
Bisections-Weighted-by-Element-Size-
and-Order Algorithm to Optimize Direct
Solver Performance on 3D hp-adaptive

Grids

H. AbouEisha1, V. M. Calo2,3,4, K. Jopek5, M. Moshkov1, A. Paszyńska6,
and M. Paszyński5(B)

1 King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
mikhail.moshkov@kaust.edu.sa

2 Chair in Computational Geoscience, Applied Geology Department,
Western Australian School of Mines, Faculty of Science and Engineering,

Curtin University, Perth, WA, Australia
victor.calo@curtin.edu.au

3 Mineral Resources, Commonwealth Scientific and Industrial Research Organization
(CSIRO), Kensington, WA 6152, Australia

4 Curtin Institute for Computation, Curtin University, Perth, WA 6845, Australia
5 Faculty of Computer Science, Electronics and Telecommunications,

AGH University of Science and Technology, al. Mickiewicza 30,
30-059 Krakow, Poland
paszynsk@agh.edu.pl

6 Faculty of Physics, Astronomy and Applied Computer Science,
Jagiellonian University, �Lojasiewicza 11, 30-348 Krakow, Poland

anna.paszynska@uj.edu.pl

http://home.agh.edu.pl/paszynsk

Abstract. The hp-adaptive Finite Element Method (hp-FEM) gener-
ates a sequence of adaptive grids with different polynomial orders of
approximation and element sizes. The hp-FEM delivers exponential con-
vergence of the numerical error with respect to the mesh size. In this
paper, we propose a heuristic algorithm to construct element partition
trees. The trees can be transformed directly into the orderings, which
control the execution of the multi-frontal direct solvers during the hp
refined finite element method. In particular, the orderings determine
the number of floating point operations performed by the solver. Thus,
the quality of the orderings obtained from the element partition trees is
important for good performance of the solver. Our heuristic algorithm
has been implemented in 3D and tested on a sequence of hp-refined
meshes. We compare the quality of the orderings found by the heuristic
algorithm to those generated by alternative state-of-the-art algorithms.
We show 50% reduction in flops number and execution time.

The work was supported by National Science Centre, Poland grant no. DEC-
2015/17/B/ST6/01867.

c© Springer International Publishing AG, part of Springer Nature 2018
Y. Shi et al. (Eds.): ICCS 2018, LNCS 10861, pp. 760–772, 2018.
https://doi.org/10.1007/978-3-319-93701-4_60

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-93701-4_60&domain=pdf


Bisections-Weighted-by-Element-Size-and-Order Algorithm 761

Keywords: hp adaptive finite element method · Ordering
Nested-dissections · Multi-frontal direct solvers · Heuristic algorithms

1 Introduction

The finite element method [19] is a widely used approach finding an approximate
solution of partial differential equations (PDEs) specified along with boundary
conditions and a solution domain. A mesh with hexahedral elements is created
to cover the domain and to approximate the solution over it. Then the weak
form of the PDE is discretized using polynomial basis functions spread over the
mesh. The hp-adaptive Finite Element Method (hp-FEM) is the most sophis-
ticated version of FEM [9]. It generates a sequence of refined grids, providing
exponential convergence of the numerical error with respect to the mesh size.
The hp-FEM algorithm uses the coarse and the fine meshes in each iteration to
compute the relative error and to guide the adaptive refinement process. Selected
finite elements are broken into smaller elements. This procedure is called the h-
refinement. Also, the polynomial orders of approximation are updated on selected
edges, faces, and interiors. This procedure is called the p-refinement. In selected
cases, both h and p refinements are performed, and this process is called the
hp-refinement.

The hp-FEM is used to solve difficult PDEs, e.g. with local jumps in mate-
rial data, with boundary layers, strong gradients, generating local singularities,
requiring elongated adaptive elements, or utilization of elements with several
orders of magnitude difference in dimension. For such kind of meshes iterative
solvers deliver convergence problems.

