q) is the term’s relative frequency in the query (c(t;q)/lq).
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Table 7.5 Features for candidate entity ranking

Group Feature Description

Mention

lm Length of mention m (number of terms)

|Em| Number of candidate entities for the mention

P (link|m) Link probability (cf. Eq. (5.2))

nameMatch(m) Number of entities with a surface form equal to mention m

partialMatch(m) Number of entities with a surface form partially matching m

Entity

redirects(e) Number of Wikipedia redirect pages linking to the entity

links(e) Number of in/out-links of the entity in the knowledge graph

pageRank(e) PageRank of e in the knowledge graph

pageViews(e) Number of (Wikipedia) page views e received

Mention-entity

P (e|m) Commonness (the probability of e being the link target of m)

contains(m,e) Whether the mention contains a surface form of the entity

contains(e,m) Whether a surface form of the entity contains the mention

equals(e,m) Whether a surface form of the entity equals the mention

editDist(m,e) Edit distance between the mention and the (best matching)

surface form of the entity

firstPos(e,m) Position of the first occurrence of the mention in the entity’s

description in the knowledge repository

sim(m,fe) Similarity between m and field f of the entity (cf. Sect. 3.3)

Query

lenRatio(m,q) Mention to query length ratio (lm/ lq )

contains(q,e) Whether the query contains a surface form of the entity

contains(e,q) Whether a surface form of the entity contains the query

equals(e,q) Whether a surface form of the entity equals the query

sim(q,e) Similarity between the query and entity (cf. Sect. 3.3)

sim(q,fe) Similarity between q and field f of the entity (cf. Sect. 3.3)

7.3.3.2 Supervised Approach

Using a supervised learning approach, each (entity, query, mention) triple is
described using a set of features. Table 7.5 displays a selection of features, assem-
bled from the literature [19, 34, 54]. These are organized into four main groups:

• Mention features represent the characteristics of the specific mention.
• Entity features draw only from entity properties.
• Mention-entity features capture the binding between mentions and entities.
• Query features express query-mention and query-entity relationships.

We note that our assortment of features is by no means exhaustive. Also, we
have limited ourselves to features that can be computed from publicly available
resources; we refer to Blanco et al. [12] for additional query log-based features.
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The supervised ranking model is trained on a set of labeled examples; for each
mention and candidate entity pair, the target label is 1 if the entity is the correct link
target of the given mention and is 0 otherwise.

7.3.3.3 Gathering Additional Context

One of the main challenges when annotating queries with entities is the lack of
context. Meij et al. [53] develop features based on previous queries that the user
issued in the same session. This method, however, is subject to the availability of
session history. (Also, these features do not seem to make a significant contribution
to the best results in [53].) Cornolti et al. [19] employ the so-called piggybacking
technique (first introduced in [64]): Submitting the query to a web search engine
API, and using the returned result snippets as additional context for entity disam-
biguation. The top-ranked result snippets are usually of very high quality, thanks
to “sophisticated algorithms that leverage huge indexed document collections (the
whole web), link graphs, and log analysis” [19]. The piggybacking technique has an
additional benefit of being able to automatically correct spelling errors, by accessing
the spelling correction feature of web search APIs. On the downside, it should be
pointed out that the reliance on an external search service can seriously hinder
the efficiency of the annotation process. Furthermore, there is no control over the
underlying document ranking algorithm (which may change without notice).

Specifically, Cornolti et al. [19] retrieve the top 25 snippets using the original
query. In addition to that, they also concatenate the original query with the string
“wikipedia” and take the first 10 snippets, with the intention to boost results from
Wikipedia. These search engine results are then used both for identifying candidate
entities and for scoring them. Candidate entities are recognized in two ways:

1. Wikipedia articles occurring in the top-ranked results can be directly mapped to
entities.

2. Annotating the result snippets with entities (using an entity linker designed for
short text; Cornolti et al. [19] use WAT [60]) and keeping only those annotations
that overlap with bold-highlighted substrings (reflecting query term matches) in
the snippets.

In the candidate entity scoring phase, this information is utilized via various
features, including the frequency and rank positions of mentions in snippets.

7.3.3.4 Evaluation and Test Collections

Aswe have explained earlier, the candidate entity ranking component of our pipeline
corresponds to the semantic linking task. It is evaluated as a ranking problem,
using standard rank-based measures, such as (mean) average precision and (mean)
reciprocal rank. For each entity, only the highest scoring mention is considered:

score(e;q) = argmax
m∈Mq

score(e;q,m) .
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Table 7.6 Test collections for evaluating semantic linking

Name Reference KR #Queries #Queries Annotations Sessions

total ≥1 annot. can overlap considered

YSQLEa Wikipedia 2653 2583 Yes Yes

GERDAQ [19]b Wikipedia 1000 889 No No
a Yahoo! Webscope L24, https://webscope.sandbox.yahoo.com/
b http://acube.di.unipi.it/datasets/

At the time of writing, two publicly available test collections exist, which are
summarized in Table 7.6.

