
Chapter 5
Entity Linking

Machine-understanding of text is an extremely challenging problem. The impor-
tance of named entities in this regard has been acknowledged early on in natural
language processing research; being able to identify entities in a document is a key
step towards understanding what the document is about. Like words, entity names
can be ambiguous and the same entity may be referred to by many different names.
Human readers can use their prior knowledge in combination with the context of a
particular entity mention (i.e., a text span referring to an entity) to make a decision
between the possible choices; for machines, the automatic disambiguation of entity
mentions presents many difficulties and challenges. A key enabling component
in this process is the availability of large-scale knowledge repositories (such as
Wikipedia and various knowledge bases). Having a reference catalog of entities,
which are equipped with unique identifiers, the ambiguity of the recognized entity
mentions can be resolved by assigning (“linking”) them to the corresponding entries
in the entity catalog. For instance, there are at least three different Freebase IDs
that may be assigned to the mention “Ferrari,” depending on whether it refers to
the Italian sports car manufacturer (/m/02 kt), their racing division that competes
in Formula One (/m/0179v6), or the founding father Enzo Ferrari (/m/0gc0s).
The topic of this chapter, entity linking, is the task of annotating an input text with
entity identifiers from a reference knowledge repository (KR). The output of this
annotation process is illustrated in Fig. 5.1.

Linking entities in unstructured text to a structured knowledge repository can
greatly empower users in their information consumption activities. For instance,
readers of a document can acquire contextual or background information with a
single click or can gain easy access to related entities. Entity annotations can also
be used in downstream processing to improve retrieval performance or to facilitate
better user interaction with search results. We shall look at some of these usages in
detail in Part III. Finally, semantic enrichment of documents with entities can prove
useful in a number of other text processing tasks as well, including summarization,
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Fig. 5.1 Example of text annotated with entities from Wikipedia. Blue underlined text indicates
the linked entity mentions. Text is taken from https://en.wikipedia.org/wiki/Michael_Schumacher

text categorization, topic detection and tracking, knowledge base population, and
question answering.

In this chapter our focus is on long text, where it is implicitly assumed that there
is in principle always enough context to resolve all entity mentions unambiguously.
We discuss the case of short text, such as tweets and search queries, that can possibly
have multiple interpretations, in Chap. 7.

The remainder of this chapter is organized as follows. We begin by situating
entity linking in the broader context of entity annotation problems in Sect. 5.1.
Next, Sect. 5.2 presents an overview of the entity linking task, which is commonly
approached as a pipeline of three components. The following sections elaborate
on these components: mention detection (Sect. 5.4), candidate selection (Sect. 5.5),
and disambiguation (Sect. 5.6). Section 5.7 provides a selection of prominent,
publicly available entity linking systems. Evaluation measures and test collections
are introduced in Sect. 5.8. We list some useful large-scale resources in Sect. 5.9.

5.1 From Named Entity Recognition Toward Entity Linking

The importance of named entities has long been recognized in natural language
processing [64]. Before discussing various approaches to solving the entity linking
task, this introductory section gives a brief overview of a range of related entity
annotation tasks that have been studied in the past. Table 5.1 provides an overview.

https://en.wikipedia.org/wiki/Michael_Schumacher
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Table 5.1 Overview of named entity recognition and disambiguation tasks

Task Recognition Assignment

Named entity recognition Entities Entity type

Named entity disambiguation Entities Entity identifier/NIL

Wikification Entities and concepts Entity identifier/NIL

Entity linking Entities Entity identifier

<LOC>Silicon Valley </LOC> venture capitalist <PER>Michael Moritz </PER>
said that today ’s billion -dollar "unicorn " startups can learn from
<ORG>Apple</ORG> founder <PER>Steve Jobs</PER>.

Listing 5.1 Text annotated with ENAMEX entity types

5.1.1 Named Entity Recognition

The task of named entity recognition (NER) (also known as entity identification,
entity extraction, and entity chunking) is concerned with detecting mentions of
entities in text and labeling them each with one of the possible entity types.
Listing 5.1 shows an example.

Traditionally, NER has focused on three specific types of proper names: person
(PER), organization (ORG), and location (LOC). These are collectively known as
ENAMEX types [78]. Proper names falling outside the standard ENAMEX types are
sometimes considered under an additional fourth type, miscellaneous (MISC). From
an information extraction point of view, temporal expressions (TIMEX) and certain
types of numerical expressions (NUMEX) (such as currency and percentages) may
also be considered as named entities [78] (primarily because the techniques used
to recognize them can be similar). The ENAMEX types only allow for a coarse
distinction, whereas for certain applications a more fine-grained classification of
entities may be desired. Question answering, in particular, has been a driving
problem for the development of type taxonomies. Sekine et al. [71] developed an
extended named entity hierarchy, with 150 entity types organized in a tree structure.
In follow-up work, they extended their hierarchy to 200 types [70] and defined
popular attributes for each category to make their type taxonomy an ontology [69].
This approach, however, “relies heavily on an encyclopedia and manual labor” [69].
That is, why in recent years, (existing) type systems of large-scale knowledge
bases have been leveraged for NER. For instance, Ling and Weld [53] introduced
a (flat) set of 112 types manually curated from Freebase types, while Yosef et al.
[83] derived a fine-grained taxonomy with 505 types, organized in a 9 levels deep
hierarchy, from YAGO.

NER is approached as a sequence labeling problem, where a categorical label
(entity type or not-an-entity) is to be assigned to each term. The dominant technique
is to train a machine-learned model on a large collection of annotated docu-
ments. Widely used sequence labeling models are hidden Markov models [86] and
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conditional random fields [23]. Commonly used features include word-level features
(word case, punctuation, special characters, word suffixes and prefixes, etc.),
character-level n-grams, part-of-speech tags, dictionary lookup features (whether
the term is present in a dictionary, often referred to as gazetteer list), and document
and corpus features (other entities, position in document, meta information, corpus
frequency, etc.). We refer to Nadeau and Sekine [64] for a detailed overview of
traditional NER techniques. Recently, neural networks have been shown to achieve
state-of-the-art performance without resorting to hand-engineered features [50, 54].

Named entity recognition is a basic functionality in most NLP toolkits (e.g.,
GATE,1 Stanford CoreNLP,2 NLTK,3 or Apache OpenNLP4). NER techniques have
been evaluated at the MUC, IREX, CoNLL, and ACE conferences.

5.1.2 Named Entity Disambiguation

Named entity disambiguation (NED), also called named entity normalization or
named entity resolution, is the task of disambiguating entity mentions by assigning
entity identifiers to them from some catalog. It is usually assumed that entity
mentions have already been detected in the input text (i.e., it has been processed
by a NER system). NER is closely related to word sense disambiguation (WSD),
which is one of the earliest problems in natural language processing. WSD is
the process of identifying in what sense (meaning) a word is being used in the
given context, when the word has multiple meanings [65]. The possible senses are
assigned from some dictionary or thesaurus (typically, WordNet [59]). This way, one
can decide, e.g., “whether the word ‘church’ refers to a building or an institution in a
given context” [12]. WSD evaluations exclude proper noun disambiguation (that is
addressed separately in NED). It is easy to see that NED and WSD share similarities:
they attempt to resolve language ambiguity by mapping words or phrases to unique
identifiers. However, there are at least two key differences. First, the input in WSD
is a single token (e.g., “church”), while in NED it may be a sequence of tokens (e.g.,
“Church of England”) or an abbreviation (e.g., “CofE”). Second, WSD assumes that
each possible word sense has an entry in the dictionary and candidate senses are
provided directly; since “named entity mentions vary more than lexical mentions
in WSD” [32], candidate entity generation (i.e., identifying the set of entities
that the mention possibly refers to) is a critical step in NED. Furthermore, entity
mentions without a corresponding catalog entry need are annotated with a special
NIL identifier. Nevertheless, the two tasks may be seen as analogous, and early NED
approaches were indeed inspired by WSD research [58].

1https://gate.ac.uk/.
2http://stanfordnlp.github.io/CoreNLP/.
3http://www.nltk.org/.
4https://opennlp.apache.org/.

https://gate.ac.uk/
http://stanfordnlp.github.io/CoreNLP/
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The advent of Wikipedia has facilitated large-scale entity recognition and
disambiguation by providing a comprehensive catalog of entities along with other
invaluable resources (specifically, hyperlinks, categories, and redirection and dis-
ambiguation pages; cf. Sect. 2.2). The work by Bunescu and Paşca [2] was the first
to perform named entity disambiguation using Wikipedia and was soon followed by
others [12, 58].

Within the general problem area of named entity disambiguation, a number of
more specific tasks can be distinguished, cf. Table 5.1. Mihalcea and Csomai [58]
define wikification as “the task of automatically extracting the most important words
and phrases in the document, and identifying for each such keyword the appropriate
link to a Wikipedia article.” The entity linking task is to assign mentions of entities
in a document to entity identifiers in a reference knowledge repository. We make
a conscious distinction between wikification and entity linking, emphasizing that
the latter considers only proper names, while the former includes concepts too.
Nevertheless, the techniques for the two are essentially the same. We also wish to
point out that named entity disambiguation and entity linking are often considered
to be synonymous in the NLP community; we make a distinction between the two
because of the following important differences:

• Most NED datasets mark up entity mentions explicitly and supply these as part
of the input; entity linking is also concerned with the detection of these mentions
in the input text.

• Recognizing out-of-KR entities and marking them as NIL is an important sub-
problem within NED; in entity linking a “closed world” assumption is typically
made, i.e., all “possible meanings of a name are known upfront” [37].