This paper is devoted to the optimization of the element partition trees con-
trolling the LU factorization of systems of linear equations resulting from the hp-
FEM discretizations over three-dimensional meshes with hexahedral elements. In
this paper we focus on a class of hp adaptive grids, which has many applications
in different areas of computational science and several possible implementations
[6–9,21,22,26–28]. The LU factorization for the case of hp-adaptive finite ele-
ment method is performed using multi-frontal direct solvers, such as e.g. MUMPS
solver [2–4]. This is because the matrices resulting from the discretization over
the computational meshes are sparse, and smart factorization will generate a
low number of additional non-zero entries (so-called fill-in) [17,18]. The problem
of finding the optimal permutation of the sparse matrix which minimizes the
fill-in (the number of new non-zero entries created during the factorization) is
NP-complete [29]. In this paper, we propose a heuristic algorithm that works for
arbitrary hp-adaptive gird, with finite elements of different size and with a differ-
ent distribution of polynomial orders of approximation spread over finite element
edge, faces, and possibly interiors. The algorithm performs recursive weighted
partitions of the graph representing the computational mesh and uses these par-
titions to generate an ordering, which minimizes the fill-in in a quasi-optimal
way. The partitions are defined by so-called element partition tree, which can be
transformed directly into the ordering.



762 H. AbouEisha et al.

In this paper we focus on the optimization of the sequential in-core multi-
frontal solver [11–13], although the orderings obtained from our element partition
trees can be possibly utilized to speed up shared-memory [14–16] or distributed-
memory [2–4] implementations as well. This will be the topic of our future work.

The heuristic algorithm proposed in this paper is based on the insights we
gained in [1], where we proposed a dynamic programming algorithm to search
for quasi-optimal element partition trees. These quasi-optimal trees obtained in
[1] are too expensive to generate, and they cannot be used in practice, but rather
guide our heuristic methods. From the insights garnered from this optimization
process, we have proposed a heuristic algorithm that generates quasi-optimal ele-
ment partition trees for arbitrary h-refined grids in 2D and 3D. In this paper, we
generalize the idea presented in [1] to the class of hp-adaptive grids. The heuristic
algorithm uses multilevel recursive bisections with weights assigned to element
edges, faces, and interiors. Our heuristic algorithm has been implemented and
tested in three-dimensional case. It generates mesh partitions for arbitrary hp-
refined meshes, by issuing recursive calls to METIS WPartGraphRecursive. That
is, we use the multilevel recursive bisection implemented in METIS [20] available
through the MUMPS interface [2–4], to find a balanced partition of a weighted
graph. We construct the element partition tree by recursive calls of the graph
bisection algorithm. Our algorithm for the construction of the element parti-
tion tree and the corresponding ordering differs from the orderings used by the
METIS library (nested dissection) as follows. First, we use a smaller graph, built
from the computational mesh, with vertices representing the finite elements and
edges representing the adjacency between elements. Second, we weight the ver-
tices of the graph by the volume of finite elements multiplied by the polynomial
orders of approximations in the center of the element. Third, we weight the edges
of the graph by the polynomial orders of approximations over element faces.

Previously [23,24], we have proposed bottom-up approaches for constructing
element partition trees for h-adaptive grids. Herein, we propose an alternative
algorithm, bisections-weighted-by-element-size-and-order, to construct element
partition trees using a top-down approach, for hp-adaptive grids. The element
size in our algorithm is a proxy for refinement level of the element. The order
is related to the polynomial degrees used on finite element edges, faces and
interiors.

The plan of the paper is the following. We first define the computational
mesh and basis functions which illustrate how these computational grids are
transformed into systems of linear equations using the finite element method.
Then, we describe the idea of a new heuristic algorithm which uses bisections
weighted by elements sizes and polynomial orders of approximation. We show
how the ordering can be generated from our element partition tree. The next
section includes numerical tests which compare the number of floating point
operations and wall-clock time resulting from the execution of the multi-frontal
direct solver algorithm on the alternative orderings under analysis.



