
Solving CSS-Sprite Packing Problem
Using a Transformation to the

Probabilistic Non-oriented Bin Packing
Problem

Soumaya Sassi Mahfoudh(B) , Monia Bellalouna , and Leila Horchani

Laboratory CRISTAL-GRIFT, National School of Computer Science,
University of Manouba, Manouba, Tunisia

soumaya.lsm@gmail.com, monia.bellalouna@gmail.com,

leila.horchani@gmail.com

Abstract. CSS-Sprite is a technique of regrouping small images of a
web page, called tiles, into images called sprites in order to reduce net-
work transfer time. CSS-sprite packing problem is considered as an opti-
mization problem. We approach it as a probabilistic non-oriented two-
dimensional bin packing problem (2PBPP |R). Our main contribution
is to allow tiles rotation while packing them in sprites. An experimental
study evaluated our solution, which outperforms current solutions.

Keywords: Bin packing · Non-oriented · CSS-sprite
Image compression

1 Introduction

It was reported in [16] that 61.3% of all HTTP requests to servers are images. In
fact, for each image we need a HTTP request. This action includes interaction
between the web server and the user. Web server is characterized by a long
delay due to the messages transporting the request through the network stack,
the request treatment at the server and the location of the resources in the
server cache. So to reduce web interactions, web designers resort to CSS-sprite
technique, whose main idea is to regroup small images, called tiles, in pictures
called, sprites.

Figure 1(a) shows a sprite and Fig. 1(b) shows a part of Cascading Style Sheet
(CSS) [27] file. The size of each of the three tiles in Fig. 1(a) is 17 Kilobytes (KB).
If tiles are used separately, we need to load each tile apart, which means that we
are going to load 51 KB. However, if we use the sprite Fig. 1(a), we need only to
load 21 KB. And this is not all, for in order to load each tile, we need a HTTP
request instead of loading the sprite only once and saving it on the cache. We
can imagine the amount of reduction in the case of thousands of tiles.

To our knowledge, CSS was introduced by [1] then popularized by [23]. CSS-
sprite generators pack all tiles in one or multiple sprites. Yet, they are still forcing
the packing of tiles without rotation.
c© Springer International Publishing AG, part of Springer Nature 2018
Y. Shi et al. (Eds.): ICCS 2018, LNCS 10861, pp. 561–573, 2018.
https://doi.org/10.1007/978-3-319-93701-4_44

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-93701-4_44&domain=pdf
http://orcid.org/0000-0003-2672-881X
http://orcid.org/0000-0002-3261-9452
http://orcid.org/0000-0002-1628-2028

562 S. Sassi Mahfoudh et al.

(a) Sprite.png
image

(b) Part of CSS file

Fig. 1. Example of use of CSS-sprite

Css-sprite problem is a practical problem with multiple facets involving com-
binatorial optimization problems, image compression and network performance.
These facets will be presented in further sections. In the next section, we will
present our approach which allows tiles rotation while constructing sprites. In
Sect. 3, we will present in details geometric packing as well as chosen heuristics.
In Sect. 4, we will describe briefly image processing. Section 5 is dedicated to out-
line communication performance. The last section is devoted to the evaluation
of our solution.

2 Problem Formulation

Formally, CSS-sprite packing problem is defined as follows: given a set of tiles
Γn = {t1, . . . , tn} in standard formats (such as JPEG, PNG and GIF). We intend
to combine them into a sprite or a set of sprites S to minimize network transfer
time. CSS-sprite packing is a NP-Hard problem [20]. The major problem is the
large number of tiles and the presence of distorted tiles. Css-sprite packing is

Solving CSS-Sprite Packing Problem Using a Transformation to 2PBPP|R 563

considered as an optimization problem of the class 2D packing problems because
tiles and sprites are rectangles. Contemporary CSS-sprite generators pack tiles
in one or many sprites but do not consider two important aspects:

1. Tiles rotation.
2. The presence of distorted tiles.

In fact, though it is technically possible to rotate images using CSS, tiles rotation
has not been used in CSS-sprite packing so far [20], which may cause wasted space
illustrated in Fig. 2. Wasted space drains memory and excessive memory usage
affects browser performance. One possible approach to overcame wasted space
in sprites is to model CSS-sprite problem as a two-dimensional probabilistic
non-oriented bin packing problem. Following the notation [18], this problem
is denoted by 2PBPP|R. 2PBPP|R is a branch of Probabilistic Combinatorial
Optimization Problems (PCOP).