We present evaluation methodology and resources in Sect. 5.8.

5.1.3 Entity Coreference Resolution

Another task related to but different from named entity disambiguation is entity
coreference resolution. Here, entity mentions are to be clustered “such that two
mentions belong to the same cluster if and only if they refer to the same entity” [75].
In this task, “there is no explicit mapping onto entities in a knowledge base” [36].
The task is addressed in two flavors: within-document and cross-document coref-
erence resolution. Coreference resolution has been evaluated at the MUC and ACE
conferences. We refer to Ng [66] for a survey of approaches.
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5.2 The Entity Linking Task

Definition 5.1 Entity linking is the task of recognizing entity mentions in text
and linking them to the corresponding entries in a knowledge repository.

For simplicity, we will refer to the input text as a document. Consider, e.g., the
mention “Ferrari” that can refer to any of the entities FERRARI (the Italian sports
car manufacturer), SCUDERIA FERRARI (the racing division), FERRARI F2007
(a particular model with which Ferrari competed during the 2007 Formula One
season), or ENZO FERRARI (the founder), among others. Based on the context
in which the mention occurs (i.e., the document’s content), a single one of these
candidate entities is selected and linked to the corresponding entry in a knowledge
repository. Our current task, therefore, is limited to recognizing entities for which a
target entry exists in the reference knowledge repository. Further, it is assumed that
the document provides sufficient context for disambiguating entities.

Formally, given an input document d , the task is to generate entity annotations for
the document, denoted by Ad , where each annotation a ∈ Ad is given as a triple a =
(e,mi,mt ): e is an entity (reference to an entry in the knowledge repository), and mi

and mt denote the initial and terminal character offsets of the entity’s mention in d ,
respectively. The linked entity mentions in Ad must not overlap.

Unless pointed out explicitly, the techniques presented below rely on a rather
broad definition of a knowledge repository: It provides a catalog of entities, each
with one or more names (surface forms), links to other entities, and, optionally,
a textual description. The attentive reader might have noticed that we are here
using the term knowledge repository as opposed to knowledge base. This is on
purpose. The reference knowledge repository that is most commonly used for entity
linking is Wikipedia, which is not a knowledge base (cf. Sect. 2.3). General-purpose
knowledge bases—DBpedia, Freebase, and YAGO—are also frequently used, since
these provide sufficient coverage for most tasks and applications. Also, mapping
between their entries and Wikipedia is straightforward. Alternatively, domain-
specific resources may also be used, such as the Medical Subject Headings (MeSH)
controlled vocabulary.5

We refer to Table 5.2 for the notation used throughout this chapter.

5.3 The Anatomy of an Entity Linking System

Over the years, a canonical approach to entity linking has emerged that consists of
a pipeline of three components [4, 32], as shown in Fig. 5.2.

5https://www.nlm.nih.gov/mesh/.

https://www.nlm.nih.gov/mesh/


5.3 The Anatomy of an Entity Linking System 153

Table 5.2 Notation used in this chapter

Symbol Meaning

a Annotation (a = (e,mi,mt ) ∈ Ad )

Ad Entity annotations for document d

d Document

de Textual representation (entity description) of entity e

e Entity (e ∈ E)

E Entity catalog (set of all entities)

Ed Set of all candidate entities in the document d

Em Set of candidate entities for mention m

Es Set of entities denoted by the surface form s

Le Set of links of an entity e

m Mention (text span) (m ∈ Md )

Md Set of mentions for document d

n(m,e) Number of times e is a link target of m

s Surface form (s ∈ S)

S Surface form dictionary

Fig. 5.2 Entity linking pipeline

Mention detection The first component, also known as extractor or “spotter,” is
responsible for the identification of text snippets that can potentially be linked
to entities. Commonly, mention detection is based on an extensive dictionary of
entity names and variations thereof, which we will refer to as (entity) surface
forms. Mention detection is closely related to the problem of named entity
recognition (cf. Sect. 5.1.1) and can indeed be performed with the help of NER
techniques. Since only mentions detected by the extractor are considered for
subsequent processing in the pipeline, the emphasis here is on achieving high
recall.

Candidate selection Next, a set (or ranked list) of candidate entities is generated
for each mention. This component is sometimes referred to as the searcher.
Given that the next step (disambiguation) is typically the computationally most
expensive one of all, “an ideal searcher should balance precision and recall to
capture the correct entity [for each mention] while maintaining a small set of
candidates” [32].

Disambiguation Finally, in the disambiguation step, a single best entity (or none)
is selected for each mention, based on the context. This task can be framed as a
ranking problem: Given a mention along with the set of candidate entities for that
mention, rank candidates based on their likelihood of being the correct referent
for the mention. The assigned score can be interpreted as the confidence in the
linking, and the annotation (mention-entity pair) may be rejected if its score falls
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below a certain (user-defined or machine-learned) threshold. This threshold may
also be used to balance the trade-off between precision and recall. Alternatively,
disambiguation may be approached as an inference problem, with the objective
of optimizing the coherence among all entity linking decisions in the document.

In the following three sections, we look at each of the processes corresponding to
the components in Fig. 5.2 in detail.

Before we continue, we note that the organization of the entity linking task along
these steps is the most commonly used, but certainly not the only possibility. One
particular alternative is where only two stages are distinguished: entity detection
and disambiguation [2]. With this approach, mention detection and candidate
selection are essentially performed jointly in a single step—a reasonable choice
when detection is performed using dictionary-based methods.

5.4 Mention Detection

The first component in the entity linking pipeline is responsible for the detection of
entity mentions in the document.

Definition 5.2 A mention is a text span (contiguous sequence of terms) in the
document that refers to a particular entity. The referred entity may or may not
exist in the reference knowledge repository.

Formally, for an input document d , the set of mentions Md is to be identified, where
each mention m ∈ Md is defined by its initial and terminal character offsets. Bear
in mind that the scope of this task is restricted to entities that are contained in the
knowledge repository. For that reason, virtually all modern entity linking systems
rely on a dictionary of known surface forms to detect mentions; see, e.g., [2, 12,
22, 37, 49, 57, 68]. In a sense, we work under a controlled vocabulary setting; if
the text span under consideration does not match any entry in the dictionary then
it will not be recognized as a mention, and, consequently, will not be linked to any
entity. Therefore, it is vitally important for the dictionary of surface forms to be
extensive, including common variations, nicknames, abbreviations, etc. We detail
the construction of the surface form dictionary in Sect. 5.4.1.

Assuming that this surface form dictionary S has been constructed, mention
detection works as follows. The input document is parsed and all possible text spans
are checked if they are present in S. Text spans are typically token n-grams at length
≤ n, with n set between 6 and 8. Figure 5.3 illustrates the process. This kind of
lexicon-based string matching can be performed efficiently using, e.g., the Aho–
Corasick algorithm [1]. To reduce the number of unnecessary dictionary lookups,
and thereby increase the efficiency and throughput of mention detection, certain
snippets may be disregarded. For example, a system might be instructed not to
annotate common words or text spans that are only composed of verbs, adjectives,
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Fig. 5.3 Illustration of dictionary-based mention detection. Detected mentions are boldfaced. The
boxes show some of the mentions being looked up (indicated by arrows) in the surface form
dictionary. Note the overlaps between mentions

adverbs, and prepositions [57]. Moreover, one might employ simple heuristics, for
instance, restrict detection to words that have at least one capitalized letter [16].

Another approach to mention detection is to use NER techniques from natural
language processing (cf. Sect. 5.1.1) to identify text spans (typically noun phrases)
that refer to named entities; see, e.g., [9, 37, 68]. In this case, an additional
string comparison step is involved, where the detected mentions are to be matched
against known entity surface forms using some string similarity measure, e.g.,
edit distance [85], character Dice score, skip bigram Dice score, or Hamming
distance [14]. Mentions that do not match any of the dictionary entries, even under
a relaxed matching criteria, are likely to denote new, out-of-KR entities.

In practice, it is often desirable that mention detection works directly on the
raw text, before any of the standard pre-processing steps, such as tokenization,
stopword removal, case-folding, etc., would take place. Sentence boundaries and
capitalization can provide cues for recognizing named entities.

5.4.1 Surface Form Dictionary Construction

Dictionary-based mention detection relies on known surface forms of entities. These
surface forms, also known as name variants or aliases, are organized in a dictionary
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structure (map), S : s → Es , where the surface form s is the key and it is mapped
to the set Es of entities.

The reference knowledge repository that entity linking is performed against
might already contain a list of name variants for each entity. Below, we focus on the
scenario where such lists of aliases are either unavailable or need to be expanded,
and discuss how entity surface forms may be obtained from a variety of sources.

Collecting Surface Forms from Wikipedia Wikipedia is a rich resource that has
been heavily utilized for extracting name variants. For a given entity, represented by
a Wikipedia article, the following sources may be used for collecting aliases:

• Page title is the canonical (most common) name for the entity (cf. Sect. 2.2.1.1).
• Redirect pages exist for alternative names (including spelling variations and

abbreviations) that are frequently used to refer to an entity (cf. Sect. 2.2.3.1).
• Disambiguation pages contain a list of entities that share the same name (cf.

Sect. 2.2.3.2).
• Anchor texts of links pointing to the article can be regarded as aliases of the

linked entity (cf. Sect. 2.2.2).
• Bold texts from first paragraph generally denote other name variants of the entity.

