
Remote Procedure Calls for Improved
Data Locality with the Epiphany

Architecture

James A. Ross1(B) and David A. Richie2

1 U.S. Army Research Laboratory,
Aberdeen Proving Ground, MD 21005, USA

james.a.ross176.civ@mail.mil
2 Brown Deer Technology, Forest Hill, MD 21050, USA

drichie@browndeertechnology.com

Abstract. This paper describes the software implementation of an
emerging parallel programming model for partitioned global address
space (PGAS) architectures. Applications with irregular memory access
to distributed memory do not perform well on conventional symmet-
ric multiprocessing (SMP) architectures with hierarchical caches. Such
applications tend to scale with the number of memory interfaces and
corresponding memory access latency. Using a remote procedure call
(RPC) technique, these applications may see reduced latency and higher
throughput compared to remote memory access or explicit message pass-
ing. The software implementation of a remote procedure call method
detailed in the paper is designed for the low-power Adapteva Epiphany
architecture.

Keywords: Remote procedure call (RPC) · Network-on-chip (NoC)
Distributed computing · Partitioned global address space (PGAS)
Programming model

1 Introduction and Motivation

Many high performance computing (HPC) applications often rely on computer
architectures optimized for dense linear algebra, large contiguous datasets, and
regular memory access patterns. Architectures based on a partitioned global
address space (PGAS) are enabled by a higher degree of memory locality than
conventional symmetric multiprocessing (SMP) with hierarchical caches and uni-
fied memory access. SMP architectures excel at algorithms with regular, contigu-
ous memory access patterns and a high degree of data re-use; however, many
applications are not like this. A certain class of applications may express irregu-
lar memory access patterns, are “data intensive” (bandwidth-heavy), or express
“weak locality” where relatively small blocks of memory are associated. For these
applications, memory latency and bandwidth drive application performance.
These applications may benefit from PGAS architectures and the re-emerging
c© Springer International Publishing AG, part of Springer Nature 2018
Y. Shi et al. (Eds.): ICCS 2018, LNCS 10862, pp. 803–810, 2018.
https://doi.org/10.1007/978-3-319-93713-7_78

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-93713-7_78&domain=pdf


804 J. A. Ross and D. A. Richie

remote procedure call (RPC) concept. By exporting the execution of a program
to the core closely associated with the data, an application may reduce the total
memory latency and network congestion associated with what would be remote
direct memory access (RDMA).

2 Background and Related Work

The 16-core Epiphany-III coprocessor is included within the inexpensive ARM-
based single-board computer “Parallella” [1]. All of the software tools and
firmware are open source, enabling rigorous study of the processor architec-
ture and the exploration of new programming models. Although not discussed
in detail in this paper, the CO-PRocessing Threads (COPRTHR) 2.0 SDK [2]
further simplifies the execution model to the point where the host code is sig-
nificantly simplified, supplemental, and even not required depending on the use
case. We also use the ARL OpenSHMEM for Epiphany library in this work [3].
Currently, a full implementation of OpenSHMEM 1.4 is available under a BSD
open source license [4]. The combination of the COPRTHR SDK and the Open-
SHMEM library enabled further exploration of hybrid programming models [5],
high-level C++ templated metaprogramming techniques for distributed shared
memory systems [6].

The middleware and library designs for Epiphany emphasize a reduced mem-
ory footprint, high performance, and simplicity, which are often competing goals.
The OpenSHMEM communications library is designed for computer platforms
using PGAS programming models [7]. Historically, these were large Cray super-
computers and then commodity clusters. But now the Adapteva Epiphany archi-
tecture represents a divergence in computer architectures typically used with
OpenSHMEM. In some ways, the architecture is much more capable than the
library can expose. The architecture presents a challenge in identifying the most
effective and optimal programming models to exploit it. While OpenSHMEM
does reasonably well at exposing the capability of the Epiphany cores, the library
does not provide any mechanism for RPCs.