Bisections-Weighted-by-Element-Size-and-Order Algorithm 763

2 Meshes, Matrices and Orderings for the hp-adaptive
Finite Element Methods

We introduce a class of computational meshes that results from the application
of an adaptive finite element method [9]. For our analysis, we start from a three-
dimensional boundary-value elliptic partial differential equation problem in its
weak (variational) form given by (1): Find u ∈ V such that

b (u, v) = l (v) ∀v ∈ V (1)

where b (u, v) and l (v) are some problem-dependent bilinear and linear function-
als, and

V = {v :
∫

Ω

‖v‖2 + ‖∇v‖2dx < ∞, tr (v) = 0 on ΓD} (2)

is a Sobolev space over an open set Ω called the domain, and ΓD is the part of
the boundary of Ω where Dirichlet boundary conditions are defined.

For a given domain Ω the hp-FEM constructs a finite dimensional subspace
Vhp ⊂ V with a finite dimensional polynomial basis given by {ei

hp}i=1,...,Nhp
. The

subspace Vhp is constructed by partitioning the domain Ω into three-dimensional
finite elements, with vertices, edges, faces, and interiors, as well as shape func-
tions defined over these objects.

Namely, we introduce one-dimensional shape-functions

χ̂1(ξ) = 1 − ξ; χ̂2(ξ) = ξ; χ̂l(ξ) = (1 − ξ)ξ(2ξ − 1)l−3, l = 4, . . . , p + 1 (3)

where p is the polynomial order of approximation, and we utilize them to define
the three-dimensional hexahedral finite element {(ξ1, ξ2, ξ3) : ξi ∈ [0, 1], i = 1, 3}.
We define eight shape functions over the eight vertices of the element:

φ̂1(ξ1, ξ2, ξ3) = χ̂1(ξ1)χ̂1(ξ2)χ̂1(ξ3) φ̂2(ξ1, ξ2, ξ3) = χ̂2(ξ1)χ̂1(ξ2)χ̂1(ξ3)

φ̂3(ξ1, ξ2, ξ3) = χ̂2(ξ1)χ̂2(ξ2)χ̂1(ξ3) φ̂4(ξ1, ξ2, ξ3) = χ̂1(ξ1)χ̂2(ξ2)χ̂1(ξ3)

φ̂5(ξ1, ξ2, ξ3) = χ̂1(ξ1)χ̂1(ξ2)χ̂2(ξ3) φ̂6(ξ1, ξ2, ξ3) = χ̂2(ξ1)χ̂1(ξ2)χ̂2(ξ3)

φ̂7(ξ1, ξ2, ξ3) = χ̂2(ξ1)χ̂2(ξ2)χ̂2(ξ3) φ̂8(ξ1, ξ2, ξ3) = χ̂1(ξ1)χ̂2(ξ2)χ̂2(ξ3) (4)

j = 1, . . . , pi − 1 shape functions over each of the twelve edges of the element

φ̂9,j(ξ1, ξ2, ξ3)= χ̂2+j(ξ1)χ̂1(ξ2)χ̂1(ξ3) φ̂10,j(ξ1, ξ2, ξ3)= χ̂2(ξ1)χ̂2+j(ξ2)χ̂1(ξ3)

φ̂11,j(ξ1, ξ2, ξ3)= χ̂2+j(ξ1)χ̂2(ξ2)χ̂1(ξ3) φ̂12,j(ξ1, ξ2, ξ3)= χ̂1(ξ1)χ̂2+j(ξ2)χ̂1(ξ3)

φ̂13,j(ξ1, ξ2, ξ3)= χ̂2+j(ξ1)χ̂1(ξ2)χ̂2(ξ3) φ̂14,j(ξ1, ξ2, ξ3)= χ̂2(ξ1)χ̂2+j(ξ2)χ̂2(ξ3)

φ̂15,j(ξ1, ξ2, ξ3)= χ̂2+j(ξ1)χ̂2(ξ2)χ̂2(ξ3) φ̂16,j(ξ1, ξ2, ξ3)= χ̂1(ξ1)χ̂2+j(ξ2)χ̂2(ξ3)