Recall that not all Wikipedia pages represent entities. With the help of a small set
of heuristic rules, it is possible to retain only those Wikipedia articles that refer to
named entities (i.e., entities with a proper name title) [2].

Collecting Surface Forms from Other sources The idea of using anchor texts
may be generalized from inter-Wikipedia links to links from (external) web
pages pointing to Wikipedia articles; one such dictionary resource is presented in
Sect. 5.9.1.

The task of identifying name variants is also known as the problem of entity
synonym discovery. Synonyms might be identified by expanding acronyms [84], or
leveraging search results [7, 14] or query click logs [6, 8] from a web search engine.

5.4.2 Filtering Mentions

The surface form dictionary can easily grow (too) large, since, in principle, it
contains all strings as keys that have ever been used as anchor text for a link
pointing to an entity. While our main focus is on recall, it is still desirable to
filter out mentions that are unlikely to be linked to any entity. In this subsection
we present two Wikipedia-based measures that may be used for that. Notice that
we intentionally call this procedure “filtering mentions,” as opposed to “filtering
surface forms:” it may be performed early on in the pipeline (i.e., even during the
construction of the surface form dictionary) or later, as part of candidate selection
or disambiguation.
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In their seminal work, Mihalcea and Csomai [58] introduce the concept of
keyphraseness, which is an estimate of how likely it is that a given text span will
be linked to an entity:

P(keyphrase|m) = |Dlink(m)|
|D(m)| , (5.1)

where |Dlink(m)| is the number of Wikipedia articles where m appears as an anchor
text of a link, and |D(m)| is the number of Wikipedia articles that contain m.

It is essentially the same idea that is captured under the notion of link probability
in [22]:

P(link|m) = nlink(m)

n(m)
, (5.2)

where nlink(m) is the number of times mention m appears as an anchor text of a link,
and n(m) denotes the total number of times mention m occurs in Wikipedia (as a
link or not).

The main difference between keyphraseness and link probability is that the
former considers at most one occurrence (and linking) of a mention per document,
while the latter counts all occurrences. (An analogy can be drawn to document
frequency vs. term frequency in term importance weighting.) To get a more reliable
estimate, it is common to discard mentions that are composed of a single character,
made up of only numbers, appear too infrequently in Wikipedia (e.g., less than five
times [58]), or have too low relative frequency (e.g., P(link|m) < 0.001 [22]).

5.4.3 Overlapping Mentions

It should be pointed out that the recognized mentions may be overlapping (cf.
Fig. 5.3), while the final entity annotations must not overlap. To deal with this, either
of two main strategies is employed: (1) containment mentions are dealt with in the
mention detection phase, e.g., by dropping a mention if it is subsumed by another
mention [29] or by selecting the mention with the highest link probability [22], or
(2) overlapping mentions are kept and the decision is postponed to a later stage
(candidate selection or disambiguation).

5.5 Candidate Selection

The detection of entity mentions is followed by the selection of candidates for each
mention. Let Em denote the set of candidate entities for mention m. Potentially,
all entities with surface forms matching the mention are candidates: Em = {e :
m ∈ Se}. However, as Mendes et al. [57] point out, “candidate selection offers a
chance to narrow down the space of disambiguation possibilities.” Selecting fewer
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Fig. 5.4 Ranking candidate entities based on commonness

candidates can greatly reduce computation time, but it may hurt recall if performed
too aggressively. In the process of entity linking, candidate selection plays a crucial
role in balancing the trade-off between effectiveness and efficiency. Therefore,
candidate selection is often approached as a ranking problem: Given a mention m,
determine the prior probability of an entity e being the link target for m: P(e|m).
The probabilistic interpretation comes naturally here as it emphasizes the fact that
this estimate is based only on the mention, a priori to observing its context. We note
that this estimate does not have to be an actual probability; any monotonic scoring
function may be used. The top ranked candidate entities, based on a score or rank
threshold, are then selected to form Em.

A highly influential idea by Medelyan et al. [56] is to take into account the
overall popularity of entities as targets for a given mention m in Wikipedia. The
commonness of an entity e is defined as the number of times it is used as a link
destination for m divided by the total number of times m appears as a link. In other
words, commonness is the maximum-likelihood probability of entity e being the
link target of mention m:6

P(e|m) = n(m,e)
∑

e′∈E n(m,e′)
. (5.3)

Commonness, while typically estimated using Wikipedia (see, e.g., [22, 61]), is not
bound to that. It can be based on any entity-annotated text that is large enough to
generate meaningful statistics. Using Wikipedia is convenient as the links are of high
quality and can be extracted easily from the wiki markup, but a machine-annotated
corpus may also be used for the same purpose (see Sect. 5.9.2). We also note that
commonness may be pre-computed and conveniently stored in the entity surface
form dictionary along with the corresponding entity; see Fig. 5.4.

6The attentive reader may notice the similarity to link probability in Eq. (5.2). The difference is that
link probability is the likelihood of a given mention being linked to any entity, while commonness
is the likelihood of a given mention referring to a particular entity.
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It has also been shown that commonness follows a power law distribution with a
long tail of extremely unlikely aliases [61]. Thus one can safely discard entities at
the tail end of the distribution (0.001 is a sensible threshold).

5.6 Disambiguation

The last step, which is the heart and soul of the entity linking process, is
disambiguation: selecting a single entity, or none, from the set of candidate entities
identified for each mention. The simplest solution to resolving ambiguity is to
resort to the “most common sense,” i.e., select the entity that is most commonly
referred to by that mention. This is exactly what the commonness measure, which
was discussed in the previous section, captures; see Eq. (5.3). Despite being a naïve
solution, it “is a very reliable indicator of the correct disambiguation” [68]. Relying
solely on commonness can yield correct answers in many cases and represents a
solid baseline [43]. For accurate entity disambiguation, nevertheless, we need to
incorporate additional clues.

Modern disambiguation approaches consider three types of evidence: prior
importance of entities and mentions, contextual similarity between the text
surrounding the mention and the candidate entity, and coherence among all
entity linking decisions in the document.

We start off in Sect. 5.6.1 by presenting a set of features for capturing the above
three types of evidence. Next, in Sect. 5.6.2, we discuss specific disambiguation
approaches that combine this evidence in some way (e.g., using supervised learning
or graph-based approaches). The selection of the single best entity for each mention
may optionally be followed by a subsequent pruning step: rejecting low confidence
or semantically meaningless annotations. We discuss pruning in Sect. 5.6.3.

5.6.1 Features

We discuss features by dividing them into three main groups:

• Prior importance features may rely on the entity alone, f (e), or the mention and
the entity in combination, f (e,m). In either case, the score is estimated based on
prior importance without taking the mention’s context into account.

• Contextual features are guided by the intuition that the context surrounding an
ambiguous entity mention provides valuable additional information for disam-
biguating it. These features could be written as f (e,m;d), emphasizing that the
context is based on the input document. Since we process one document at a
time, we will omit d for notational convenience, and simply write f (e,m).
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Table 5.3 Features for entity disambiguation

Group Feature Description

Prior importance (context-independent)

P (keyphrase|m) Keyphraseness (likelihood of m being linked)

P (link|m) Link probability (likelihood of m being linked)

P (e|m) Commonness (the probability of e being the link target of m)

Plink(e) Fraction of links in the knowledge repository pointing to e

Ppageviews(e) Fraction of (Wikipedia) page views e receives

Contextual

simF (m,e) Similarity between the context of a mention dm and the

entity’s description de according to some similarity function

F (e.g., cosine, Jaccard, dot product, KL divergence, etc.)

Entity-relatedness

WLM(e,e′) Wikipedia link-based measure, a.k.a. relatedness

PMI(e,e′) Pointwise mutual information

Jaccard(e,e′) Jaccard similarity

χ2(e,e′) χ2 statistic

P (e′|e) Conditional probability

• Entity-relatedness features aim at measuring the degree of semantic relatedness
between a pair of entities, f (e,e′). The ultimate goal is to measure the coherence
of entity annotations in a document; as we shall see later, this boils down to
pairwise entity relatedness.

We discuss these feature groups in turn, highlighting some of the most effective
features within each. Table 5.3 provides an overview. The reader will note the large
number of features, which reflects the broad diversity of factors that need to be taken
into account for effective disambiguation. Unfortunately, there is no systematic and
comprehensive feature comparison available. The decision on what features to use
(or design) should take into account the characteristics of the particular dataset and
examine the trade-off between effectiveness and efficiency.

5.6.1.1 Prior Importance Features

The first group of features consider a single mention m and/or entity e, where e is
one of the candidate annotations for that mention, e ∈ Em. Neither the text nor other
mentions in the document are taken into account, hence the context-independence.
We have already introduced keyphraseness (Eq. (5.1)), link probability (Eq. (5.2)),
and commonness (Eq. (5.3)), which all belong to this category. These are all related
to the popularity of a mention or the popularity of a particular entity given a mention.
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To measure the popularity of the entity itself, we present two simple estimates.
The first feature is link prior, defined as the fraction of all links in the knowledge
repository that are incoming links to the given entity [68]:

Plink(e) = |Le|
∑

e′∈E |Le′ | ,

where |Le| denotes the total number of incoming links entity e has. In the case of
Wikipedia, Le is the number of all articles that link to the entity’s Wikipedia page.
In the case of a knowledge base, where entities are represented as SPO triples, it is
the number of triples where e stands as object.

Entity popularity may also be estimated based on traffic volume, e.g., by utilizing
the Wikipedia page view statistics of the entity’s page [29]:

Ppageviews(e) = pageviews(e)
∑

e′∈E pageviews(e′)
,

where pageviews(e) denotes the total number of page views (measured over a certain
time period).