Recent publications on new computer architectures and programming models
have rekindled an interest in the RPC concept to improve performance on PGAS
architectures with non-uniform memory access to non-local memory spaces. In
particular, the Emu System Architecture is a newly developed scalable PGAS
architecture that uses hardware-accelerated “migrating threads” to offload exe-
cution to the remote processor with local access to application memory [8]. The
Emu programming model is based on a partial implementation of the C language
extension, Cilk. Cilk abandons C semantics and the partial implementation is
used for little or no improvement in code quality over a simple C API. The
Emu software and hardware RPC implementation details are not publicly doc-
umented, and a proprietary, closed source compiler is used so that the software
details are not open for inspection. This paper discusses the Epiphany-specific
RPC implementation details in Sect. 3, the performance evaluation in Sect. 4,
and a discussion of future work in Sect. 5.



Remote Procedure Calls for Improved Data Locality 805

3 Remote Procedure Call Technique

Although the RPC implementation described in this paper is designed for
Epiphany, the techniques may be generally applicable to other PGAS archi-
tectures. The GNU Compiler Collection toolchain is used, without modification,
to enable the RPC capability on Epiphany. In order to keep the interface as
simple as possible, decisions were made to use a direct call method rather than
passing function and arguments through a library call. This abstraction hides
much of the complexity, but has some limitations at this time. The RPC dispatch
routine (Algorithm 1) uses a global address pointer passed in the first function
argument to select the remote core for execution. Up to four 32-bit function
arguments may be used and are registers in the Epiphany application binary
interface (ABI). In the case of 64-bit arguments, the ABI uses two consecutive
registers. For the purposes of this work, any RPC prototype can work as long
as the ABI does not exceed four 32-bit arguments and one 32-bit return value.

Algorithm 1. RPC dispatch routine
function rpc dispatch(a1,a2,a3,a4)

rpc call← ip
high addr ← mask(a1)
if high addr = my addr then

return rpc call(a1,a2,a3,a4)
end if
remote lock ← high addr|lock addr
remote queue ← high addr|queue
acquire lock(remote lock)
if remote queue is full then

release lock(remote lock)
return rpc call(a1,a2,a3,a4)

end if
p event ← my addr|&event
remote queue.push({a1, a2, a3, a4, rpc call, p event})
release lock(remote lock)
if remote queue initially empty then

signal remote interrupt(high addr)
end if
repeat
until event.status = rpc complete
return event.val

end function

An overview of the specialized RPC interrupt service request (ISR) appears
in Algorithm 2. The user-defined ISR precludes other applications from using
it, but it is sufficiently generalized and exposed so that applications can easily
make use of it. The ISR operates at the lowest priority level after every other



806 J. A. Ross and D. A. Richie

interrupt or exception. It may also be interrupted, but the RPC queue and the
RPC dispatch method are designed so the ISR need only be signalled when the
first work item is added to the queue.

Algorithm 2. RPC interrupt service request
function rpc isr

acquire lock(my lock)
while queue is not empty do

work ← queue.pop()
release lock(my lock)
work.event.val ← work.rpc call(work.a1,work.a2,work.a3,work.a4)
work.evevent.status = rpc complete
acquire lock(my lock)

end while
release lock(my lock)

end function

Setting up code to use the developed RPC methods is easy, but there are
some restrictions. The subroutine should localize the global-local addresses to
improve performance. A convenient inline subroutine has been made for this. If
one of the addresses is non-local, it will not modify the pointer and default to
RDMA. Listing 1 shows creating a dot product routine, a corresponding routine
without a return value, and using the RPC macro to set up the RPC dispatch
jump table.

float dotprod(float* a, float* b, int n)

{

a = localize(a); // translate global addresses to local

b = localize(b);

float sum = 0.0f;

for (int i = 0; i < n; i++) sum += a[i] * b[i];

return sum;

}

RPC(dotprod) // dotprod_rpc symbol and jump table entry

List. 1. Example code for RPC function with symbol registration and jump table
entry.