The idea of PCOPs comes from Jaillet [14,15]. Among several motivations
PCOPs were introduced to formulate and analyze models which are more appro-
priate for real world problems. PBPP was first studied in [5].

2PBPP|R is essentially a 2BPP|R where one is asked to pack a varying
number of rectangular items: where we assume that a list Ln of n rectangular
items is given, and that some items disappear from Ln. The subset of present
items is packed without overlapping and with the possibility of rotation by 90◦

into the minimum number of identical bins. Table 1 represents the similarities
between 2PBPP|R and CSS-sprite problem.

(a) Oriented Packing (b) Non-Oriented Packing

Fig. 2. Example of wasted space

Solving CSS-sprite problem, is a tantamount to solving an instance of
2PPBP|R. The possible optimization methods to solve bin-packing problems
are exact methods, heuristics, meta-heuristics. Even though, it is guaranteed
that exact methods can find an optimal solution, the difficulty of obtaining an
optimal solution increases drastically if the problem size increases, due to the
fact that is an NP-hard problem.

564 S. Sassi Mahfoudh et al.

Table 1. Analogy between 2PPBP|R and CSS-sprite technique

2PBPP |R CSS-sprite

Ln: set of rectangular items Γn: set of tiles

Bins with same capacity Sprites with same size

Rectangular items Tiles

Items rotation 90◦ Tiles rotation 90◦

Absent items Distorted, unused tiles

Minimize the average number of bins Better fulfil sprites

3 Geometric Packing

Css-sprite packing was firstly solved manually [23] then multiple solutions were
proposed. Moreover, a great number of sprite generators have been proposed.
A recent survey of existing solutions were proposed by [20]. But we are only
interested in those which exploit 2D packing heuristics. Table 2 groups this cate-
gory of solutions identified by short name and web address. In fact, in CSS-sprite
packing problem, decisions of choosing the position of tiles need to be made with-
out full knowledge of the rest of the input. We have an incrementally appearing
input, where the input needs to be processed in the order in which it comes. The
input is only completely known at the end of the problem.

So, to solve this situation we consider some fast online algorithms. Such
algorithms receive the tiles one at a time and need to decide where to place
tiles in the bin without knowing the full problem. We choose from literature the
following algorithms:

1. Bottom Left (BL): The heuristic was proposed by Baker et al. [4]. The current
item is then packed in the lowest position of open bin, left justified; if no bin
can allocate it, a new one is initialized. Chazelle [6] proposed an efficient
implementation of this algorithm in O(n2) time and O(n) space.

2. Best Area Fit (BAF): Orient and place each rectangle to the position where
the y-coordinate of the top side of the rectangle is the smallest and if there
are several such valid positions, pick the one that is smallest in area to place
the next item into. The item is placed in the bottom left corner of the chosen
area. Based on tests performed by [2], it would suggest an average of O(n3)
time and O(n) space.

3. Item Maxim Area (IMA): This heuristic was proposed by [9] as an extension of
the Best-Fit heuristic for 2D packing problems. At each step of item packing,
a choice of the couple (item to be packed, receiving area) is made.
This choice is based on the criteria which takes into account the characteristics
of the item and those of the candidate area. Given an item ai(wi, hi) in a given
orientation and an area ma that can contain it, let dxi and dyi (respectively
wma and hma) be the projections of the edges of ai (respectively ma) on the
x- and y-axis. Given four real numbers: q1, q2, q3 and q4 such that 0 ≤ qk ≤
1; k = 1, . . . , 4 and

∑

k=1,...,4

qk = 1, the criteria can be written as follows:

Solving CSS-Sprite Packing Problem Using a Transformation to 2PBPP|R 565

Table 2. Sprite generators using 2D packing algorithms

Short name Output format 2D packing
heuristic

Web address

A Glue PNG PNG8 Binary-
tree [11]

http://glue.readthedocs.io/
en/latest/

Zerosprites PNG PNG8 Korf’s
algorithm [13]
B*-tree [8]

http://zerosprites.com/

Pypack PNG Extension of
binary-
tree [11]

http://jwezorek.com/2013/
01/sprite-packing-in-python/

JSGsf PNG Binary-
tree [11]

https://github.com/
jakesgordon/sprite-factory/

Isaccc PNG Rectangle
packing [10]

https://www.codeproject.
com/Articles/140251/Image-
Sprites-and-CSS-Classes-
Creator