When mention detection is performed using NER as opposed to a dictionary-
based approach, the match between the mention and the candidate entity’s known
surface forms should also be considered. Common name-based similarity features
include, among others, whether (1) the mention matches exactly the entity name,
(2) the mention starts or ends with the entity name, (3) the mention is contained
in the entity name or vice versa, and (4) string similarity between the mention and
the entity name (e.g., edit distance) [72]. Additionally, the type of the mention, as
detected by the NER (i.e., PER, ORG, LOC, etc.), may be compared against the
type of the entity in the knowledge repository [14].

5.6.1.2 Contextual Features

One of the simplest and earliest techniques is to compare the surrounding context of
a mention with the textual representation (entity description) of the given candidate
entity [2, 12]. The context of a mention, denoted as dm, can be a window of text
around the mention, such as the sentence or paragraph containing the mention, or
even the entire document. The textual representation of the entity, denoted as de, is
based on the entity’s description in the knowledge repository. As disambiguation is
most commonly performed against Wikipedia, it could be, e.g., the whole Wikipedia
entity page [2], the first description paragraph of the Wikipedia page [49], or the top-
k terms with the highest TF-IDF score from the entity’s Wikipedia page [68].7

7Entity descriptions may also be assembled from a document collection, cf. Sect. 3.2.1. However,
those approaches assume that some documents have already been annotated with entities.
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Both the mention’s context and the entity are commonly represented as bag-of-
words. Let simF (m,e) denote the contextual similarity between the mention and the
entity, using some similarity function F . There is a range of options for the function
F , with cosine similarity being the most commonly used, see, e.g., [2, 49, 57, 68]:

simcos(m,e) = dm · de

‖ dm ‖ ‖ de ‖ ,

where dm and de are the term vectors corresponding to the mention’s and entity’s
representations. Other options for the similarity function F include (but are
not limited to): dot product [49], Kullback–Leibler divergence [37], or Jaccard
similarity (between word sets) [49].

The representation of context does not have to be limited to bag-of-words.
It is straightforward to extend the notion of term vectors to concept vectors, to
better capture the semantics of the context. Concepts to embed as term vectors
could include, among others, named entities (identified using NER) [14], Wikipedia
categories [12], anchor text [49], or keyphrases [37].

Additional possibilities to compute context similarity include topic modeling [67,
84] and augmenting the entity’s representation using an external corpus [52].

5.6.1.3 Entity-Relatedness Features

In addition to the textual context around a mention, other entities that co-occur
in the document can also serve as clues for disambiguation. It can reasonably be
assumed that a document focuses on one or at most a few topics. Consequently,
the entities mentioned in a document should be topically related to each other. This
topical coherence is captured by developing some measure of relatedness between
a pair of entities. The pairwise entity relatedness scores are then utilized by the
disambiguation algorithm to optimize coherence over the set of candidate entities in
the document. Notice that we have already touched upon this idea briefly earlier, in
Sect. 5.6.1.2, when considering named entities as context. The key difference is that
there named entities were treated as string tokens while here we consider the actual
entities (given by their identifiers) that are candidates for a particular mention.

Milne and Witten [60] formalize the notion of semantic relatedness for entity
linking by introducing the Wikipedia link-based measure (WLM), which in later
works is often referred to simply as relatedness. Modeled after the normalized
Google distance measure [10], a close relationship is assumed between two entities
if there is a large overlap between the entities linking to them:

WLM(e,e′) = 1 − log (max(|Le|,|Le′ |)) − log(|Le ∩ Le′ |)
log(|E |) − log (min(|Le|,|Le′ |)) , (5.4)

where Le is the set of entities that link to e and |E | is the total number of entities. If
either of the entities has no links or the two entities have no common links, the score
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Fig. 5.5 Obtaining the Wikipedia link-based measure between MICHAEL SCHUMACHER and
SCUDERIA FERRARI from incoming Wikipedia links (only a selection of links is shown). Solid
arrows represent shared links

is set to zero. Figure 5.5 provides an illustration. While relatedness has originally
been proposed for incoming Wikipedia links, it may also be considered for outgoing
links [68] or for the union of incoming and outgoing links [5]. Also notice that we
can equivalently work with relationships in a knowledge base.8

Milne and Witten’s relatedness measure is the most widely used one and is
regarded as the state of the art (see, e.g., [22, 34, 37, 49, 61, 68]), but there are
other options, including the Jaccard similarity [30], pointwise mutual information
(PMI) [68], or the χ2 statistic [5]. Notice that all these are symmetric, i.e., f (e,e′) =
f (e′,e) for a particular relatedness function f .

Ceccarelli et al. [5] argue that “a relatedness function should not be symmetric.”
For example, the relatedness of the UNITED STATES given NEIL ARMSTRONG

is intuitively larger than the relatedness of NEIL ARMSTRONG given the UNITED

STATES. One effective asymmetric feature they introduce is the conditional proba-
bility of an entity given another entity:

P(e′|e) = |Le′ ∩ Le|
|Le| .

There is obviously a large number of ways one could define relatedness. As we shall
see later (in Sect. 5.6.2), having a single relatedness function is preferred to keep
the disambiguation process simple (or at least not to make it more complicated).
Ceccarelli et al. [5] show that various relatedness measures (a total of 27 in their
experiments) can effectively be combined into a single relatedness score using a
machine learning approach.

8There is a link from e1 to e2 if there exists an SPO triple where e1 appears as subject and e2
appears as object (the predicate is not considered).
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All the features we have presented here so far are based on links. The main
reason for favoring link-based features over content-based ones is that the former
are cheaper to compute. We need to keep in mind, however, that for entities that do
not have many links associated with them (e.g., long-tail entities or entities that have
been only recently added to the knowledge repository), these techniques do not work
very well. In those cases, one can estimate the semantic relatedness between a pair
of entities based on (1) the similarity of the contexts in which they occur (e.g., using
keyphrases [36] or n-grams [73]) or (2) the assigned types (e.g., by considering their
distance in the type hierarchy [73]).

5.6.2 Approaches

Formally, the disambiguation task is to find the assignment of entities to mentions in
a given document: � : Md → E ⋃{∅}, where ∅ denotes the NIL entity assignment.
We shall now present various methods and algorithms for establishing this mapping.

Effective disambiguation needs to combine local compatibility (which
includes prior importance and contextual similarity) and coherence with the
other entity linking decisions in the document.

The overall objective function thus can be written as:

�∗ = arg max
�

( ∑

(m,e)∈�

φ(m,e) + ψ(�)
)

,

where φ(m,e) denotes the local compatibility between the mention and the assigned
entity, ψ(�) is the coherence function for all entity annotations in the document, and
� is a solution (set of mention-entity pairs). This optimization problem is shown to
be NP-hard [37, 49, 68, 73], therefore approaches need to resort to approximation
algorithms and heuristics.

We distinguish between two main disambiguation strategies, based on whether
they consider mentions (1) individually, one mention at a time, or (2) collectively,
all mentions in the document jointly.

Individual disambiguation approaches most commonly cast the task of entity
disambiguation as a ranking problem. Each mention is annotated with the highest
scoring entity (or as NIL, if the highest score falls below a given threshold):

�∗
local(m) = arg max

e∈Em

score(e;m) . (5.5)

As discussed earlier, this ranking may be based on a prior popularity (i.e., common-
ness) alone: score(e;m) = P(e|m). For effective disambiguation, however, it is key
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Table 5.4 Entity disambiguation approaches

Approach Context Entity interdependence

Most common sense None None

Individual local disambiguation Text None

Individual global disambiguation Text and entities Pairwise

Collective disambiguation Text and entities Collective

to consider the context of the mention. Learning-to-rank approaches are well suited
for combining multiple signals and have indeed been the most popular choice for
this task, see, e.g., [2, 14, 68, 73, 84, 85]. It is important to point out that the fact that
mentions are disambiguated individually does not imply that these disambiguation
decisions are independent of each other. The interdependence between entity linking
decisions may be ignored or may be incorporated (in a pairwise fashion). We refer
to these two variants as local and global approaches, respectively.

Instead of considering each mention individually, once, one might attempt to
jointly disambiguate all mentions in the text. Collective disambiguation typically
involves an inference process where entity assignments are iteratively updated until
some target criterion is met. Table 5.4 provides an overview of approaches.9

A final note before we enter into the discussion of specific methods. It is
generally assumed (following the one sense per discourse assumption [26]) that
all the instances of a mention refer to the same entity within the document. If
that assumption is lifted, one might employ an iterative algorithm that shrinks the
disambiguation context from document to paragraph or even to the sentence level,
if necessary [12].

5.6.2.1 Individual Local Disambiguation

Early entity linking approaches [2, 58] focused on local compatibility based
on contextual features, such as the similarity between the document and the
entity’s description. Statistics extracted from large-scale entity-annotated data (e.g.,
Wikipedia), i.e., prior importance, can also be incorporated in the local compatibility
score. That is, score(e;m) = φ(e,m). The local compatibility score can be written
in the form of a simple linear combination of features:

φ(e,m) =
∑

i

λifi(e,m) , (5.6)

9Certain approaches from the literature are not immediately straightforward to categorize. We are
guided by the following simple rule: It is individual disambiguation if a candidate entity is assigned
a score once, and that score does not change. In the case of collective disambiguation, the initially
assigned score changes over the course of multiple successive iterations.
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where fi(e,m) can be either a context-independent or a context-dependent feature
(see Sects. 5.6.1.1 and 5.6.1.2), and λi is the corresponding feature weight. Note that
other entity assignments in the document are not taken into consideration.