Yahoo Search Query Log to Entities (YSQLE) The dataset consists of 2635
web search queries, out of which 2583 are manually annotated with entities from
Wikipedia. The annotations have been performed within the context of a search
session (there are 980 sessions in total). Each linked entity is aligned with the
specific mention (query span). Additionally, a single entity for each query may
be labeled as “main,” if it represents the main intent of the query. For example, the
query “France 1998 final” is annotated with three entities: FRANCE NATIONAL

FOOTBALL TEAM, FRANCE, and 1998 FIFA WORLD CUP FINAL, the last one
being the main annotation.

GERDAQ This collection, created by Cornolti et al. [19], consists of 1000
queries sampled from the KDD-Cup 2005 dataset [48]. The queries were
annotated with Wikipedia entities via crowdsourcing, in two phases (first recall-
oriented, then precision-oriented). The resulting dataset was then randomly split
into training, development, and test sets, comprising 500, 250, and 250 queries,
respectively. Each entity mention is linked to the highest scoring entity, according
to the human annotators. Entity annotations do not overlap; entities below a
given score threshold are discarded. On average, each query is annotated with
two entities.

7.3.4 Producing Interpretations

In conventional entity linking, the generated annotations comprises a set of (seman-
tically compatible) mention-entity pairs: A = {(m1,e1), . . . ,(mk,ek)}, where ei

is the entity corresponding to mention mi , and mention offsets must not overlap.
In the context of queries, we shall refer to one such possible entity annotation
as interpretation. Due to ambiguity, a query might have more than a single
interpretation. Therefore, the objective of this component is to produce a set of query
interpretations, I = {A1, . . . ,An}, where Ai is an interpretation.

We shall assume that all entity mentions in the query have been recognized
and scored in a prior step (cf. Sect. 7.3.3). We shall refer to these as candidate
annotations, and denote them as the list C = 〈(m1,e1,s1), . . . ,(mk,ek,sk)〉, where
each annotation is a triple consisting of mention mi , entity ei , and score si . The list

https://webscope.sandbox.yahoo.com/
http://acube.di.unipi.it/datasets/
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Algorithm 7.1: Greedy interpretation finding [32]
Input: Candidate annotations C, score threshold τ

Output: Interpretations I
1 C′ ← prune(C,τ)

2 C′ ← pruneContainmentMentions(C′)
3 I ← createInterpretations(C′)
4 return I

5 Function createInterpretations(C):
6 I ← ∅
7 for (m,e,s) ∈ C ordered by s do
8 h ← False
9 for Ai ∈ I do
10 if ¬ hasOverlap(m,Ai ) then /* Add to existing interpretation */

11 Ai ← Ai ∪ {(m,e)}
12 h ← True
13 end
14 end
15 if ¬h then /* Create new interpretation */

16 I ← I ∪ {(m,e)}
17 end
18 end
19 return I

C is ordered by decreasing score. Further,C may be truncated to a certain number of
elements (top-k) or to annotations above a minimum score threshold. The task, then,
is to form the set of interpretations I, given the candidate annotations C as input.

We note that if one is to find only a single most likely interpretation, that can
be done using existing entity linking methods (esp. using those that have been
developed for annotating short text, such as TAGME [23] or WAT [60]). Even
studies that address entity linking in queries often resort to the simpler problem
of finding a single interpretation [12, 19]. Specifically, the top interpretation may
be created greedily, by adding candidate annotations in decreasing order of score,
as long as (1) they do not overlap and (2) the scores are above a given threshold
(SMASH-S [19]). Alternatively, entity annotations may be selected using dynamic
programming, such that they maximize the overall query likelihood [12]. In both
cases, entity linking decisions are made individually, independently of each other
(other than the constraint of non-overlapping). Our interest here, nevertheless,
is focused on finding multiple interpretations, and we present both unsupervised
(Sect. 7.3.4.1) and supervised (7.3.4.2) approaches for that.