Simpreal PNG JPEG
GIF BMP

Colum or row
mode

http://simpreal.org.ua/
csssprites/#!source

B Codepen PNG Tiles sorting
by area width
or height

https://codepen.io/JFarrow/
full/scxKd

Csgencom PNG JPEG
GIF

Not specified http://css.spritegen.com/

Cdplxsg PNG Tree [7,21] http://spritegenerator.
codeplex.com/

Txturepk Many formats MaxRects [3]
Bottom-left [4]

https://www.codeandweb.
com/texturepacker/
documentation

Stitches PNG Not specified http://draeton.github.io/
stitches/

Sstool PNG Not specified https://www.leshylabs.com/
apps/sstool/

Canvas PNG Korf’s
algorithm [17]

https://timdream.org/
canvas-css-sprites/en/

Shoebox PNG Not specified https://renderhjs.net/
shoebox/

Retina PNG JPEG
GIF

Colum row
diagonal mode

http://www.
retinaspritegenerator.com/

Csspg PNG JPEG
GIF

Binary-tree
top-down
left-right

https://www.toptal.com/
developers/css/sprite-
generator

Spritepack PNG8 PNG32
PNG24 JPEG
GIF

FFDH [19]
BFDH [19]
Bottom-left [4]

http://www.cs.put.poznan.
pl/mdrozdowski/spritepack/

http://glue.readthedocs.io/en/latest/
http://glue.readthedocs.io/en/latest/
http://zerosprites.com/
http://jwezorek.com/2013/01/sprite-packing-in-python/
http://jwezorek.com/2013/01/sprite-packing-in-python/
https://github.com/jakesgordon/sprite-factory/
https://github.com/jakesgordon/sprite-factory/
https://www.codeproject.com/Articles/140251/Image-Sprites-and-CSS-Classes-Creator
https://www.codeproject.com/Articles/140251/Image-Sprites-and-CSS-Classes-Creator
https://www.codeproject.com/Articles/140251/Image-Sprites-and-CSS-Classes-Creator
https://www.codeproject.com/Articles/140251/Image-Sprites-and-CSS-Classes-Creator
http://simpreal.org.ua/csssprites/#!source
http://simpreal.org.ua/csssprites/#!source
https://codepen.io/JFarrow/full/scxKd
https://codepen.io/JFarrow/full/scxKd
http://css.spritegen.com/
http://spritegenerator.codeplex.com/
http://spritegenerator.codeplex.com/
https://www.codeandweb.com/texturepacker/documentation
https://www.codeandweb.com/texturepacker/documentation
https://www.codeandweb.com/texturepacker/documentation
http://draeton.github.io/stitches/
http://draeton.github.io/stitches/
https://www.leshylabs.com/apps/sstool/
https://www.leshylabs.com/apps/sstool/
https://timdream.org/canvas-css-sprites/en/
https://timdream.org/canvas-css-sprites/en/
https://renderhjs.net/shoebox/
https://renderhjs.net/shoebox/
http://www.retinaspritegenerator.com/
http://www.retinaspritegenerator.com/
https://www.toptal.com/developers/css/sprite-generator
https://www.toptal.com/developers/css/sprite-generator
https://www.toptal.com/developers/css/sprite-generator
http://www.cs.put.poznan.pl/mdrozdowski/spritepack/
http://www.cs.put.poznan.pl/mdrozdowski/spritepack/

566 S. Sassi Mahfoudh et al.

O(ai,ma) = q1
wihi

wmahma
+ q2

dxi

wma
+ q3

dyi
hma

+ q4
w2

i + h2
i

w2
ma + h2

ma

The couple (item to be packed, maximal area that will accommodate it)
is the one that maximizes the criteria cited above. The choice of IMA was
based on the elaborated experiments [9], which conclude that IMA dominates
several heuristics from literature however theoretically the complexity of this
heuristic is O(n5).

4 Image Processing

Processing images is a primordial step in CSS-sprite packing whose purpose is
to reduce tiles sizes, and so implicitly decrease transfer time and sprites size. It
involves tiles transformation and tiles compression.

1. Tiles Transformation: Tiles are images in standard image formats as JPEG,
PNG and GIF. All GIFs tiles were converted to PNG, which reduces image
size [24]. JPEG tiles were transformed to PNG if PNG format is smaller than
JPEG image.