The idea is to learn the “optimal” combination of features (which is not limited to
being a linear combination) from training data. Working within a learning-to-rank
framework, each entity-mention pair becomes an instance, described by a feature
vector. In the training dataset, the target label is set to 1 for the correct entity and 0
for all other candidate entities.

5.6.2.2 Individual Global Disambiguation

Entity linking can be improved by considering what other entities are mentioned
in the document, an idea that was first proposed by Cucerzan [12]. The underlying
assumption is that “entities are correlated and consistent with the main topic of
the document” [27]. Cucerzan [12] attempts to find an assignment of entities to
mentions such that it maximizes the similarity between each entity in the assignment
and all possible disambiguations of all other mentions in the document. This can
be incorporated as a feature function f (e,m;d̃), where d̃ is a high-dimensional
extended document vector that contains all candidate entities for all other mentions
in the document.10 The function then measures the similarity as a scalar product
between the entity and the extended document given a particular representation (e.g.,
topic words or IDs). A disadvantage of this approach is that the extended document
vector contains noisy data, as it includes all the incorrect disambiguations as well.

Another disambiguation strategy, proposed by Milne and Witten [61], is to
first identify a set of unambiguous mentions. These are then used as context to
disambiguate the other mentions in the document. The two main features used
for disambiguation are commonness (Eq. (5.3)) and relatedness (Eq. (5.4)). The
disadvantage of this approach is the assumption that there exist unambiguous
mentions (which, in practice, translates to documents needing to be sufficiently
long).

The general idea behind global approaches is to optimize the coherence of the
disambiguations (entity linking decisions). A true global optimization would be NP-
hard, however a good approximation can be computed efficiently by considering
pairwise interdependencies for each mention independently. For this reason, the
pairwise entity relatedness scores (which we have introduced in Sect. 5.6.1.3) need
to be aggregated into a single number. This number will tell us how coherent the
given candidate entity is with the rest of the entities in the document. We discuss
two specific realizations of this idea.

Ratinov et al. [68] first perform local disambiguation and use the predictions
of that system (i.e., the top ranked entity for each mention) in a second, global

10Following Cucerzan [12], we use the distinctive notation d̃ to “emphasize that this vector contains
information that was not present in the original document.”
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disambiguation round. Let E� denote the set of linked entities identified by the
local disambiguator. The coherence of entity e with all other linked entities in the
document is given by:

ψj(e,E�) =
∑

e′∈E�

e′ 
=e

gj (e,e
′) , (5.7)

where gj is a particular pairwise entity relatedness function. We may now extend
our scoring function with a second component consisting of global features:

score(e;m) =
∑

i

λifi(e,m)

︸ ︷︷ ︸
φ(e,m)

+
∑

j

(
λj

∑

e′∈E�

e′ 
=e

gj (e,e
′)

︸ ︷︷ ︸
ψj (e,E�)

)
.

The λi and λj coefficients are trained using supervised learning.
An alternative approach is given by Ferragina and Scaiella [22], capitalizing on

the fact that commonness and Milne and Witten’s relatedness are the two most
important features. Their system, called TAGME, introduces a voting mechanism,
illustrated in Fig. 5.6, that allows for the combination of these two features, without
involving supervised learning. Similarly to Cucerzan [12], a score for a given
mention-entity pair is determined by a “collective agreement” between the entity
and all possible disambiguations of all other mentions in the document, but in
TAGME this is achieved computationally much more efficiently (specifically, time
complexity is linear in the number of mentions [21]). Formally, given the set of all
mentions in the document Md , the score of a candidate entity e for a particular
mention m is defined as:

score(e;m) =
∑

m′∈Md

m′ 
=m

vote(m′,e) . (5.8)

Fig. 5.6 TAGME’s voting mechanism. Solid lines connect mentions with the respective candidate
entities. A given candidate entity (indicated with the thick border) receives votes from all candidate
entities of all mentions in the text (dashed lines)
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The vote function estimates the agreement between the given entity e and all
candidate entities of mention m′. It is computed as the average relatedness between
each possible disambiguation e′ of m′, weighted by its commonness score:

vote(m′,e) =
∑

e′∈Em′ WLM(e,e′)P (e′|m′)
|Em′ | .

Simply returning the entity with the highest score, as defined by Eq. (5.8), is
insufficient to obtain an accurate disambiguation, it needs to be combined with
other features. For example, this score could be plugged into Eq. (5.6) as a feature
function fi . Another possibility is proposed in [22] in the form of a simple but robust
heuristic. Only the highest scoring entities are considered for a given mention, then
the one with the highest commonness score among those is selected:

�(m) = arg max
e∈Em

{P(e|m) : e ∈ topε[score(e;m)]} . (5.9)

That is, the score defined in Eq. (5.8) merely acts as a filter. According to Eq. (5.9),
only entities in the top ε percent of the scores are retained (with ε set to 30% in [21]).
Out of the remaining entities, the most common sense of the mention will be finally
selected.

Individual disambiguation approaches are inherently limited to incorporating
interdependencies between entities in a pairwise fashion. This still enforces some
degree of coherence among the linked entities, while remaining computationally
efficient. Next, we will look at how to model and exploit interdependencies globally.

5.6.2.3 Collective Disambiguation

The main difference when moving from individual to collective disambiguation
is how the maximization of coherence between all entity linking decisions in the
document is attempted. As we have already pointed out, this optimization is NP-
hard. Kulkarni et al. [49] were the first to undertake direct optimization by turning
it into a binary integer linear program, and then relaxing it to a linear program (LP).
Coherence is measured as the sum of pairwise relatedness between all pairs of linked
entities in the document. They show that LP relaxations often give optimal integral
solutions. Kulkarni et al. [49] also present a direct greedy hill-climbing approach
as an alternative to linear programming, which is comparable both in speed and
accuracy to linear programming relaxation.

More recent approaches use a graph structure for collective disambiguation, an
idea that was proposed by two independent groups, at about the same time [34, 37].
Mention–entity and entity–entity relations in a document can naturally be repre-
sented as a weighted (undirected) graph (termed referent graph in [34]). The node
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set contains all mentions and all candidate entities corresponding to those mentions.
There are two types of edges:

• Mention–entity edges capture the local compatibility between the mention and
the entity. Edge weights w(m,e) could be measured using a combination of
context-independent and context-dependent features, as expressed in Eq. (5.6).

• Entity–entity edges represent the semantic relatedness between a pair of entities.
Edge weights, w(e,e′), are set based on Milne and Witten’s relatedness (cf.
Eq. (5.4)) [34, 37], but other entity-relatedness functions may also be used.

This graph representation is illustrated in Fig. 5.7. While there is no additional type
of evidence compared to what was considered before (namely, local compatibility
and pairwise entity relatedness), this representation allows for various graph algo-
rithms to be applied. We note that the graph construction might involve additional
heuristics (e.g., “robustness tests” in [37]); we omit these in our discussion.

Hoffart et al. [37] pose the problem of entity disambiguation as that of finding
a dense subgraph that contains “all mention nodes and exactly one mention-entity
edge for each mention.” They propose a greedy algorithm, shown in Algorithm 5.1,
that starts from the full graph and iteratively removes the entity node with the lowest
weighted degree (along with all its incident edges), provided that each mention node
remains connected to at least one entity. The weighted degree of an entity node,
wd(e) is defined as the sum of the weights of its incident edges. The density of the
graph is measured as the minimum weighted degree among its entity nodes. From
the graphs that are produced in each iteration, the one with the highest density is
kept as the solution. This ensures that weak links are captured and the solution is
not dominated by a few prominent entities with very high weighted degree.

Fig. 5.7 Graph representation for collective disambiguation. Mention nodes are shaded, entity
nodes are rounded rectangles. Note that the dashed arrows are not part of the graph. Thick lines
indicate the correct mention-entity assignments. Example is taken from [34]
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A number of heuristics are applied to ensure that the algorithm is robust. In a pre-
processing phase, entities that are “too distant” from the mention nodes are removed.
For each entity, the distance from the set of mention nodes is computed as a sum
of the squared shortest path distances. Then, only the k × |Md | closest entities are
kept (Ec), where |Md | is the number of mentions in the document, and k is set
to 5 based on experiments. This smaller graph is used as the input to the greedy
algorithm. At the end of the iterations, the solution graph may still contain mentions
that are connected to more than one entity. The final solution, which maximizes
the sum of edge weights, is selected in a post-processing phase. If the graph is
sufficiently small, it is feasible to exhaustively consider all possible mention-entity
pairs. Otherwise, a faster local (hill-climbing) search algorithm may be used.

Han et al. [34] employ a different graph-based algorithm, random walk with
restarts [79], for collective disambiguation. “A random walk with restart is a
stochastic process to traverse a graph, resulting in a probability distribution over
the vertices corresponding to the likelihood those vertices are visited” [31].