7.3.4.1 Unsupervised Approach

Hasibi et al. [32] present the greedy interpretation finding (GIF) algorithm, shown in
Algorithm 7.1, which consists of three steps: (1) pruning, (2) containment mention
filtering, and (3) set generation. In the first step, the algorithm takes all candidate
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annotations and discards those with a score below the threshold τ . The threshold
parameter is used to control the balance between precision and recall. In the second
step, containment mentions are filtered out, by keeping only the highest scoring
one. For instance, “kansas city mo,” “kansas city, ” and “kansas” are containment
mentions; only a single one of these three is kept. Finally, interpretations are built
iteratively, by processing the filtered candidate annotations C′ in decreasing order
of score. A given mention-entity pair (m,e) is added to an existing interpretation
Ai , if m does not overlap with the mentions already inAi ; in the case multiple such
interpretations exist, the pair (m,e) will be added to all of them. Otherwise, a new
interpretation is created from the mention-entity pair. The GIF algorithm, despite
its simplicity, is shown to be very effective and is on par with considerably more
complex systems [34]. Its performance, however, crucially depends on that of the
preceding candidate entity ranking step.

7.3.4.2 Supervised Approach

The main idea behind the collective disambiguation approach is to carry out a joint
analysis of groups of mention-entity pairs, rather than greedily selecting the highest
scoring entity for each mention. This idea can be realized by considering multiple
possible candidate interpretations of the query and then applying supervised
learning to select the most likely one(s). If the goal is to find multiple interpretations,
then it is cast as a binary classification problem. If the objective is to find only the
single most likely interpretation, then it may be approached as a ranking (regression)
task.

As we have pointed out in Sect. 5.6.2.3, the joint optimization of entity annota-
tions in text is an NP-hard problem. However, since queries are typically short, it
is possible to enumerate all sensible combinations of entities. Specifically, Hasibi
et al. [34] consider only the top-k candidate annotations for forming interpretations.
The value of k can be chosen empirically, based on the effectiveness of the
underlying candidate entity ranking component. In [34] k = 5 is used; less effective
candidate entity ranking approaches may be compensated for by choosing a larger
k value. Let A1, . . . ,An denote the candidate interpretations, which are generated
by enumerating all possible valid (non-overlapping) combinations of mention-entity
pairs from the candidate annotations C. For a given interpretation Ai , we let Ei be
the set of linked entities in that interpretation: Ei = {e : (m,e) ∈ Ai}.

The key challenge, then, is to design features that can capture the coherence of
multiple entity annotations in the query. Two main groups of features are employed
in [19, 34]:

• Entity features express the binding between the query and the entity and depend
only on the individual entity (and not on other entities mentioned in the query).
The top block of Table 7.7 lists entity features that are used in [34]. We note that
other features that have been introduced for the candidate entity ranking step may
also be used here (see Table 7.5). These features are computed for each entity that
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Table 7.7 Features for producing interpretations

Group Feature Description

Entity

links(e) Number of out-links of the entity in the knowledge graph

P (e|m) Commonness (the probability of e being the link target of m)

score(e;q) Score from the candidate entity ranking step

iRank(e,q) Inverse rank from the candidate entity ranking step (1/rank(e,q))

sim(q,e) Similarity between the query and entity (cf. Sect. 3.3)

contextSim(q,e) Contextual similarity between the query and entity, where context

is the “rest” of the query, without the entity mention

Interpretation

min(Ri ) Minimum relatedness among entities in Ei

max(Ri ) Maximum relatedness among entities in Ei

Pco(Ei ) Co-occurrence probability of entities in a Web corpus (Eq. (7.6))

H(Ei ) Entropy of Ei (Eq. (7.7))

sim(q,Ei ) Similarity between the query and Ei (Eq. (7.8))

coverage(Ai,q) Mention coverage (Eq. (7.9))

is part of a given candidate interpretation (e ∈ Ei ), then aggregated by taking the
minimum, maximum, or average of the individual values. Thus, each of these
features is computed three times, using the three different aggregators.

• Interpretation features aim to capture the coherence of the set of linked entities
in a given (candidate) interpretation (Ai). These are computed collectively for all
linked entities in the interpretation (Ei). A selection of interpretation features are
listed in the bottom block of Table 7.7. We briefly explain them below.

– For relatedness features, we letRi be the set of all pairwise relatedness scores
between all entities in Ei :

Ri = {rel(ek,el) : ek,el ∈ Ei,ek �= el} ,

where rel(ek,el ) is a measure of entity-relatedness; commonly WLM related-
ness or Jaccard similarity is used (see Sect. 5.6.1.3 for other options). We take
the minimum and the maximum of the values inRi as two features.