2. Tiles compression: Presenting image compression techniques and standards
is beyond the scope of this paper. But we recommend readers to take a look
at several survey papers [22,25] to understand the concept of image compres-
sion techniques and standards. In fact, no method can be considered good for
all images, nor are all methods equally good for a particular type of image.
Compression methods perform in different manner in accordance with differ-
ent kinds of images.
Recently, Google Incorporation proposed a compression tool named Zopfli [3].
Zopfli algorithm is based on Huffman coding. It was proved that Zopfli yields
the best compression ratio [12].
As we mentioned before, images often represent the majority of bytes
uploaded to a web page. Therefore, image optimization is essential for saving
bytes and the most important performance improvement. For better results,
sprites were post-compressed for the minimum size. This means that sprites
obtained after packing tiles are further compressed for the minimum size.

5 Communication Performance

Obviously, we consider that measuring the quality of sprites is equivalent to
determining the network transfer time. However, certain factors make it hardly
possible. In fact, transfer time is unpredictable and non-deterministic. So, it
remains impossible to use detailed methods of packet level simulation to cal-
culate sprites transfer time since those methods are quite time consumers [20].
Thus, [26] proposed to use flow models to evaluate the quality of sprites.

We exploited the flow model proposed by [20] which was validated in real
settings. Table 3 presents the parameters of our model:

Solving CSS-Sprite Packing Problem Using a Transformation to 2PBPP|R 567

Table 3. Model parameters

Parameter Definition

S Set of sprites

m Number of sprites

fi Size of sprite Si in bytes

F Size of set S

c Number of communication channels

B(c) Accumulated bandwidth of c

L Communication latency (startup time)

T (S, c) Transfer time as a function of S and c

The transfer time of a set of sprites over c concurrent channels is modeled
by the following formula [20]:

T (S, c) = max

{
1
c

m∑

i=1

(L +
fi

B(c)/c
), max

{i=1..m}
{L +

fi
B(c)/c

)}
}

(1)

Since the web site performance is not only affected by the server but also by the
user side such as browser and computer performance, so performance parameters
should be measured on their real populations.

6 Computational Results

In this section, we compare our approach to solve CSS-sprite packing problem,
named SpriteRotate, with alternative sprite generators. The main contribution
of our approach is to rotate tiles by 90◦ while constructing sprites.

SpriteRotate has been implemented in Java using Eclipse Jee Neon IDE. All
tests were performed on typical PC with i5-5200U CPU (2.2 GHz), 12 GB of
RAM and Windows 8.

Based on experiments through real visitors [20], transfer time model param-
eters have been set to L = 352 ms, c = 3 and B(c) = 631 Kilobit (Kb)/s. For
image compression, Zoplfli compression level has been set to the strongest level 9.

Generated sprites by SpriteRotate include the position of tile in the sprite,
which sprite contains a considered tile and whether the output is one sprite or
multiple sprites. Besides, we specify if the tile in the sprite is rotated or not to
facilitate the extraction of tiles from CSS file. SpriteRotate offers two output
formats: PNG and JPEG.

Thereafter, we applied the following procedure. In the first experiments,
we considered only a set of sprite generators which construct one sprite. Since
SpriteRotate builds a number of sprites, we modified SpriteRotate code to gen-
erate a single sprite. In fact, group A of solutions in Table 2 were excluded from

568 S. Sassi Mahfoudh et al.

the evaluation because of: failure to work properly or dead applications. Only
solutions from group B were chosen for comparison.

In the second series of tests, SpriteRotate has been compared to
Spritepack [20], which is a recent solution which generates multiple sprites. The
comparison focused on the sizes of the sprites and the objective function: transfer
time.

In order to evaluate SpriteRotate, we considered 10 tiles sets from test sets
collected in [20]. The tiles are skins and other reusable GUI elements of popular
open source web applications. But unfortunately most of them are too simple,
consisting of few tiles with identical shape and tiles format. Nevertheless, this
tiles test sets allow evaluating our approach in realistic settings. The instances
in Table 4 are chosen to represent a spectrum of possible situations: from Joomla
Busines14a tile set of size smaller than 20 KB (29 tiles) to Vbulletin Darkness
with 1010 tiles and over 11.2 Megabytes (MB) total size.