φ̂17,j(ξ1, ξ2, ξ3)= χ̂1(ξ1)χ̂1(ξ2)χ̂2+j(ξ3) φ̂18,j(ξ1, ξ2, ξ3)= χ̂2(ξ1)χ̂1(ξ2)χ̂2+j(ξ3)

φ̂19,j(ξ1, ξ2, ξ3)= χ̂2(ξ1)χ̂2(ξ2)χ̂2+j(ξ3) φ̂20,j(ξ1, ξ2, ξ3)= χ̂1(ξ1)χ̂2(ξ2)χ̂2+j(ξ3)
(5)



764 H. AbouEisha et al.

where pi is the polynomial order of approximation utilized over the i-th edge.
We also define (pih − 1) × (piv − 1) shape functions for j = 1, . . . , pih − 1 and
k = 1, . . . , piv − 1, over each of six faces of the element

φ̂21(ξ1, ξ2, ξ3) = χ̂2+j(ξ1)χ̂2+k(ξ2)χ̂1(ξ3) φ̂22(ξ1, ξ2, ξ3) = χ̂2+j(ξ1)χ̂2+k(ξ2)χ̂2(ξ3)

φ̂23(ξ1, ξ2, ξ3) = χ̂2+j(ξ1)χ̂1(ξ2)χ̂2+k(ξ3) φ̂24(ξ1, ξ2, ξ3) = χ̂2(ξ1)χ̂2+j(ξ2)χ̂2+k(ξ3)

φ̂25(ξ1, ξ2, ξ3) = χ̂2+j(ξ1)χ̂2(ξ2)χ̂2+k(ξ3) φ̂26(ξ1, ξ2, ξ3) = χ̂1(ξ1)χ̂2+j(ξ2)χ̂2+k(ξ3)

(6)

where pih, piv are the polynomial orders of approximations in two directions in
the i-th face local coordinates system. Finally, we define (px−1)×(py−1)×(pz−1)
basis functions over an element interior

φ̂27,ij(ξ1, ξ2) = χ̂2+i(ξ1)χ̂2+j(ξ2)χ̂2+k(ξ3) (7)

where (px, py, pz) are the polynomial orders of approximation in three directions,
respectively, utilized over an element interior. The shape functions from the
adjacent elements that correspond to identical vertices, edges, or faces, they are
merged to form global basis functions.

The support interactions of the basis functions defined over the mesh deter-
mine the sparsity pattern for the global matrix.

In the example presented in Fig. 1 there are first order polynomial basis
functions associated with element vertices, second order polynomials associated
with element edges, and second order polynomials in both directions, associated
with element interiors. For more details we refer to [9].

We illustrate these concepts with two-dimensional example. Figure 1 presents
an exemplary two-dimensional mesh consisting of rectangular finite elements
with vertices, edges and interiors, as well as shape functions defined over vertices,
edges and interiors of rectangular finite elements of the mesh.

The interactions of supports of basis functions defined over the mesh define
the sparsity pattern for the global matrix. In other words, i-th row and j-th
column of the matrix is non-zero, if supports of i-th and j-th basis functions
overlap. For example, for the p = 1 case the global matrix looks like it is presented
in Fig. 2. In this case, only vertex functions are present. For p = 2, all the basis
functions are interacting, and this corresponds to the case presented in Fig. 3.

Traditional sparse matrix solvers construct the ordering based on the sparsity
pattern of the global matrix. This is illustrated in the top path in Fig. 4. The
sparse matrix is submitted to an ordering generator, e.g., the nested-dissections
[20] or the AMD [5] algorithms from the METIS library. The ordering is utilized
later to permute the sparse matrix, which results in less non-zero entries gener-
ated during the factorization, and lower computational cost of the factorization
procedure. In the meantime, the elimination tree is constructed internally by the
sparse solver, which guides the elimination procedure1.

1 In [25] the name elimination tree was also used for the element partition tree.



Bisections-Weighted-by-Element-Size-and-Order Algorithm 765

The alternative approach is discussed in this paper. We construct the ele-
ment partition tree based on the structure of the computational mesh, using
the weighted bisections algorithm. The element partition tree is then browsed
in post-order, to obtain the ordering, which defines how to permute the sparse
matrix. This is illustrated on the bottom path presented in Fig. 4. For a detailed
description on how to construct ordering based on an element partition tree, we
refer to Chap. 8 of the book [25].