– The co-occurrence probability of all the entities in Ei may be estimated using
a large web corpus:

Pco(Ei ) = | ⋂e∈Ei
De|

|D| , (7.6)

whereDe is the set of documents in which e occurs, and |D| is the total number
of documents in the corpus. With the help of this probability, the entropy of Ei

may be calculated as:

H(Ei ) = −Pco(Ei ) logPco(Ei ) − (1 − Pco(Ei )) log(1 − Pco(Ei )) . (7.7)
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– The similarity between Ei and the query is calculated similarly to Eq. (7.5),
but using a language model of all entities in the interpretation, instead of that
of a single entity:

P(q|Ei ) =
∏

t∈q P (t|θEi
)P (t |q)

∏
t∈q P (t|E)P (t |q)

, (7.8)

where the interpretation language model is estimated according to:

P(t|θEi
) = 1

|Ei |
∑

e∈Ei

P (t|θe) .

– Mention coverage is the ratio of the query that is annotated, i.e., the length of
all entity mentions over the length of the query:

coverage(Ai,q) =
∑

(m,e)∈Ai
lm

lq
, (7.9)

where lm and lq denote mention and query length, respectively.

7.3.4.3 Evaluation Measures

Let Î = {Â1, . . . ,Âm} denote the set of interpretations of query q according to the
ground truth, and let I = {A1, . . . ,An} denote the system-generated interpretations.
For comparing these two sets, Carmel et al. [17] define precision and recall as:

P = |I ∩ Î|
|I| , R = |I ∩ Î|

|Î| .

Hasibi et al. [32] point out that “according to this definition, if the query does
not have any interpretations in the ground truth (Î = ∅) then recall is undefined;
similarly, if the system does not return any interpretations (I = ∅), then precision
is undefined.” Therefore, they define precision and recall for interpretation-based
evaluation as follows:

Pint =

⎧
⎪⎨

⎪⎩

|I ∩ Î|/|I|, I �= ∅
1, I = ∅,Î = ∅
0, I = ∅,Î �= ∅ .

Rint =

⎧
⎪⎨

⎪⎩

|I ∩ Î|/|Î|, Î �= ∅
1, Î = ∅,I = ∅
0, Î = ∅,I �= ∅ .
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An interpretation is taken to be correct only if it matches all the entities of an
interpretation in the ground truth exactly. For simplicity, the correctness of the
mention offsets are not considered. Formally:

|I ∩ Î| =
∑

Ai∈I,Âj∈Î
match(Ai,Âj ) ,

where

match(Ai,Âj ) =
{
1, {e : e ∈ Ai} = {e : e ∈ Âj }
0, otherwise .

This evaluation is rather strict, as partial matches (for a given interpretation) are not
given any credit. Alternatively, Hasibi et al. [32] propose a lenient evaluation that
rewards partial matches. The idea is to combine interpretation-based evaluations
(from above) with conventional entity linking evaluation, referred to as entity-based
evaluation. Let EI denote the set of all entities from all interpretations returned by
the entity linking system, EI = ∪i∈[1..n]{e : e ∈ Ai}. Similarly, let the set ÊI contain
all entities from all interpretations in the ground truth, ÊI = ∪j∈[1..m]{e : e ∈ Âj }.
Then, precision and recall are defined as follows:

Pent =

⎧
⎪⎨

⎪⎩

|EI ∩ ÊI |/|EI |, EI �= ∅
1, EI = ∅,ÊI = ∅
0, EI = ∅,ÊI �= ∅ .

Rent =

⎧
⎪⎨

⎪⎩

|EI ∩ ÊI |/|ÊI |, ÊI �= ∅
1, ÊI = ∅,EI = ∅
0, ÊI = ∅,EI �= ∅ .

Finally, the overall precision and recall, in lenient evaluation, are defined as a linear
combination of interpretation-based and entity-based precision and recall:

P = Pint + Pent
2

, R = Rint + Rent

2
.

For simplicity, precision and recall are averaged with equal weights, but a weight
parameter could also be introduced here. The F-measure (for any definition of
precision and recall above) is computed according to Eq. (5.10).

So far, we have defined evaluation measures for a single query. For computing
precision, recall, and F-measure over a set of queries, the (unweighed) average of
the query-level scores is taken (i.e., macro-averaging is used).
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Table 7.8 Test collections for interpretation finding

Name Reference KR #Queries #Queries #Queries

total ≥1 annot. ≥1 interp.

ERD-dev [17] Freebase 91 45 4

Y-ERD [32]a Freebase 2398 1256 9
a http://bit.ly/ictir2015-elq

7.3.4.4 Test Collections

There are two publicly available test collections for interpretation finding evalua-
tion; see Table 7.8 for a summary.