The results of the first evaluations are collected in Tables 5 and 6, which show
the sprite size fi and resulted transfer time T (S, c) of SpriteRotate compared
to alternative generators. Each column represents results for each generator.
Column labeled “Min” and “Max” represents respectively the minimum and the
maximum gain rate obtained by SpriteRotate relatively to alternative generators.
Row “Average” is the average size of the sprite through all test instances. An
empty cell means that generators has not been able to generate a sprite. It is
clear that SpriteRotate outperformed the alternative generators in sprite size and
transfer time. Codepen generator considered as the second generator, multiplied
on average sprite size by a factor 4 compared to SpriteRotate’s (17 in worst case).
Similarly, transfer time was multiplied on average by a factor of 5 compared
to the SpriteRotate’s objective function (and 28 in the worst case). In absolute
terms, SpriteRotate decreases sprite size from 16 KB to 279 KB. As consequence,
a very considerable gain was obtained. SpriteRotate succeed to reduce transfer
time from 370 ms up to 71 s.

In the case of Vbulletin Darkness instance (1010 tiles), TexturePacker and
SpriteRotate were only able to give result. In fact, SpriteRotate lowers sprite
size by 800 KB and transfer time by 30 s.

Through computational results, SpriteRotate was able to generate sprites
to all tiles instances with up to 1010 tiles. SpriteRotate produced a transfer
time of seconds compared to few tens for considered generators. This is a very
substantial improvement for the objective function (1). Overall, although our
solution was not designed to generate one sprite with the smallest file size, it
still outperforms competitors.

In the second round of comparison, SpriteRotate has been evaluated to
Spritepack. The comparison also focused on sprites size and transfer time. Due
to lack of results related to Spritepack, the comparison was only performed on
5 tiles sets. The results are collected in Table 7.

For small tiles instances with up to 32 tiles, SpriteRotate was able to reduce
sprites size by a factor of 1.2 to 4. In absolute terms, the reduction was from
1.5 KB to 18 KB. As a consequence, transfer time T (S, c) was reduced from 60 ms
to 720 ms.

Solving CSS-Sprite Packing Problem Using a Transformation to 2PBPP|R 569

For moderate instance Oscommerce Pets (162 tiles), the improvement of
transfer time, by 1.82 s, was driven by reduce in sprites size by 47 KB.

To conclude this experimental comparison, the proposed approach, SpriteRo-
tate, focused on solving CSS-sprite packing using a transformation to a proba-
bilistic non oriented bin-packing problem. The main contribution was allowing
tiles rotation. SpriteRotate was compared to 9 alternative generators on tiles
instances, of popular open source web applications, with up to 1010 tiles. Our
experimental study has demonstrated that SpriteRotate outperformed the alter-
native generators.

Though SpriteRotate is not necessarily constructing optimum sprites because
we are dealing with NP-Hard problem. Thus, we can conclude that tiles rotation

Table 4. Test instances

Instance name Number of tiles Tiles classification URL

PNG GIF JPEG

Magneto
Hardwood

9 3 5 1 http://www.themesbase.
com/Magento-Skins/
download/?dl=7396

Sprite Creator 26 26 0 0 http://www.codeproject.
com/KB/HTML/
SpritesAndCSSCreator/
SpriteCreator v2.0.zip

Joomla
Busines14a

29 28 0 1 http://www.joomla24.com/
Joomla 2.5 %10 1.
7 Templates/Joomla 2.5
%10 1.7 Templates/
Business 14.html

Mojoportal
Thehobbit

32 28 3 1 https://www.mojoportal.com

Squirrel
Mail outlook

73 16 57 0 https://sourceforge.net/
projects/squirreloutlook/

Myadmin
Cleanstrap

198 196 2 0 https://github.com/
phpmyadmin/themes/tree/
master/cleanstrap/img

Prestashop
Matrice

212 52 139 21 http://dgcraft.free.fr/blog/
index.php/category/themes-
prestashop/

Smf Classic 317 62 254 1 http://www.themesbase.
com/SMF-Themes/
7339 Classic.html