Using the RPC method is also very easy. The RPC calls made with the RPC
macro have a rpc suffix and are called like regular functions, but with the first
pointer as a global address on a remote core. An example of application setup
with mixed OpenSHMEM and RPC calls is presented in Listing 2. OpenSHMEM
with symmetric allocation is not required, but it is convenient for demonstration.



Remote Procedure Calls for Improved Data Locality 807

float* A = shmem_malloc(n * sizeof(*A)); // symmetric allocation

float* B = shmem_malloc(n * sizeof(*B));

float* A1 = shmem_ptr(A, 1); // address of ’A’ on PE #1

float* B1 = shmem_ptr(B, 1);

float res = dotprod_rpc(A1, B1, n); // RPC on PE #1

List. 2. Application code example for mixed usage of OpenSHMEM and RPC. The
address translation for the B vector is necessary in case RDMA is required.

4 Results

The results presented include performance figures for an optimized single preci-
sion floating point RPC dot product operation using a stack-based RPC work
queue. The dot product subroutine was chosen because it has a tunable work
size parameter, n, relatively low arithmetic intensity at 0.25 FLOPS/byte—
representing the challenging “data-intensive” operations—and reduces to a single
32-bit value result. Dot product performance for a single Epiphany core execut-
ing on local memory approaches the core peak performance of 1.2 GFLOPS and
4.8 GB/s. This corresponds to a dual-issue fused multiply-add and double-word
(64-bit) load per clock cycle at 600 MHz. The small bump in the results around
n = 16 on Figs. 1 and 2 is the result of the subroutine using a different code
path for larger arrays. Figure 1 shows the total on-chip bandwidth performance
for various execution configurations. The highest performance is achieved with a

Fig. 1. Symmetric, or load-balanced, RPC with a stack-based queue can achieve over
60% of the bandwidth performance as if execution were accessing local scratchpad data
(throughput up to 2.95 GB/s vs 4.8 GB/s per core). However, there must be sufficient
work on the remote core to mitigate the overhead of the RPC dispatch versus RDMA.



808 J. A. Ross and D. A. Richie

Fig. 2. Effect of RPC queue size for an asymmetric workload shows a speedup of about
1.5x from a queue size of one to 15. The greatest improvement comes from having a
single extra workload enqueued (NQUEUE = 1) compared to no queue at all.

symmetric load executing a dot product on local data, without address transla-
tion (localization for array pointers a and b within the subroutine), which adds
a small overhead.

A very positive and initially unexpected result occurred during the asym-
metric loading for the RPC test where all 16 cores made requests to a single
core (core #0). Peak performance of the operation was not expected to exceed
4.8 GB/s, but the timing indicated performance around 8 GB/s (Figs. 1 and 2).
This is due to the local memory system supporting simultaneous instruction
fetching, data fetching, and remote memory requests. If a remote work queue
is filled with RPC requests, the calling core will perform RDMA execution as a
fallback rather than waiting for the remote core resources to become available.
This prevents deadlocking and improves overall throughput because no core is
idle even if it is operating at lower performance. The result is that multiple cores
may execute on data in different banks on a single core, effectively increasing
bandwidth performance. Figure 2 shows the effect of increasing the RPC work
queue size. There is no performance impact by increasing the queue size to more
than the total number of cores on-chip minus one since each remote core will
only add a single request to the queue then wait for completion.

5 Conclusion and Future Work

The combination of fast message passing with OpenSHMEM to handle sym-
metric application execution and the RPC techniques described here for han-
dling asymmetric workloads remote procedure calls creates a very flexible and



Remote Procedure Calls for Improved Data Locality 809

high-performance programming paradigm. This combination creates potential
for good performance on diverse applications with both regular and irregular
data layouts, memory access patterns, and program execution on the Epiphany
architecture. We hope that developers on similar memory-mapped parallel archi-
tectures may use this paper as a guide for exploring the inter-processor RPC
concept.