Algorithm 5.1: Graph-based entity disambiguation [37]
Input: weighted graph G of mentions and entities
Output: result graph with one edge per mention

/* pre-processing phase */

1 foreach entity node e do
2 diste ← sum of (weighted) shortest paths to each mention
3 end
4 keep entities Ec with lowest diste, drop the others

/* main loop */

5 objective ← mine∈Ec
wd(e)/|Ec |

6 while G has non-taboo entity do
/* entity is taboo if last candidate for any mention */

7 e ← non-taboo entity with lowest wd(e)
8 Ec ← Ec \ e

9 remove e with all its incident edges from G

10 mwd ← mine∈Ec wd(e)|Ec |
11 if mwd > objective then
12 solution ← G

13 objective ← mwd
14 end
15 end

/* post-processing phase */

16 if feasible then
17 process solution by enumerating all possible mention-entity pairs
18 else
19 process solution by local search
20 end
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Let v be a starting vector (initial evidence), holding the prior importance
associated with each mention node:

v(m) = TFIDF(m)
∑

m′∈Md
TFIDF(m′)

,

where TFIDF(m) is the TF-IDF score of mention m.11 For entity nodes v(e) =
0. Notice that this formulation assumes a directed graph, with edges going from
mentions to entities, but not the other way around.

Given the initial evidence, it is propagated through the two types of edges in
the graph. We write T to denote the evidence propagation matrix. The evidence
propagation ratio from a mention to its candidate entities is defined as:

T(m → e) = w(m → e)
∑

e′∈Em
w(m → e′)

,

and between entities is defined as:

T(e → e′) = w(e → e′)
∑

e′′∈Ed
w(e → e′′)

.

Let ri be a vector holding the probability distribution over nodes at iteration i,
corresponding to the likelihood that those nodes are visited. Initially, it is set to
be the starting (initial evidence) vector: r0 = v. Then, the probability distribution is
updated iteratively until convergence:

ri+1 = (1 − α) ri T + α v ,

where α is the restart probability (set to 0.1 in [34]).
Once the random walk process has converged to a stationary distribution r, the

referent entity for mention m is determined according to:

�(m) = arg max
e∈Em

φ(m,e) r(e) ,

where φ(m,e) is the local compatibility between the mention and the entity,
according to Eq. (5.6).

In conclusion, collective disambiguation approaches tend to perform better than
individual ones, and they work especially well “when a text contains mentions
of a sufficiently large number of entities within a thematically homogeneous
context” [37]. On the other hand, the space of possible entity assignments grows
combinatorially, which takes a toll on efficiency, in particular for long documents.

11The TF component is the normalized frequency of the mention in the document, while the IDF
part can be computed using Wikipedia or the Google N-gram dataset.
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5.6.3 Pruning

Candidate annotations produced by the disambiguation phase can possibly be
pruned to discard meaningless or low-confidence annotations. The simplest possible
solution is to control this by a confidence threshold; if score(e;m) < τ then back
off from annotating mention m. The threshold τ can be learned from training data.

More advanced ways to pruning are also conceivable; we highlight three of
those here. Milne and Witten [60] employ a machine learned classifier to retain
only entities that are “relevant enough” to be linked in the sense of what a
human editor would consider annotation-worthy (for instance, in Wikipedia, only
the first occurrence of an entity is linked). The set of features includes link
probability, relatedness, disambiguation confidence, and location and spread of
mentions. Ratinov et al. [68] approach pruning as an optimization problem: They
decide, for each mention, whether switching the top-ranked disambiguation to NIL
would improve the objective function. Finally, Ferragina and Scaiella [22] define
the coherence of entity e with all other candidate entity annotations in the text as:

coherence(e,E�) = 1

|E�| − 1

∑

e′∈E�

e′ 
=e

WLM(e,e′) ,

where E� is the set of linked entities. For each entity, this coherence score is com-
bined with link probability (either as a simple average or as a linear combination)
into a pruning score ρ, which is then checked against the pruning threshold.

5.7 Entity Linking Systems

Table 5.5 presents a selection of prominent entity linking systems that have been
made publicly available. Their brief summaries follow below.

Table 5.5 Overview of publicly available entity linking systems

System Reference KR Online demo Web API Source code

AIDAa YAGO2 Yes Yes Yes (Java)

DBpedia Spotlightb DBpedia Yes Yes Yes (Java)

Illinois Wikifierc Wikipedia No No Yes (Java)

TAGMEd Wikipedia Yes Yes Yes (Java)

Wikipedia Minere Wikipedia No No Yes (Java)
ahttp://www.mpi-inf.mpg.de/yago-naga/aida/
bhttp://spotlight.dbpedia.org/
chttp://cogcomp.cs.illinois.edu/page/download_view/Wikifier
dhttps://tagme.d4science.org/tagme/
ehttps://github.com/dnmilne/wikipediaminer

http://www.mpi-inf.mpg.de/yago-naga/aida/
http://spotlight.dbpedia.org/
http://cogcomp.cs.illinois.edu/page/download_view/Wikifier
https://tagme.d4science.org/tagme/
https://github.com/dnmilne/wikipediaminer
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• AIDA [37] performs collective disambiguation using a graph-based approach,
which we detailed in Sect. 5.6.2.3. Annotations are done against the YAGO2
knowledge base.

• DBpedia Spotlight [57] implements a rather straightforward local disambiguation
approach; vector space representations of entities are compared against the
paragraphs of their mentions using the cosine similarity. Instead of using standard
IDF, Mendes et al. [57] introduce the inverse candidate frequency (ICF) weight
and employ TF-ICF term weighting. They annotate with DBpedia entities, which
can be restricted to certain types or even to a custom entity set defined by a
SPARQL query.

• Illinois Wikifier [68], a.k.a. GLOW, implements both local and (individual)
global disambiguation; their global disambiguation approach is discussed in
Sect. 5.6.2.2. In version 2 of their system, Cheng and Roth [9] focus on
eliminating mistakes that are “obvious” (to humans) by better understanding the
relational structure of the text (e.g., resolving coreference).

• TAGME [22] is one of the most popular entity linking systems. It has been
designed specifically for efficient annotation of short texts, but it is shown to
deliver competitive results on long texts as well. TAGME’s one-mention-at-a-
time global disambiguation approach is detailed in Sect. 5.6.2.2. The authors
have also published an extended report [21] with more algorithmic details and
experiments. We further refer to [35] for additional notes on reproducibility.

• Wikipedia Miner [61] is a seminal entity linking system that was first to combine
commonness and relatedness for (local) disambiguation. It was also the first
system with an open-sourced implementation and with wikification provided as
a web service (at the time of writing, it is no longer available). See [62] for more
technical details and experimental results.

The above selection concentrates on systems that are accompanied by a scholarly
publication detailing the underlying methods and approaches. There is a large
number of annotation services offered by commercial parties, including but not
limited to: AlchemyAPI,12 AYLIEN Text Analysis API,13 Google Cloud Natural
Language API,14 Microsoft Entity Linking service,15 Open Calais,16 and Rosette
Entity Linking API.17

12http://www.alchemyapi.com/.
13http://aylien.com/.
14https://cloud.google.com/natural-language/.
15https://www.microsoft.com/cognitive-services/en-us/entity-linking-intelligence-service.
16http://www.opencalais.com.
17https://www.rosette.com/function/entity-linking/.

http://www.alchemyapi.com/
http://aylien.com/
https://cloud.google.com/natural-language/
https://www.microsoft.com/cognitive-services/en-us/entity-linking-intelligence-service
http://www.opencalais.com
https://www.rosette.com/function/entity-linking/


174 5 Entity Linking

5.8 Evaluation

In this section, we introduce evaluation measures and test collections.

5.8.1 Evaluation Measures

The overall (end-to-end) performance of an entity linking system is evaluated
by comparing the system-generated annotations against a human-annotated gold
standard. The measures are set-based: precision, recall, and F-measure. Precision
is computed as the fraction of correctly linked entities that have been annotated
by the system, while recall is the fraction of correctly linked entities that should
be annotated. Since these measures are typically computed over a collection of
documents, they can be either micro-averaged (aggregated across mentions) or
macro-averaged (aggregated across documents).

Let us formalize these notions. We write Ad to denote the annotations generated
by the entity linking system and Âd to denote the reference (ground truth)
annotations for a single document d . Further, let AD include all annotations for a set
D of documents: AD = ∪d∈DAd . Analogously, ÂD is the collection of reference
annotations for D. Micro-averaged precision and recall are then defined as:

Pmic = |AD ∩ ÂD|
|AD| , Rmic = |AD ∩ ÂD|

|ÂD| ,

where |AD∩ÂD| denotes the number of matching annotations between the systems
and the gold standard (to be defined more precisely later).

Macro-averaged precision and recall are computed as follows:

Pmac = 1

|D|
∑

d∈D

|Ad ∩ Âd |
|Ad | , Rmac = 1

|D|
∑

d∈D

|Ad ∩ Âd |
|Âd | .

The F-measure is computed from the overall precision (P) and recall (R):

F1 = 2 P R

P + R
. (5.10)

When entity mentions are also given as input to the entity linking system, accuracy
is used to assess system performance. Accuracy is defined as the number of correctly
linked entity mentions divided by the total number of entity mentions. Thus, in this
case, accuracy = precision = recall = F1.

When comparing annotations, the linked entities must match, but we may decide
to be lenient with respect to their mentions, i.e., the mention offsets. Let a =
(e,mi,mt ) be an annotation generated by the system and â = (ê,m̂i,m̂t ) be the
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corresponding reference annotation. We define an indicator function for perfect
match (PM) as follows:

matchPM(a,â) =
{

1, e = ê, mi = m̂i, mi = m̂i

0, otherwise .

Alternatively, we can lessen the requirements for mentions such that it is sufficient
for them to overlap. For example, “the Madison Square” and “Madison Square
Garden” would be accepted as a match as long as they link to the same entity. The
indicator function for relaxed match (RM) is defined as:

matchRM(a,â) =
{

1, e = ê, [mi,mt ] overlaps with [m̂i,m̂t ]
0, otherwise .