Vbulletin
Darkness

1010 646 351 13 https://www.bluepearl-skins.
com/forums/topic/5544-
darkness-free-vbulletin-
skins/

http://www.themesbase.com/Magento-Skins/download/?dl=7396
http://www.themesbase.com/Magento-Skins/download/?dl=7396
http://www.themesbase.com/Magento-Skins/download/?dl=7396
http://www.codeproject.com/KB/HTML/SpritesAndCSSCreator/SpriteCreator_v2.0.zip
http://www.codeproject.com/KB/HTML/SpritesAndCSSCreator/SpriteCreator_v2.0.zip
http://www.codeproject.com/KB/HTML/SpritesAndCSSCreator/SpriteCreator_v2.0.zip
http://www.codeproject.com/KB/HTML/SpritesAndCSSCreator/SpriteCreator_v2.0.zip
http://www.joomla24.com/Joomla_2.5_%10_1.7_Templates/Joomla_2.5_%10_1.7_Templates/Business_14.html
http://www.joomla24.com/Joomla_2.5_%10_1.7_Templates/Joomla_2.5_%10_1.7_Templates/Business_14.html
http://www.joomla24.com/Joomla_2.5_%10_1.7_Templates/Joomla_2.5_%10_1.7_Templates/Business_14.html
http://www.joomla24.com/Joomla_2.5_%10_1.7_Templates/Joomla_2.5_%10_1.7_Templates/Business_14.html
http://www.joomla24.com/Joomla_2.5_%10_1.7_Templates/Joomla_2.5_%10_1.7_Templates/Business_14.html
https://www.mojoportal.com
https://sourceforge.net/projects/squirreloutlook/
https://sourceforge.net/projects/squirreloutlook/
https://github.com/phpmyadmin/themes/tree/master/cleanstrap/img
https://github.com/phpmyadmin/themes/tree/master/cleanstrap/img
https://github.com/phpmyadmin/themes/tree/master/cleanstrap/img
http://dgcraft.free.fr/blog/index.php/category/themes-prestashop/
http://dgcraft.free.fr/blog/index.php/category/themes-prestashop/
http://dgcraft.free.fr/blog/index.php/category/themes-prestashop/
http://www.themesbase.com/SMF-Themes/7339_Classic.html
http://www.themesbase.com/SMF-Themes/7339_Classic.html
http://www.themesbase.com/SMF-Themes/7339_Classic.html
https://www.bluepearl-skins.com/forums/topic/5544-darkness-free-vbulletin-skins/
https://www.bluepearl-skins.com/forums/topic/5544-darkness-free-vbulletin-skins/
https://www.bluepearl-skins.com/forums/topic/5544-darkness-free-vbulletin-skins/
https://www.bluepearl-skins.com/forums/topic/5544-darkness-free-vbulletin-skins/

570 S. Sassi Mahfoudh et al.

Table 5. Comparison of SpriteRotate to alternative generators on size of sprite fi(Kb)

Codepen Csgencom Cdplxsg Stitches Sstool Retina Shoebox Txturepk Sprite

Rotate

Min Max

Magneto

Hardwood

296 738 568 23 782 831 506 746 16 5 815

Sprite

Creator

113 43 437 394 473 427 453 434 15 28 457

Joomla

Busines14a

33 24 15 15 23 24 15 21 5 10 28

Mojoportal

Thehobbit

59 149 159 197 192 205 146 160 7 52 190

Squirrelmail

Outlook

66 102 89 121 105 114 62 98 50 16 71

Oscommerce

Pets

273 1601 1612 1680 1711 1903 1627 608 35 238 1868

Myadmin

Cleanstrap

47 63 55 86 70 82 56 45 23 22 41

Prestashop

Matrice

62 138 136 165 144 - 123 133 51 112 515

Smf Classic 107 - 220 265 239 - 133 205 25 82 240

Vbulletin

Darkness

- - - - - - - 839 39 800 800

Average 132 357.2 365 326 415 480 346 348.35 26.96 136 502

Table 6. Comparison of SpriteRotate to alternative generators on objective function
T (S, c)(s)