ERD-dev The “short text” track of the Entity Recognition and Disambiguation
(ERD) Challenge [17] provided a live evaluation platform for the interpretation
finding task. A development set of 91 queries is made publicly available; of these,
45 queries have non-empty entity annotations. The test set comprises 500 queries;
because of the live evaluation, the annotations for these queries are not available
for traditional offline evaluation (we refer to Sect. 5.8.2.4 for a discussion on the
live evaluation platform). The gold standard annotations are created manually, in
accordance with the following three rules [17]: (1) for each entity, the longest
mention is used, (2) only proper noun entities are annotated, and (3) overlapping
mentions are not allowed within a single interpretation.

Y-ERD Hasibi et al. [32] created a larger test set based on the YSQLE collection
(cf. Sect. 7.3.3.4). Following a set of guidelines, based on and expanding upon
those of the ERD Challenge, they grouped independent entity annotations into
semantically compatible sets of entity linking decisions, i.e., interpretations.
Queries are annotated on their own, regardless of search sessions.

One observation that can be made from Table 7.8 is that very few queries actually
have multiple interpretations. This explains why systems that returned only a single
interpretation could end up being the best contenders at the ERD Challenge [17].
It remains an open question whether this is a limitation of currently available test
collections, or if it is worth expending algorithmic effort toward finding multiple
interpretations.

7.4 Query Templates

A large fraction of queries follow certain patterns. For instance, when people search
for jobs, a frequently used query pattern is “jobs in 〈location〉,” where 〈location〉 is
a variable that can be instantiated, e.g., by a city (“jobs in seattle”), region (“jobs in
silicon valley”), or country (“jobs in the UK”). From these patterns, templates may
be inferred, which may be used for interpreting queries. As defined by Bortnikov
et al. [13], “a template is a sequence of terms that are either text tokens or variables
that can be substituted from some dictionary or taxonomy.” To be consistent with

http://bit.ly/ictir2015-elq
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Fig. 7.3 (a) Flight search widget shown on Google in response to the query “flights svg ams.” (b)
Weather widget on Bing for the query “weather amsterdam”

our earlier terminology we will use the expression token, which can be either a term
(word) or an attribute (variable). In our examples, we mark attribute tokens as 〈. . . 〉.

Templates provide structured interpretations of queries and have numerous
advantages:

• Templates allow us not only to identify the target domain (vertical) of the query
(such as flights or weather) but also to make parameterized requests to them, by
mapping parts of the query to appropriate attributes of the given service. These
services can then display various widgets or direct displays on the SERP, such as
the ones shown in Fig. 7.3.

• Templates generalize well and can match queries that have not been observed in
training data or search logs.

• Templates are very efficient in terms of online performance (only simple
dictionary look-ups are required).

Such query templates may be crafted manually, e.g., by using regular expressions.
Manual template building, however, has obvious limitations, due to the large variety
of possible query formulations. A more scalable approach is to extract templates
automatically from search logs. Based on Agarwal et al. [1], we formally introduce
some concepts central to this problem in Sect. 7.4.1, followed by an explanation of
methods that can be used for mining query templates from query logs in Sect. 7.4.2.
Table 7.9 summarizes the notation used in this section.

7.4.1 Concepts and Definitions

Our objective is to direct queries to specific services or verticals, which will be
referred to as domains. We begin by characterizing the schema of a given domain.

Definition 7.2 (Domain Schema) The schema of a given domain D is a pair
SD = (A,W), where A = {a1, . . . ,an} is a set of attributes and W =
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Table 7.9 Notation used in
Sect. 7.4

Symbol Meaning

A Set of attributes

L Search log (L = (Q,S,C))

D Domain

q Query (q ∈ Q)

Q Set of queries in the search log

Q0 Set of seed domain queries

QD Domain queries (queries relevant for D)

Qs Set of click-through queries of site s

Qu Set of queries instantiated by template u

s Site (s ∈ S)
S Set of sites

SD Domain schema (SD = (A,W))

u Query template (u ∈ U )

U Template universe

Uq Set of templates generated by query q

V Vocabulary of terms

W Vocabulary of possible attribute values

{W(a1), . . . ,W(an)} is the vocabulary of the possible instances (i.e., values) of
each of the attributes.

For example, attributes in the jobs domain may include A = {company,location,
category}. The vocabulary of the company attribute includes names of all entities
that appear as possible values for that attribute:W(company) = {“Apple”, “Micro-
soft”, “Audi”, . . . }. Some attributes, like category, may require their own domain-
specific dictionary.