The sparsity pattern of the matrix rather not depend on the elliptic PDE
being solved over the mesh. It strongly depends on the basis functions and the
topology of the computational mesh.

Fig. 1. Examplary four element mesh and basis functions spread over the mesh

Fig. 2. Matrix resulting from four element mesh with p = 1 vertex basis functions.



766 H. AbouEisha et al.

Fig. 3. Matrix resulting from four element mesh with p = 2 basis functions related to
element vertices, edges, faces and interios.

3 Bisections-Weighted-by-Element-Size-and-Order

The algorithm of bisections-weighted-by-element-size-and-order creates an initial
undirected graph G for finite element mesh. Each node of the graph corresponds
to one finite element from the mesh. An edge in the graph G exists if the cor-
responding finite elements have a common face. Additionally, each node of the
graph G has an attribute size that is defined as follows. For the regular meshes,



Bisections-Weighted-by-Element-Size-and-Order Algorithm 767

Fig. 4. The construction of the ordering based on sparsity pattern of the matrix, and
based on the element partition tree.

Fig. 5. The exemplary three-dimensional mesh and its weighted graph representation.

as considered in this paper, the size of an element is defined as the volume of the
element times the order of the element. For general three-dimensional grids, the
volume attribute is defined as the function of a refinement level of an element:

volume = 2(3∗(max refinement level−refinement level))(px − 1)(py − 1)(pz − 1) (8)



768 H. AbouEisha et al.

Moreover, each vertex of graph G has an attribute weight defined as the polyno-
mial order of approximation of the face between two neighboring elements. The
elements in the three-dimensional mesh may be neighbors through a vertex, an
edge, or a face. In these cases, the weight of the edge corresponds to the vertex
order (always equal to one), the edge order (defined as pedge − 1) or the face
order (defined as (pih − 1) × (piv − 1). This is illustrated in Fig. 5.

The function named BisectionWeightedByElementSizeOrder() is called ini-
tially with the entire graph G, and later it is called recursively with sub-graphs of
G. It generates the element partition tree. The BisectionWeightedByElement
SizeOrder function is defined as follows:

function BisectionWeightedByElementSizeOrder(G)
If number of nodes in G

is equal to 1 then
create one element tree t with the node v ∈ G; return t;

else
Calculate the balanced weighted partition of G into G1 and G2;
//calling METIS WPartGraphRecursive() for G
t1 = BisectionWeightedByElementSizeOrder(G1);
t2 = BisectionWeightedByElementSizeOrder(G2);
create new root node t with left child t1 and right child t2
return t

endif

Once the algorithm generates the element partition tree, we extract the order-
ing and call a sequential solver. Herein, we use METIS WPartGraphRecursive [20]
function to find a balanced partition of a graph, where weights on vertices are
equal to the size value of the corresponding mesh elements. The METIS WPart
GraphRecursive uses the Sorted Heavy-EdgeMatching method during the coars-
ening phase, the Region Growing method during partitioning phase and the
Early-Exit Boundary FM refinement method during the un-coarsening phase.

4 Numerical Results

In this section, we compare the number of flops of the MUMPS multi-frontal
direct solver [2–4] with the ordering obtained from the element partition trees
generated by the bisections-weighted-by-element-size-and-order algorithm, and
the MUMPS with automatic selection of the ordering algorithm, compiled with
icntl(7)= 7. The MUMPS solver chooses either nested-dissection [20] or approx-
imate minimum degree algorithm [5] for this kind of problem, depending on the
properties of the sparse matrix. We focus on the model Fichera problem [9,10]:
Find u temperature scalar field such that ∇u = 0 on Ω being 7/8 of the cube,
with zero Dirichlet b.c. on the internal 1/8 boundary, and Neumann b.c. on
the external boundary, computed from the manufactured solution. This model
problem has strong singularities at the central point, and along the three internal
edges, thus the intensive refinements are required.