Codepen Csgencom Cdplxsg Stitches Sstool Retina Shoebox TSxturepk Sprite

Rotate

Min Max

Magneto

Hardwood

11.47 28.09 21.70 12.16 30.06 31.93 19.58 28.81 0.98 10.49 38.05

Sprite

Creator

4.59 1.96 16.77 15.16 18.32 16.57 17.56 16.84 0.93 1.03 17.39

Joomla

Busines14a

15.92 1.25 9.15 1.11 1.22 1.27 0.92 1.17 0.55 0.37 15.37

Mojoportal

Thehobbit

4.69 5.99 6.32 7.75 7.56 8.14 5.9 6.43 0.61 4.08 7.53

Squirrel Mail 2.83 4.18 3.69 4.95 4.34 4.68 2.71 4.08 2.25 0.46 2.7

Oscommerce

Pets

10.6 60.53 60.94 64.12 65.37 72.66 62.17 23.45 0.73 9.87 71.93

Myadmin

Cleanstrap

2.11 2.72 2.41 3.62 3.01 3.47 2.49 2.06 1.25 0.81 2.22

Prestashop

Matrice

2.68 5.53 5.11 6.62 5.82 - 5.02 5.4 2.29 0.57 7.98

Smf Classic 4.37 - 8.62 10.31 9.33 - 5.40 8.14 1.3 3.07 9.16

Vbulletin

Darkness

- - - - - - - 32.23 1.8 30.43 30.43

Solving CSS-Sprite Packing Problem Using a Transformation to 2PBPP|R 571

Table 7. Comparison of SpriteRotate to Spritepack on size of sprites (F (Kb)) and
objective function (T (S, c)(s))

Spritepack SpriteRotate

m F T (S, c) m F T (S, c)

Magneto Hardwood 3 36 1.7 1 16.7 0.98

Squirrelmail Outlook 1 8.71 0.68 1 7.31 0.62

Joomla Busines14a 1 23.76 1.25 1 5.44 0.55

Mojoportal Thehobbit 7 19.31 1.08 4 7.38 0.63

Oscommerce Pets 6 84 3.54 6 36.05 1.72

have a great influence on reducing sprites size and the objective function: transfer
time.

This section will conclude with some general remarks about SpriteRotate.
The solution was able to provide sprites for all test sets in practically acceptable
time. SpriteRotate processing time is split between image processing, geometric
packing and postprocessing. The three stages consumed in average 70%, 20%,
10% of total processing time, respectively. Thus, image compression is the most
time-consuming step.

Concerning image compression, we detected that for tiles with sizes lower
than 1 Kb, there was not a modification in tiles sizes. As matter of fact, image
compression was efficient for tiles with sizes larger than 3 Kb.

SpriteRotate is considered as a research tool and not an industrial one. In
fact, image compression techniques and packing algorithms are evolving so other
heuristics and image compression standards can be tried as well as integrating
further input formats.

7 Conclusion

In this paper, we have approached the CSS-sprite packing problem into two-
dimensional non-oriented probabilistic bin packing problem (2PBPP|R). We fol-
lowed the relation between CSS-sprite packing and 2PBPP|R and proposed our
approach which allowed for the first time to rotate tiles while generating sprites.
Furthermore, in order to manage efficiently the big number of tiles, it was neces-
sary to exploit 2PBPP heuristics. Our experiments on real-world sets validated
our approach, which performs better than alternative approaches.

Acknowledgments. The first author extends her sincere thanks to Seifeddine
Kaoeuch for his help.

572 S. Sassi Mahfoudh et al.

References

1. Fast rollovers without preload. http://wellstyled.com/css-nopreload-rollovers.
html. Accessed 29 September 2017

2. A thousand ways to pack the bin - a practical approach to two-dimensional rectan-
gle bin packing. http://clb.demon.fi/files/RectangleBinPack.pdf Accessed 10 July
2017

3. Alakuijala, J., Vandevenne, L.: Data compression using Zopfli.Google inc. (2013).
https://github.com/google/zopfli. Accessed 08 January 2017

4. Baker, B., Coffman, E., Rivest, R.: Orthogonal packing in two dimensions. SIAM
J. Comput. 9(4), 846–855 (1980)

5. Bellalouna, M.: Problèmes d’optimisation combinatoires probabilistes. Ph.D. the-
sis, Ecole Nationale des Ponts et Chaussees (1993)

6. Chazelle, B.: The bottom-left bin-packing heuristic: an efficient implementation.
IEEE Trans. Comput. 32(8), 697–707 (1983)

7. Chen, P.H., Chen, Y., Goel, M., Mang, F.: Approximation of two-dimensional
rectangle packing. Technical report (1999)

8. Chen, T.C., Chang, Y.W.: Modern floorplanning based on b*-tree and fast simu-
lated annealing. Trans. Comp.-Aided Des. Integr. Circ. Sys. 25, 637–650 (2006)

9. El Hayek, J., Moukrim, A., Nègre, S.: New resolution algorithm and pretreatments
for the two-dimensional bin-packing problem. Comput. Oper. Res, 35(10), 3184–
3201 (2008)