Using either flavor of the match function, the number of matching annotations is
computed as:

|A ∩ Â| =
∑

a∈A,â∈Â
match(a,â) .

5.8.2 Test Collections

Early work used Wikipedia both as the reference KR and as the ground truth for
annotations [12, 58, 61]. Using Wikipedia articles as input documents, the task is
to “recover” links that were created by Wikipedia contributors. Over the years, the
focus has shifted toward entity linking “in the wild,” using news articles or web
pages as input. This subsection presents the various test collections that have been
used in entity linking evaluation. We discuss resources developed by individual
researchers and those devised at world-wide evaluation campaigns separately. The
main test collections and their key characteristics are summarized in Table 5.6.

5.8.2.1 Individual Researchers

Cucerzan [12] annotated 20 news articles from MSNBC with a total of 755 linkable
entity mentions, out of which 113 are NIL (i.e., there is no corresponding Wikipedia
article). Milne and Witten [61] used a subset of 50 documents from the AQUAINT
text corpus (a collection of newswire stories). Following Wikipedia’s style, only
the first mention of each entity is linked and only the most important entities are
retained. Unlike others, they annotated not only proper nouns but concepts as well.
Kulkarni et al. [49] collected and annotated over hundred popular web pages from
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Table 5.6 Entity linking and wikification test collections

Name Reference Document Annotations

KR type(s) #Docs type #Mentions Alla NILb

Individual researchers

MSNBC [12] Wikipedia News 20 Entities 755 Yes Yes

AQUAINT [61] Wikipedia News 50 Entities and concepts 727 No No

IITB [49] Wikipedia Web pages 107 Entities 17,200 Yes Yes

ACE2004 [68] Wikipedia News 57 Entities 306 Yes Yes

CoNLL-YAGO [37] YAGO2 News 1393 Entities 34,956 Yes Yes

Evaluation campaigns

TAC EL 2009 [74] Wikipedia News 3904 Entities 3904 No Yes

TAC EL 2010 [45] Wikipedia News and web 2240 Entities 2240 No Yes

TAC EL 2011 [51] Wikipedia News and web 2250 Entities 2250 No Yes

TAC EL 2012 [20] Wikipedia News and web 2229 Entities 2229 No Yes

TAC EL 2013 [18] Wikipedia News and web 2190 Entities 2190 No Yes

TAC ELD 2014 [19] Wikipedia News and web 138 Entities 5598 Yes Yes

TAC ELD 2015 [17] Freebase News and web 167 Entities 15,581 Yes Yes

ERD Challenge [3] Freebase Web pages 200 Entities Unknown Yes No
aWhether all entity mentions are annotated in the documents
bWhether out-of-KR entities are annotated as NIL

a handful of domains (sport, entertainment, science and technology, and health).
Annotators were instructed to be as exhaustive as possible; this resulted in a total
of 17,200 entity mentions with 40% of them annotated as NIL. Ratinov et al. [68]
took a subset of the ACE 2004 Coreference dataset as a starting point and annotated
mentions (specifically, “the first nominal mention of each co-reference chain” [68])
using crowdsourcing. Hoffart et al. [37] created a dataset based on the CoNLL 2003
Named Entity Recognition task. They annotated 1393 Reuters newswire articles
with entities from YAGO2. The collection is split into train, test-A, and test-B
partitions. Notably, the original dataset has since been extended to include the
corresponding Wikipedia and Freebase entity identifiers as well. Guo and Barbosa
[31] released a newer version of the MSNBC, AQUANT, and ACE2004 datasets,
with the annotations aligned to the 2013 June version of Wikipedia.18

5.8.2.2 INEX Link-the-Wiki

The Link-the-Wiki track ran at INEX between 2007 and 2010 [40–42, 80] with the
objective of evaluating link discovery methods. The assumed user scenario is that of
creating a new article in Wikipedia; a link discovery system can then automatically
suggest both outgoing and incoming links for that article. Note that link detection

18http://www.cs.ualberta.ca/~denilson/data/deos14_ualberta_experiments.tgz.

http://www.cs.ualberta.ca/~denilson/data/deos14_ualberta_experiments.tgz
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here is approached as a recommendation task, and—unlike in traditional entity
linking—it is assumed that a human editor will process the results. Evaluation was
performed by selecting an existing Wikipedia article and eradicating all links to and
from that page (“orphaning” it), thereby simulating that this is the new document
that is being added. The recommended links were assessed manually through a
purpose-built interface (with the links originally present in Wikipedia also added to
the pool of assessed results). The task is addressed both at the document level (i.e.,
document-to-document links) and at the element level (i.e., for each prospective
anchor, ranking “best entry points” within target documents). System performance
is measured using standard IR measures (e.g., MAP). The 2009 and 2010 editions of
the track also experimented with a different encyclopedia (Te Ara). That collection,
albeit much smaller in size, makes the linking task markedly more complex than
using Wikipedia for the reasons that (1) it does not include hyperlinks at all and
(2) articles do not represent entities. Since the INEX Link-the-Wiki setup is quite
different from our interpretation of the entity linking task, we do not include it in
Table 5.6. For further details, we refer to [39].

5.8.2.3 TAC Entity Linking

Entity linking has been running since 2009 at the Knowledge Base Population
(KBP) track of the Text Analysis Conference (TAC) [44–47, 55]. Since the track’s
inception, the task setup has undergone several changes. We start by presenting the
initial setting (from 2009) and then discuss briefly how it evolved since.

The Entity Linking (EL) task at TAC KBP is to determine for a given mention
string, originating from a particular document, which KB entity is being referred
to, or if the entity is not present in the reference KB (NIL). Thus, the focus is on
evaluating a single mention per document (referred to as query), which is identified
in advance, rather than systematically annotating all mentions. The mentions are
selected manually by “cherry-picking” those that they are sufficiently confusable,
i.e., they have either zero or several KB matches. Additionally, entities with
numerous nicknames and shortened or misspelled name variants are also targeted.
Entities are either of type person (PER), organization (ORG), or geopolitical entities
(GPE). The reference KB is derived from Wikipedia and is further restricted to
entities having an infobox. From 2010, web data was also included in addition to
newswire documents. An optional entity linking task was also conducted, where
systems can only utilize the attributes present in the KB and may not consult the
associated Wikipedia page (thereby simulating a setting where a salient and novel
entity appears that does not yet have a Wikipedia page). The 2011 edition saw the
introduction of two new elements: (1) clustering together NIL mentions (referring to
the same out-of-KB entity) and (2) cross-lingual entity linking (“link a given entity
from a Chinese document to an English KB” [44]). The cross-lingual version was
extended with Spanish in 2012.

In 2014, the task was broadened to end-to-end entity linking and also got
re-branded as Entity Discovery and Linking (EDL). Participating systems were
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required to automatically identify (and classify) all entity mentions, link each entity
mention to the KB, and cluster all NIL mentions [46]. In 2015, the EDL task was
expanded from monolingual to trilingual coverage (English, Chinese, and Spanish),
extended with two additional entity types (location and facility), and the knowledge
repository changed from Wikipedia to a curated subset of Freebase.

Monolingual EDL corresponds to our notion of the entity linking task, except for
the two additional subtasks it addresses: (1) classifying entity mentions according to
entity types and (2) clustering NIL mentions. These are not intrinsic to entity linking
but are important for knowledge base population (which is the ultimate goal of TAC
KBP). Evaluation for these subtasks is isolated from entity linking performance.
Another key difference in EDL, compared to conventional entity linking, is that
EDL focuses only on a handful of entity types.

In Table 5.6 we list the number of test queries (i.e., mentions) for the monolingual
entity linking task; additionally, a number of training queries were also made
available both as part of the evaluation campaign and in follow-up work [14].

5.8.2.4 Entity Recognition and Disambiguation Challenge

The Entity Recognition and Disambiguation (ERD) Challenge was organized in
2014 by representatives of major web search engine companies, in an effort to
make entity linking evaluation more realistic [3]. There are two main differences
in contrast to TAC KBP. First, entity linking systems are evaluated in an end-to-
end fashion, without providing mention segmentations. Second, each participating
team was required to set up a web service for their entity linking system, such that
processing times can be measured.

In the “long text” track, the documents to be annotated were pages crawled
from the Web (see Sect. 7.3.4.4 for the “short text” track). The reference knowledge
repository was Freebase, with entities restricted to specific types and to those having
an associated English Wikipedia page. Only proper noun entities are annotated.
A set of 100 documents was made available for development and a disjoint set
of additional 100 documents was used for testing. Half of the documents were
sampled from general web pages, the other half were news articles from msn.
com. Evaluation was performed by sending an “evaluation request” to the server
hosting the challenge. The evaluation server then sent a set of documents to the
participating team’s web service for annotation. The returned results were evaluated,
with evaluation scores posted on the challenge’s leaderboard. Online evaluation took
place over a period of time and was divided into train and test phases.

This type of live, online evaluation has its advantages and disadvantages.
Asking participants to provide their entity linking system as a service ensures an
absolutely fair comparison since (1) the process is completely automated with no
possibility of human intervention and (2) annotations for test documents are not
released (eliminating the risks of overfitting to a particular test collection). The
main drawback is that evaluation is subject to the availability of the evaluation
service. Further, as only overall evaluation scores are made available, a detailed

msn.com
msn.com
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success/failure analysis of the generated annotations is not possible. At the time of
writing, the evaluation service is no longer available.19

5.8.3 Component-Based Evaluation

The pipeline architecture (cf. Fig. 5.2) makes the evaluation of entity linking systems
especially challenging. The main research focus often lies in the disambiguation
component, which is the heart of the entity linking process and lends itself to
creative algorithmic solutions. However, disambiguation effectiveness is largely
influenced by the preceding steps. The fact that improvements are observed on
the end-to-end task does not necessarily mean that one disambiguation approach
is better than another; it might be a result of more effective mention detection,
candidate entity ranking, etc. In general, a fair comparison between two alternative
approaches for a given component of an entity linking system can only be made if
they share all other elements of the processing pipeline.