The developments in this paper will be built into the COPRTHR 2.0 SDK
as low-level operating system services. It may also be used by some of the non-
blocking subroutines in the ARL OpenSHMEM for Epiphany software stack
for particular remote subroutines to enable higher performance. We will extend
this work to support asynchronous RPC requests so programs do not block
on remote operations. Additional reductions in instruction overhead may be
found through low-level optimization of the RPC dispatch and software interrupt
routines by transforming the high-level C code to optimized Epiphany assembly.
The software interrupt appears to be overly conservative in saving the state and
the dispatch method is overly conservative in assumptions of address locations
and memory alignment, so these routines should be able to be substantially
optimized. Since no considerations are made for load balancing and quality of
service in this work, future development may allow for remote cores to defer
servicing RPCs with tunable priority.

References

1. Olofsson, A., Nordström, T., Ul-Abdin, Z.: Kickstarting high-performance energy-
efficient manycore architectures with Epiphany. In 2014 48th Asilomar Conference
on Signals, Systems and Computers, pp. 1719–1726, November 2014

2. COPRTHR-2 Epiphany/Parallella Developer Resources. http://www.
browndeertechnology.com/resources epiphany developer coprthr2.htm. Accessed
01 July 2016

3. Ross, J., Richie, D.: An OpenSHMEM Implementation for the Adapteva Epiphany
Coprocessor. In: Gorentla Venkata, M., Imam, N., Pophale, S., Mintz, T.M. (eds.)
OpenSHMEM 2016. LNCS, vol. 10007, pp. 146–159. Springer, Cham (2016).
https://doi.org/10.1007/978-3-319-50995-2 10

4. GitHub - US Army Research Lab/openshmem-epiphany - ARL OpenSHMEM
for Epiphany. https://github.com/USArmyResearchLab/openshmem-epiphany/.
Accessed 06 Feb 2018

5. Richie, D.A., Ross, J.A.: OpenCL + OpenSHMEM Hybrid Programming Model for
the Adapteva Epiphany Architecture. In: Gorentla Venkata, M., Imam, N., Pophale,
S., Mintz, T.M. (eds.) OpenSHMEM 2016. LNCS, vol. 10007, pp. 181–192. Springer,
Cham (2016). https://doi.org/10.1007/978-3-319-50995-2 12

6. Richie, D., Ross, J., Infantolino, J.: A distributed shared memory model and C++
templated meta-programming interface for the epiphany RISC array processor. In:
ICCS, 2017 (2017)

7. Chapman, B., Curtis, T., Pophale, S., Poole, S., Kuehn, J., Koelbel, C., Smith, L.:
Introducing OpenSHMEM: SHMEM for the PGAS community. In: Proceedings of
the Fourth Conference on Partitioned Global Address Space Programming Model,
PGAS 2010, pp. 2:1–2:3. ACM, New York (2010)

http://www.browndeertechnology.com/resources_epiphany_developer_coprthr2.htm
http://www.browndeertechnology.com/resources_epiphany_developer_coprthr2.htm
https://doi.org/10.1007/978-3-319-50995-2_10
https://github.com/USArmyResearchLab/openshmem-epiphany/
https://doi.org/10.1007/978-3-319-50995-2_12


810 J. A. Ross and D. A. Richie

8. Dysart, T., Kogge, P., Deneroff, M., Bovell, E., Briggs, P., Brockman, J., Jacobsen,
K., Juan, Y., Kuntz, S., Lethin, R., McMahon, J., Pawar, C., Perrigo, M., Rucker, S.,
Ruttenberg, J., Ruttenberg, M., Stein, S.: Highly scalable near memory processing
with migrating threads on the Emu System Architecture. In: Proceedings of the
Sixth Workshop on Irregular Applications: Architectures and Algorithms, IA3̂ 2016,
pp. 2–9. IEEE Press, Piscataway (2016)


	Remote Procedure Calls for Improved Data Locality with the Epiphany Architecture
	1 Introduction and Motivation
	2 Background and Related Work
	3 Remote Procedure Call Technique
	4 Results
	5 Conclusion and Future Work
	References