10. Framework, N.: Rectangle packing. http://nuclexframework.codeplex.com/.
Accessed 25 January 2018

11. Gordon, J.: Binary tree bin packing algorithm. https://codeincomplete.com/posts/
bin-packing/. Accessed 08 September 2017

12. Habib, A., Rahman, M.S.: Balancing decoding speed and memory usage for Huff-
man codes using quaternary tree. Appl. Inform. 4(1), 39–55 (2017)

13. Huang, E., Korf, R.: Optimal rectangle packing: an absolute placement approach.
J. Artif. Intell. Res. 46, 47–87 (2013)

14. Jaillet, P.: A priori solution of a traveling salesman problem in which a random
subset of the customers are visited. Oper. Res. 36(6), 929–936 (1988)

15. Jaillet, P.: Analysis of probabilistic combinatorial optimization problems in
euclidean spaces. Math. Oper. Res. 18(1), 51–70 (1993)

16. Jeon, M., Kim, Y., Hwang, J., Lee, J., Seo, E.: Workload characterization and
performance implications of large-scale blog servers. ACM Trans. Web (TWEB)
6, 16 (2012)

17. Korf, R.: Optimal rectangle packing: new results. In. Proceedings of the Thirteenth
International Conference on Automated Planning and Scheduling, ICAPS 2004, pp.
142–149 (2004)

18. Lodi, A.: Algorithms for two-dimensional bin packing and assignment problems.
Ph.D. thesis, Université de bologne (1999)

19. Lodi, A., Martello, S., Vigo, D.: Recent advances on two-dimensional bin packing
problems. Discret. Appl. Math. 123(1–3), 379–396 (2002)

20. Marszalkowski, J., Mizgajski, J., Mokwa, D., Drozdowski, M.: Analysis and solu-
tion of CSS-sprite packing problem. ACM Trans. Web (TWEB) 10(1), 283–294
(2015)

21. Murata, H., Fujiyoshi, K., Nakatake, S., Kajitani, Y.: Rectangle-packing-based
module placement. In: Kuehlmann, A. (ed.) The Best of ICCAD, pp. 535–548.
Springer, Boston (2003). https://doi.org/10.1007/978-1-4615-0292-0 42

http://wellstyled.com/css-nopreload-rollovers.html
http://wellstyled.com/css-nopreload-rollovers.html
http://clb.demon.fi/files/RectangleBinPack.pdf
https://github.com/google/zopfli
http://nuclexframework.codeplex.com/
https://codeincomplete.com/posts/bin-packing/
https://codeincomplete.com/posts/bin-packing/
https://doi.org/10.1007/978-1-4615-0292-0_42

Solving CSS-Sprite Packing Problem Using a Transformation to 2PBPP|R 573

22. Rehman, M., Sharif, M., Raza, M.: Image compression: a survey. Res. J. Appl. Sci.
Eng. Technol. 7(4), 656–672 (2014)

23. Shea, D.: CSS sprites: image slicings kiss of death. A List Apart (2013)
24. Stefanov, S.: Image optimization, part 3 : four steps to file size reduction. http://

yuiblog.com/blog/2008/11/14/imageopt-3/. Accessed 29 Jan 2017
25. Taubman, D., Marcellin, M.: JPEG2000 Image Compression Fundamentals, Stan-

dards and Practice: Image Compression Fundamentals, Standards and Practice,
vol. 642. Springer Science & Business Media, Boston (2012). https://doi.org/10.
1007/978-1-4615-0799-4

26. Velho, P., Schnorr, M., Casanova, H., Legrand, A.: On the validity of flow-level
TCP network models for grid and cloud simulations. ACM Trans. Model. Comput.
Simul. (TOMACS) 23, 23 (2013)

27. Wium Lie, H., Bos, B.: Cascading style sheets. World Wide Web J. 2, 75–123
(1997)

http://yuiblog.com/blog/2008/11/14/imageopt-3/
http://yuiblog.com/blog/2008/11/14/imageopt-3/
https://doi.org/10.1007/978-1-4615-0799-4
https://doi.org/10.1007/978-1-4615-0799-4

	Solving CSS-Sprite Packing Problem Using a Transformation to the Probabilistic Non-oriented Bin Packing Problem
	1 Introduction
	2 Problem Formulation
	3 Geometric Packing
	4 Image Processing
	5 Communication Performance
	6 Computational Results
	7 Conclusion
	References