Definition 7.3 (Query Template) A query template u is a sequence of tokens u =
〈u1, . . . ,un〉, where each token ui is either a term or an attribute: ui ∈ V ∪A, where
V is a vocabulary of terms andA is the set of possible attributes. We further require
that at least one of the template tokens is an attribute: ∃ ui ∈ A.

For example, “jobs in 〈location〉,” consists of two terms and an attribute. This tem-
plate can instantiate different queries. The inverse operation is template generation:
Given a query, what templates can be generated from it?

Definition 7.4 (Template Instantiation and Generation) Given a query template
u = 〈u1, . . . ,un〉 and a query q = 〈q1, . . . ,qm〉, the template u instantiates q , or,
equivalently, query q generates u, with respect to the domain schema SD , if n = m

and for each token position i ∈ [1,n],
• if token i in the template is an attribute, then query term qi matches one of the

possible instances of that attribute: ui ∈ A �⇒ qi ∈ W(ui),
• otherwise (if token i in the template is a term), the query and template tokens are

equal: ui �∈ A �⇒ qi = ui ∈ V .
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Fig. 7.4 Template generation and instantiation

The set of queries instantiated by template u is denoted by Qu. The templates
generated from query q are denoted by Uq . See Fig. 7.4 for a visual illustration.

Note that the vocabulary of a given attribute, according to the domain schema, may
contain not only unigrams but n-grams as well (e.g., “new york”). When such an
n-gram attribute instance is matched in the query, we treat it as a single query token.

To see an example of template generation, consider the query q =“accounting
jobs in new york.” According to our jobs domain schema, “accounting” is an
instance of the category attribute and “new york” is an instance of the location
attribute. This query can therefore generate the following three templates:

ua =“〈category〉 jobs in new york,”

ub =“accounting jobs in 〈location〉,”
uc =“〈category〉 jobs in 〈location〉.”

Thus,Qq = {ua,ub,uc}.

7.4.2 Template Discovery Methods

Template discovery is the task of finding “good” templates (according to some
quality measure, such as precision, recall, or F1-score) from a search log L, for a
given domain D. Approaching this task as a ranking problem, the output is a ranked
list of templates, sorted by a template score.

We shall assume that the search log L = (Q,S,C) provides a set Q of queries
with click-throughsC to a set S of sites. Specifically, letQs denote the click-through
queries of site s ∈ S, i.e., Qs = {q : q ∈ Q,clicks(q,s) > 0}, where clicks(q,s)

is the number of times a result originating from site s was clicked in response to q

(over some time period). We shall further assume that we are given a seed set Q0 of
domain queries, i.e., queries that resulted in clicks on target pages.

Since our interest is in discovering templates for a given domain D, we shall
generate templates that match domain queries, i.e., queries that are relevant for that
domain. We writeQD to denote the set of domain queries (QD ⊆ Q). Let U denote
the template universe, i.e., templates that can be generated by at least one q ∈ QD .
Formally: U = {u : ∃ q ∈ QD,u ∈ Qq}.
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Algorithm 7.2: Classify & match [1]
Input: L = (Q,S,C), SD , Q0, τ
Output: Templates u, ranked by score(u)

1 classify Q toQD , trained on Q0, thresholded by τ

2 U ← {u : u ∈ Qq,∀ q ∈ QD}
3 foreach u ∈ U do
4 compute score(u)

5 end
6 return U sorted by score(u) /* Pu, Ru, or F1u */

7.4.2.1 Classify&Match

Agarwal et al. [1] introduce a natural baseline algorithm, called Classify&Match,
which operates in two stages. First, domain queries QD are separated from all
queries Q in the query log using automatic classification. Specifically, a query
classifier is trained on the seed domain queries Q0 using the method from [45],
with a threshold τ applied on the results. In the second stage, for each template
u ∈ U is scored against the (estimated) set of domain queries QD , using precision,
recall, or F-measure as score(u). See Algorithm 7.2.

Quality Measures To be able to measure the quality of a given template u, we
establish precision and recall, analogously to the standard retrieval measures. The
“target” set is the collection of domain queries,QD . We shall assume that this set is
clearly identified (e.g., by taking all queries that resulted in clicks on a set of target
pages). The “matched” set is Qu, i.e., queries that are instantiated by the template.
The precision of template u is the fraction of Qu that falls within QD:

Pu = QD ∩ Qu

Qu

. (7.10)

The recall of template u is the fraction of QD that is covered by Qu:

Ru = QD ∩ Qu

QD

. (7.11)

Ultimately, the overall quality of a template needs to be measured by a combination
of precision and recall, e.g., by using the F-measure (F1u, cf. Eq. (5.10)).