The first systematic investigation in this direction was performed by Hachey et al.
[32], who implemented and compared three systems: two of the early seminal entity
linking systems [2, 12] and the top performing system at TAC 2009 EL [82]. A
surprising finding of their study is that much of the variation between the studied
systems originates from candidate ranking and not from disambiguation.

Ceccarelli et al. [4] introduced Dexter,20 an open source framework for entity
linking, “where spotting, disambiguation and ranking are well separated and easy to
isolate in order to study their performance” [4]. Dexter implements TAGME [22],
Wikipedia Miner [61], and the collective linking approach of Han et al. [34].

Cornolti et al. [11] developed and made publicly available the BAT-Framework21

for comparing publicly available entity annotation systems, namely: AIDA [37],
Illinois Wikifier [68], TAGME [22], Wikipedia Miner [61], and DBpedia Spot-
light [57]. These systems are evaluated on a number of test collections correspond-
ing to different document genres (news, web pages, and tweets). Linking is done
against Wikipedia. Building on top of the BAT-Framework, Usbeck et al. [81]
introduced GERBIL,22 an open-source web-based platform for comparing entity
annotation systems. GERBIL extends the BAT-Framework by being able to link
to any knowledge repository, not only to Wikipedia. It also includes additional
evaluation measures (e.g., for dealing with NIL annotations). Any annotation
service can easily be benchmarked by providing a URL to a REST interface that
conforms to a given protocol specification. Finally, GERBIL provides persistent
URLs for experimental settings, thereby allowing for reproducibility and archival
of experimental results.

19http://web-ngram.research.microsoft.com/erd2014/.
20http://dexter.isti.cnr.it.
21http://acube.di.unipi.it/bat-framework/.
22http://gerbil.aksw.org.

http://web-ngram.research.microsoft.com/erd2014/
http://dexter.isti.cnr.it
http://acube.di.unipi.it/bat-framework/
http://gerbil.aksw.org
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5.9 Resources

Section 5.7 has introduced entity linking systems that are made publicly available as
open source and/or are exposed as a web service (cf. Table 5.5). With these, anyone
can annotate documents with entities from a given catalog. We have also discussed
benchmarking platforms and test collections in Sect. 5.8. These are essential for
those that wish to develop and evaluate their own entity linking system and compare
it against existing solutions. This section presents additional resources that may
prove useful when building/improving an entity linking system. It could, however,
also be the case that one’s interest lies not in the entity linking process itself, but
rather in the resulting annotations. In Sect. 5.9.2, we present a large-scale web crawl
that has been annotated with entities; this resource can be particularly of use for
those that are merely “users” of entity annotations and wish to utilize them in
downstream processing for some other task.

5.9.1 A Cross-Lingual Dictionary for English Wikipedia
Concepts

Recall that a key source of entity surface forms is anchor texts from intra-Wikipedia
links (cf. Sect. 5.4.1). The same idea could be extended to inter-Wikipedia links,
by considering non-Wikipedia web pages that link to Wikipedia articles. The
resource constructed by Spitkovsky and Chang [76] (Google) does exactly this. In
addition, they also collect links that point to non-English versions of a given English
Wikipedia article. (Notice that the mappings are to all Wikipedia articles, thus there
is no distinction made between concepts and entities.) The end result is a cross-
lingual surface form dictionary, with names of concepts and entities on one side and
Wikipedia articles on the other. The dictionary also contains statistical information,
including raw counts and mapping probabilities (i.e., commonness scores). This
resource is of great value for the reason that it would be difficult to reconstruct
without having access to a comprehensive web crawl. See Table 5.7 for an excerpt.

5.9.2 Freebase Annotations of the ClueWeb Corpora

ClueWeb09 and ClueWeb12 are large-scale web crawls that we discussed earlier
in this book (see Sect. 2.1.1). Researchers from Google annotated the English-
language web pages from these corpora with entities from the Freebase knowledge
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Table 5.7 Excerpt from the dictionary entries matching the surface form (s) “Hank Williams”
from the Cross-Lingual Dictionary for English Wikipedia Concepts [76]

Entity (e) P (e|s)
Hank Williams 0.990125

Your Cheatin’ Heart 0.006615

Hank Williams, Jr. 0.001629

I 0.000479

Stars & Hank Forever: The American Composers Series 0.000287

I’m So Lonesome I Could Cry 0.000191

I Saw the Light (Hank Williams song) 0.000191

Drifting Cowboys 0.000095

Half as Much 0.000095

Hank Williams (Clickradio CEO) 0.000095

Table 5.8 Excerpt from the Freebase Annotations of the ClueWeb Corpora (FACC)

Mention Byte offsets Entity (e) P (e|m,d) P (e|d)

PDF 21089, 21092 /m/0600q 0.997636 0.000066

FDA 21303, 21306 /m/032mx 0.999825 0.000571

Food and Drug Administration 21312, 21340 /m/032mx 0.999825 0.000571

base [25], and made these annotations publicly available.23,24 The system that
was used for generating the annotations is proprietary, and as such there is no
information disclosed about the underlying algorithm and techniques. It is known,
however, that the annotations strove for high precision (which, by necessity, is at the
expense of recall) and are of generally high quality. Table 5.8 shows a small excerpt
with the annotations created for one of the ClueWeb12 web pages. It can be seen
from the table that in addition to the mention (given both as a text span and as byte
offsets in the file) and the linked entity, there are two types of confidence scores.
The first one (P(e|m,d)) is the posterior of an entity given both the mention and
the context, while the second one (P(e|d)) is the posterior that ignores the mention
string and only considers the context of the mention.

5.10 Summary

This chapter has dealt with the task of entity linking: annotating an input text
with entity identifiers from a reference knowledge repository. The canonical entity
linking approach consists of a pipeline of three components. The first component,

23http://lemurproject.org/clueweb09/.
24http://lemurproject.org/clueweb12/.

http://lemurproject.org/clueweb09/
http://lemurproject.org/clueweb12/
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mention detection, is responsible for identifying text spans that may refer to an
entity. This is commonly performed using an extensive dictionary of entity surface
forms provided in the reference knowledge repository (and possibly augmented with
additional name variants from external sources). The second component, candidate
selection, restricts the set of candidate entities for each mention, by eliminating
those that are unlikely to be good link targets for that mention (even though one
of their surface forms matches the mention). The third component, disambiguation,
selects a single entity (or none) from the set of candidate entities identified for each
mention. For effective disambiguation, one needs to consider the local compatibility
between the linked entity and its context as well as the coherence between the
linked entity and all other entities linked in the document. Two main families of
approaches have been delineated, based on whether they perform disambiguation
for each mention individually in a single pass or for all entity mentions collectively,
using some iterative process. The former is more efficient (an order of magnitude
faster), while the latter is more accurate (up to 25% higher F1-score, depending on
the particular dataset).

A direct comparison of entity linking systems, based on the reported evaluation
scores, is often problematic, due to differences in task definition and evaluation
methodology. Further, it is typically difficult to untangle how much each pipeline
component has contributed to the observed differences. There are standardization
efforts addressing these issues, such as GERBIL [81], by providing an experimental
platform for evaluation and diagnostics on reference datasets. According to the
results in [81], the best systems reach, depending on the dataset, an F1-score of 0.9.

We have stated that the task of entity linking is one part of the bridge between
unstructured and unstructured data. So, how does entity linking enable the task of
knowledge base population? Once a document has been found to mention a given
entity, that document may be checked to possibly discover new facts with which
the knowledge base entry of that entity may be updated. The practical details of
this approach will be discussed in the next chapter. Entity annotations can also be
utilized to improve document retrieval, as we shall see in Chap. 8.

5.11 Further Reading

Nadeau and Sekine [64] survey the first 15 years of named entity recognition,
from 1991 to 2006. An excellent recent survey about entity linking by Shen et al.
[72] covers much of the same material as this chapter, with some further pointers.
Entity linking is still a very active area of research, with new approaches springing
up. Due to space considerations, we did not include approaches based on topic
modeling (i.e., LDA-inspired models), see, e.g., [33, 38, 48, 67]. Most recently,
semantic embeddings and neural models are gaining popularity in this domain
too [24, 28, 77, 87]. Instead of relying on fully automatic techniques, Demartini et al.
[13] incorporate human intelligence in the entity linking process, by dynamically
generating micro-tasks on an online crowdsourcing platform.
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Both entity linking and word sense disambiguation address the lexical ambiguity
of language; we have discussed the similarities and differences between the two
tasks in Sect. 5.1.2. Moro et al. [63] bring the two tasks to a common ground and
present a unified graph-based approach to entity linking and WSD. Motivated by the
interdependencies of entity annotation tasks, Durrett and Klein [15] develop a joint
model for coreference resolution, named entity recognition, and entity linking.

Finally, in this chapter we have concentrated entirely on a monolingual setting.
Cross-lingual entity linking is currently being investigated at the TAC Knowledge
Base Population track; for further details, we refer to the TAC proceedings.
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