Bisections-Weighted-by-Element-Size-and-Order Algorithm 769

Fig. 6. Exponential convergence of the numerical error with respect to the mesh size
for the model Fichera problem, obtained on the generated sequence of coarse grids.
The corresponding fine grids are not presented here.

Fig. 7. Coarse and fine meshes of hp-FEM code for the Fichera problem. Various
polynomial orders of approximation on element edges, faces and interiors are denoted
by different colors. (Color figure online)

The hp-FEM code generates a sequence of hp-refined grids delivering expo-
nential convergence of the numerical error with respect to the mesh size, as
presented in Fig. 6. The comparison of flops and wall time concerns the last two
grids, the coarse, and the corresponding fine grids, generated by the hp-FEM
algorithm, with various polynomial orders of approximation, and element sizes,
as presented in Fig. 7. It is summarized in Table 1.



770 H. AbouEisha et al.

Table 1. Comparison of flops and execution times between bisection-weighted-by-
element-size-and-order, with MUMPS equipped with automatic generation of ordering
on different three-dimensional adaptive grids.

N Weighted
bisections
flops

MUMPS flops Ratio flops Weighted
bisections
time [s]

MUMPS
time [s]

Ratio
time [s]

3,958 119 ∗ 106 140 ∗ 106 1.17 2.7 s 4.52 s 1.67

32,213 4,797 ∗ 106 9,469 ∗ 106 1.90 36.02 s 43.21 s 1.19

94,221 56 ∗ 109 111 ∗ 109 1.97 14.49 s 28.29 s 1.95

139,425 132 ∗ 109 254 ∗ 109 1.92 33.06 s 67.94 s 2.05

To verify the flops and the wall-time performance of our algorithm against
alternative ordering provided by MUMPS, we use the PERM IN input array of
the library. The hp-FEM code generates a sequence of optimal grids. The deci-
sions about the optimal mesh refinements are performed by using the reference
solution on the fine grids, obtained by the global hp-refinement of the coarse
grids. We compare the flops and the wall time-performance on the last two iter-
ations performed by the adaptive algorithm, where the relative error, defined as
the H1 norm difference between the coarse and the fine mesh solutions is less than
1.0%. In particular, on the last iteration for the Fichera problem (N = 139,425)
MUMPS with its default orderings used 67.94 s while with our ordering it used
33.06 s. The number of floating point operations required to perform the fac-
torizations was 254 ∗ 109 as reported by the MUMPS with automatic ordering,
and 111 ∗ 109 as reported by the MUMPS with our ordering. We can conclude
that the bisections-weighted-by-element-size-and-order is an attractive alterna-
tive algorithm for generation of the ordering based on the element partition
trees.

5 Conclusions

We introduce a heuristic algorithm called bisections-weighted-by-element-size-
and-order that utilizes a top-down approach to construct element partition trees.
We compare the trees generated by our algorithm against the alternative state-
of-the-art ordering algorithms, on a three-dimensional hp-refined grids used to
solve the model Fichera problem. We conclude that our ordering algorithm can
deliver up to 50% improvement against the state-of-the-art orderings used by
MUMPS both in floating-point operations counts as well as wall time.



Bisections-Weighted-by-Element-Size-and-Order Algorithm 771

References

1. AbouEisha, H., Calo, V.M., Jopek, K., Moshkov, M., Paszyńska, A., Paszyński, M.,
Skotniczny, M.: Element partition trees for two- and three-dimensional h-refined
meshes and their use to optimize direct solver performance. Dyn. Program. Int. J.
Appl. Math. Comput. Sci. (2017, accepted)

2. Amestoy, P.R., Duff, I.S.: Multifrontal parallel distributed symmetric and unsym-
metric solvers. Comput. Methods Appl. Mech. Eng. 184, 501–520 (2000). https://
doi.org/10.1016/S0045-7825(99)00242-X