7.4.2.2 QueST

While simple and intuitive, the above naïve baseline approach suffers from two
shortcomings. First, queries are ambiguous and click-throughs are noisy by nature;
deterministically separating domain and non-domain queries is problematic.
Instead, probabilistic modeling is needed that can encapsulate the fuzziness
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Fig. 7.5 QST graph based on a toy-sized search log. Example is taken from [1]

of domain relevance. Second, search logs are not only noisy but also sparse.
By separating template mining into two separate stages, an important (indirect)
connection between sites and templates is lost. To overcome these issues, Agarwal
et al. [1] present an iterative inferencing framework, called QueST, over a tripartite
graph of queries, sites, and templates. Precision and recall is defined for each
type of node. The process of template discovery can then be seen as propagating
precision and recall across the query-site-template graph using random walks. We
shall elaborate on the details below.

QSTGraph Queries, sites, and templates are represented as a tripartite graph (QST
graph) GQST = (V ,E), where the vertices are V = Q ∪ S ∪ U , and there are two
types of edges E, with w(x,y) denoting the edge weight between nodes x and y:

• Query-site edges: For each query q that clicks to site s, there is an edge with the
click-through frequency as weight: ∀ s,∀ q ∈ Qs : w(q,s) = clicks(q,s).

• Query-template edges: For each query q that instantiates template u, there is an
edge in between with weight 1: ∀ u ∈ U,∀ q ∈ Qu : w(q,u) = 1.

Figure 7.5 displays the QST graph for a toy-sized example.

Probabilistic Modeling In practice, due to query ambiguity and noisy click-
throughs, the crisp separation of queries into target domains is rather problematic
(e.g., the query “microsoft” might be in job or in product). Therefore, we shall
generalize the deterministic notions of precision and recall from the previous
subsection to probabilistic measures. Let match(q,x) denote the event that query q

and x are semantically matching, where x may be a template u, a site s, or a domain
D. Further, we let P(match(q,x)) be the probability of semantic relevance between
q and x. Precision in Eq. (7.10) can then be rewritten in the “match” notation as the
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Algorithm 7.3: QueST [1]
Input: L = (Q,S,C), SD , Q0, P0, R0
Output: Templates u, ranked by score(u)

1 U ← {u : u ∈ Qq,∀ q ∈ QD}
2 construct GQST given Q, S, U , C
3 Ru,Rq,Rs ← QuestR on GQST with R0 /* inference recall */

4 Pu,Pq,Ps ← QuestP on GQST with P0 /* inference precision */

5 return U sorted by score(u) /* Pu, Ru, or F1u */

following conditional probability:

Pu = P (match(q,D),match(q,u))

P (match(q,u))
= P (match(q,D)|match(q,u)) .

Similarly, recall in Eq. (7.11) is rewritten as:

Ru = P (match(q,D),match(q,u))

P (match(q,D))
= P (match(q,u)|match(q,D)) .

Next, we extend the notions of precision and recall to sites and queries. This
is needed for being able to perform integrated inferencing on queries, sites, and
templates. The precision and recall of a site is modeled analogously to that of
templates. That is, precision measures how likely queries match domain D given
that they match site s; for recall, it is the other way around. Formally:

Ps = P (match(q,D)|match(q,s)) ,

Rs = P (match(q,s)|match(q,D)) .

The precision of a query q is simply its probability of matching the domain. The
recall of q is the fraction of domain queries that are actually q .

Pq = P (match(q,D)) ,

Rq = P
(
q ′ = q|match(q ′,D)

)
.

Inference Framework Let us remember our ultimate goal, which is to estimate
precision Pu and recall Ru for each template u ∈ U . As part of the integrated
inferencing process, we will also estimate precision and recall for other types of
vertices in the QST graph, i.e., for queries (Pq , Rq , ∀ q ∈ Q) and for sites (Ps ,
Rs , ∀ s ∈ S). The QueST algorithm, shown in Algorithm 7.3, infers precision and
recall for each vertex, then ranks templates by precision, recall, or the combined
F-measure. This process of propagating precision and recall may be interpreted
as random walks in opposite directions on the QST-graph. See Fig. 7.6 for an
illustration.
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Fig. 7.6 Inferencing precision and recall. QuestP is for precision and propagates backward.
QuestR is for recall and propagates forward. Dashed arrows signify random walks

Key to this semi-supervised learning process is to have a small set of seed queries
Q0. Each of these queries q0 ∈ Q0 is labeled with precision P̂q0 , indicating how
likely it is to fall within the target domain D. As it is infeasible for users to provide
seed recall, it is estimated as precision normalized across all seed queries:

R̂q0 = P̂q0∑
q ′∈Q0

P̂q ′
.

These initial precision and recall values get propagated in the QST-graph through
a set of inferencing equations, which we shall present below. For the derivation of
these equations, we refer to [1]. The algorithm is reported to converge in four to five
iterations [1].

QuestP Estimating Pu may be thought of as the probability of reaching the target
domain D in a (backward) random walk starting from u; see Fig. 7.6 (left). We take
as input the initial precision estimates for the seed queries, P̂q0,q0 ∈ Q0. Based
on this seed knowledge, the precision Pv of every vertex v ∈ VG is determined by
propagating precision from its neighboring vertices. The following three equations
specify inference for template vertices (Q → U), site vertices (Q → S), and query
vertices (U → Q ∧ S → Q), respectively.

Pu =
∑

q∈Qu

w(q,u)∑
q ′ w(q ′,u)

Pq ,

Ps =
∑

q∈Qs

w(q,s)∑
q ′ w(q ′,s)

Pq ,

Pq =
{
P̂q, if q ∈ Q0

α
∑

u∈U
w(q,u)∑
u′ w(q,u′)Pu + (1 − α)

∑
s∈S

w(q,s)∑
s′ w(q,s ′)Ps, otherwise .
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The parameter α controls the relative importance of templates and sites in inferring
the precision of queries (α = 0.5 in [1]). Note that for seed queries q ∈ Q0, the
initial precision P̂q is taken as “ground truth” and will not change.

QuestR The inference of probabilistic recall follows a very similar process. We
may think of Ru as the probability of arriving at node u in a (forward) random
walk starting from given seeds q0 ∈ Q0 originating from a hidden domain D;
see Fig. 7.6 (right). Recall is distributed to neighboring nodes using the following
inference equations:

Ru =
∑

q∈Qu

w(q,u)∑
u′ w(q,u′)

Rq ,

Rs =
∑

q∈Qs

w(q,s)∑
s ′ w(q,s′)

Rq ,

Rq = β1R̂q + β2

∑

u∈U

w(q,u)∑
q ′ w(q ′,u)

Ru + (1 − β1 − β2)
∑

s∈S

w(q,s)∑
q ′ w(q ′,s)

Rs .

Notice that, unlike for precision, the recall of seed queries will also get re-estimated.
Parameters β1 and β2 specify the relative importance of the different sources, R̂q ,
Ru, and Rs , when estimating Rq (with β1 = 0.1 and β2 = 0.45 in [1]).

7.5 Summary

The question driving this chapter has been how to obtain a semantically enriched
representation of the user’s information need from a keyword query. We have
looked at three specific forms of enrichment, all of which are semantic annotations
performed with the help of a knowledge repository. First, we have discussed how
to annotate queries with target types from a type taxonomy. Second, we have
performed entity linking on queries in a number of flavors, from merely recognizing
entity mentions to forming coherent interpretation sets. Third, we have generated
query templates, which provide structured interpretations of queries by mapping
parts of the query to the specific entity attributes. These structured interpretations
can then be used to make parameterized requests to particular search services (e.g.,
verticals). Having thus enriched the user’s query with inferred information about
their underlying information need, the response to that query can be made more
effectively.
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7.6 Further Reading

There is a rich and diverse body of research on understanding search queries that
was not possible to compress into this chapter. One important practical issue that
we have not discussed is spell checking. According to Cucerzan and Brill [20],
roughly 10–15% of Web search queries contain spelling errors. It is therefore
strongly recommended to perform spelling correction before commencing any of the
query analysis steps. For example, Blanco et al. [12] report on a 3% improvement
in entity linking performance, ascribed to spelling correction. Query refinement
(also known as query modification) refers to the automated process of changing ill-
formed queries submitted by users before scoring results. It includes tasks such as
spelling error correction, word splitting, word merging, phrase segmentation, word
stemming, and acronym expansion [29].

Han et al. [31] address the limitations of machine-based methods for query
interpretation by utilizing crowdsourcing in a hybrid crowd-machine framework.

The methods we have presented in this chapter do not make use of the searcher’s
context, such as age, gender, topic, or location. To a large extent, it is because
this type of information is unavailable in public test collections. Contemporary
web search engines leverage contextual information by serving personalized search
results according to the user’s profile [69, 72]. This, however, is typically done by
designing specific ranking features [2]. For example, Murnane et al. [57] utilize
personal context for named entity disambiguation by modeling user interests with
respect to a personal knowledge context (using Wikipedia).
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