3. Amestoy, P.R., Duff, I.S., Koster, J., L’Excellent, J.-Y.: A fully asynchronous mul-
tifrontal solver using distributed dynamic scheduling. SIAM J. Matrix Anal. Appl.
1(23), 15–41 (2001). https://doi.org/10.1137/S0895479899358194

4. Amestoy, P.R., Guermouche, A., L’Excellent, J.-Y., Pralet, S.: Hybrid scheduling
for the parallel solution of linear systems. Comput. Methods Appl. Mech. Eng.
2(32), 136–156 (2011). https://doi.org/10.1016/j.parco.2005.07.004

5. Amestoy, P.R., Davis, T.A., Du, I.S.: An approximate minimum degree ordering
algorithm. SIAM J. Matrix Anal. Appl. 17(4), 886–905 (1996). https://doi.org/
10.1137/S0895479894278952

6. Babuśka, I., Rheinboldt, W.C.: Error estimates for adaptive finite element compu-
tations. SIAM J. Num. Anal. 15, 736–754 (1978). https://doi.org/10.1137/0715049

7. Babuska, I., Guo, B.Q.: The h, p and hp version of the finite element method: basis
theory and applications. Adv. Eng. Softw. 15(3–4), 159–174 (1992). https://doi.
org/10.1016/0965-9978(92)90097-Y

8. Becker, R., Kapp, J., Rannacher, R.: Adaptive finite element methods for optimal
control of partial differential equations: basic concept. SIAM J. Control Optim.
39, 113–132 (2000). https://doi.org/10.1137/S0363012999351097

9. Demkowicz, L., Kurtz, J., Pardo, D., Paszyński, M., Rachowicz, W., Zdunek, A.:
Computing with hp Adaptive Finite Element Method. Part II. Frontiers: Three
Dimensional Elliptic and Maxwell Problems with Applications. Chapmann & Hall,
CRC Press, Boca Raton, London, New York (2007)

10. Demkowicz, L., Pardo, D., Rachowicz, W.: Fully automatic hp-adaptivity in three-
dimensions. Comput. Methods Appl. Mech. Eng. 196(37–40), 4816–4842 (2006).
https://doi.org/10.1023/A:1015192312705

11. Duff, I.S., Erisman, A.M., Reid, J.K.: Direct Methods for Sparse Matrices. Oxford
University Press Inc., New York (1986)

12. Duff, I.S., Reid, J.K.: The multifrontal solution of indefinite sparse symmetric
linear. ACM Trans. Math. Softw. 9(3), 302–325 (1983). https://doi.org/10.1145/
356044.356047

13. Duff, I.S., Reid, K.: The multifrontal solution of unsymmetric sets of linear systems.
SIAM J. Sci. Comput. 5, 633–641 (1984). https://doi.org/10.1137/0905045

14. Fia�lko, S.: A block sparse shared-memory multifrontal finite element solver for
problems of structural mechanics. Comput. Assist. Mech. Eng. Sci. 16, 117–131
(2009)

15. Fia�lko, S.: The block subtracture multifrontal method for solution of large finite
element equation sets. Tech. Trans. 1-NP 8, 175–188 (2009)

16. Fia�lko, S.: PARFES: a method for solving finite element linear equations on multi-
core computers. Adv. Eng. Softw. 40(12), 1256–1265 (2010). https://doi.org/10.
1016/j.advengsoft.2010.09.002

17. George, A.: An automatic nested dissection algorithm for irregular finite element
problems. SIAM J. Num. Anal. 15, 1053–1069 (1978). https://doi.org/10.1137/
0715069

https://doi.org/10.1016/S0045-7825(99)00242-X
https://doi.org/10.1016/S0045-7825(99)00242-X
https://doi.org/10.1137/S0895479899358194
https://doi.org/10.1016/j.parco.2005.07.004
https://doi.org/10.1137/S0895479894278952
https://doi.org/10.1137/S0895479894278952
https://doi.org/10.1137/0715049
https://doi.org/10.1016/0965-9978(92)90097-Y
https://doi.org/10.1016/0965-9978(92)90097-Y
https://doi.org/10.1137/S0363012999351097
https://doi.org/10.1023/A:1015192312705
https://doi.org/10.1145/356044.356047
https://doi.org/10.1145/356044.356047
https://doi.org/10.1137/0905045
https://doi.org/10.1016/j.advengsoft.2010.09.002
https://doi.org/10.1016/j.advengsoft.2010.09.002
https://doi.org/10.1137/0715069
https://doi.org/10.1137/0715069


772 H. AbouEisha et al.

18. Gilbert, J.R., Tarjan, R.E.: The analysis of a nested dissection algorithm. Numer.
Math. 50(4), 377–404 (1986/87). https://doi.org/10.1007/BF01396660

19. Hughes, T.J.R.: The Finite Element Method. Linear Statics and Dynamics Finite
Element Analysis. Prentice-Hall, Englewood Cliffs (1987)

20. Karypis, G., Kumar, V.: A fast and high quality multilevel scheme for partitioning
irregular graphs. SIAM J. Sci. Comput. 20(1), 359–392 (1998). https://doi.org/
10.1137/S1064827595287997

21. Melenk, J.M.: hp-Finite Element Methods for Singular Perturbations. Springer,
Heidelberg (2002). https://doi.org/10.1007/b84212

22. Niemi, A., Babuśka, I., Pitkaranta, J., Demkowicz, L.: Finite element analysis of
the Girkmann problem using the modern hp-version and the classical h-version.
Eng. Comput. 28, 123–134 (2012). https://doi.org/10.1007/s00366-011-0223-0

23. Paszyńska, A.: Volume and neighbors algorithm for finding elimination trees
for three dimensional h-adaptive grids. Comput. Math. Appl. 68(10), 1467–1478
(2014). https://doi.org/10.1016/j.camwa.2014.09.012

24. Paszyńska, A., Paszyński, M., Jopek, K., Woźniak, M., Goik, D., Gurgul, P.,
AbouEisha, H., Moshkov, M., Calo, V.M., Lenharth, A., Nguyen, D., Pingali, K.:
Quasi-optimal elimination trees for 2D grids with singularities. Sci. Program. 2015,
1–18, Article ID 303024 (2015). https://doi.org/10.1155/2015/303024

25. Paszyński, M.: Fast Solvers for Mesh-Based Computations. Taylor and Fran-
cis/CRC Press, Boca Raton, London, New York (2016)

26. Schwab, C.: p and hp Finite Element Methods: Theory and Applications in Solid
and Fluid Mechanics. Clarendon Press, Oxford (1998)

27. Solin, P., Segeth, K., Dolezel, I.: Higher-Order Finite Element Methods. Chapman
& Hall/CRC Press, Boca Raton, London, New York (2003)

28. Szymczak, A., Paszyńska, A., Paszyński, M., Pardo, D.: Preventing deadlock during
anisotropic 2D mesh adaptation in hp-adaptive FEM. J. Comput. Sci. 4(3), 170–
179 (2013). https://doi.org/10.1016/j.jocs.2011.09.001

29. Yannakakis, M.: Computing the minimum fill-in is NP-complete. SIAM J. Alge-
braic Discret. Methods 2, 77–79 (1981). https://doi.org/10.1137/0602010

https://doi.org/10.1007/BF01396660
https://doi.org/10.1137/S1064827595287997
https://doi.org/10.1137/S1064827595287997
https://doi.org/10.1007/b84212
https://doi.org/10.1007/s00366-011-0223-0
https://doi.org/10.1016/j.camwa.2014.09.012
https://doi.org/10.1155/2015/303024
https://doi.org/10.1016/j.jocs.2011.09.001
https://doi.org/10.1137/0602010

	Bisections-Weighted-by-Element-Size-and-Order Algorithm to Optimize Direct Solver Performance on 3D hp-adaptive Grids
	1 Introduction
	2 Meshes, Matrices and Orderings for the hp-adaptive Finite Element Methods
	3 Bisections-Weighted-by-Element-Size-and-Order
	4 Numerical Results
	5 Conclusions
	References




