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Abstract. We report on a two-scale approach for efficient matrix-free
finite element simulations. The proposed method is based on surrogate
element matrices constructed by low-order polynomial approximations.
It is applied to a Stokes-type PDE system with variable viscosity as is a
key component in mantle convection models. We set the ground for a rig-
orous performance analysis inspired by the concept of parallel textbook
multigrid efficiency and study the weak scaling behavior on SuperMUC,
a peta-scale supercomputer system. For a complex geodynamical model,
we achieve a parallel efficiency of 95% on up to 47 250 compute cores.
Our largest simulation uses a trillion (O(1012)) degrees of freedom for a
global mesh resolution of 1.7 km.
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1 Introduction

The surface of our planet is shaped by processes deep beneath our feet. Phenom-
ena like earthquakes, plate tectonics, crustal evolution up to the geodynamo are
governed by forces in the Earth’s mantle that transport heat from the interior of
our planet to the surface in a planetwide solid-state convection. For this reason,
the study of the dynamics of the mantle is critical to our understanding of how
the entire planet works.

There is a constant demand for ever more realistic models. In the case of
mantle convection models (MCMs), this includes, e.g., compressible flow formu-
lations, strongly non-linear rheologies, i.e., models in which the fluid viscosity
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depends not only on pressure and temperature, but also on the flow velocity, the
inclusion of phase transitions or the tracking of chemical composition. A discus-
sion of current challenges is, e.g., given in [15]. Another trend is the growing use
of MCMs to perform inverse computations via adjoint techniques in order to link
uncertain geodynamic modeling parameters to geologic observables and, thus,
improve our understanding of mantle processes, see e.g. [7]. These advanced
models require efficient software frameworks that allow for high spatial reso-
lutions and combine sophisticated numerical algorithms with excellent parallel
efficiency on supercomputers to provide fast time-to-solution. See [11,15,21] for
recent developments.

We will focus here on the most compute-intensive part of any MCM, which is
the solution of the generalized Stokes problem, where f represents the buoyancy
forces, u velocity, p pressure, T temperature and ν(u, T ) is the viscosity of the
mantle.

− div
[
1
2
ν
(
∇u + (∇u)� )]

+ ∇p = f , div u = 0. (1)

Problem (1) needs to be solved repeatedly as part of the time-stepping and/or as
part of a non-linear iteration, if ν depends on u. Note that in (1) we assume an
incompressible fluid, as the best way to treat the compressibility of the mantle
is an open question, [15], outside the scope of this contribution.

Most current global convection codes are based on finite element (FE) dis-
cretizations, cf. [8,15,21]. While traditional FE implementations are based on the
assembly of a global system matrix, there is a trend to employ matrix-free tech-
niques, [2,4,17,19]. This is motivated by the fact that storing the global matrix
increases the memory consumption by an order of magnitude or more even when
sparse matrix formats are used. This limits the resolution and results in a much
increased memory traffic when the sparse matrix must be re-read from memory
repeatedly. Since the cost for data movement has become a limiting factor for all
high performance supercomputer architectures both in terms of compute time
and energy consumption, techniques for reducing memory footprint and traffic
must receive increased attention in the design of modern numerical methods.

In this contribution, we report on the prototype of a new mantle convec-
tion framework that is implemented based on Hierarchical Hybrid Grids (HHG)
[1,4,11,14]. HHG employs an unstructured mesh for geometry resolution which
is then refined in a regular fashion. The resulting mesh hierarchy is well suited to
implement matrix-free geometric multigrid methods. Multigrid techniques play
an important role in any large-scale Stokes solver, most commonly as precon-
ditioner for the momentum operator in a Krylov solver, or as inner solver in
a Schur complement approach. We employ a geometric Uzawa-type multigrid
solver that treats the full Stokes system all-at-once [12]. We present a new app-
roach that allows to assemble the resulting FE stencils in the case of curved
geometries and variable viscosity on-the-fly as a core component of matrix-free
multigrid solvers. It is based on a polynomial approximation of the local element
matrices, extending our work in [2].
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We will carry out a systematic performance analysis of our HHG-based
implementation and investigate parallel performance with respect to run-time,
memory consumption and parallel efficiency of this new numerical approach for
a real-world geophysical application. It will be investigated and tuned on the
SuperMUC peta-scale system of the Leibniz Supercomputing Center (LRZ).

2 Software Framework and Discretization

Here we consider the thick spherical shell Ω = {x ∈ R
3 : rcmb < ‖x‖2 <

rsrf}, where rcmb and rsrf correspond to the inner and outer mantle boundary,
and ‖ · ‖2 denotes the Euclidean norm of a vector. By taking the Earth radius
as reference unit, we set rcmb = 0.55 and rsrf = 1. We discretize Ω by an
initial tetrahedral mesh T0 using a standard icosahedral meshing approach for
spherical shells, see e.g. [8]. From this we construct a family of semistructured
meshes T := {T�, � = 0, . . . , L} by uniform refinement up to level L ∈ N0. For
the finite element discretization of the Stokes system (1), we employ standard
conforming linear finite element spaces for velocity and pressure on T . While this
P 1–P 1 pairing is of computational interest, it is known to be unstable. We use
the pressure stabilization Petrov-Galerkin (PSPG) method [6] as stabilization
technique. Using standard nodal basis functions for the finite element spaces, we
obtain on each level � of the hierarchy a linear system of algebraic equations

L�

(
u�

p�

)
:=

(
A� G�

D� −C�

)(
u�

p�

)
=

(
f�
g�

)
, � = 0, . . . , L, (2)

where u� ∈ R
nu;� and p� ∈ R

np;� . The dimensions of the velocity and the pressure
space are denoted by nu;� and np;�. For our considerations below, it is advan-
tageous to re-write (2) by sorting the vector of unknowns with respect to the
different types of degrees of freedom to expose the scalar building blocks of (2)
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⎞
⎟⎟⎠ . (3)

In this representation, the upper left 3 × 3 substructure of blocks corresponds
to A� and is related to the divergence of the strain tensor in (1). The submatrix
D�, resulting from the discretization of the divergence operator in the continuity
equation, has a 1×3 block-structure, while G�, coming from the pressure gradient
in (1), has a 3 × 1 block-structure and our discretization yields D� = G�

� . The
stabilization C� term acts only on the pressure and, therefore, gives a 1×1 block.
It can be viewed as a discrete Laplacian operator acting on the pressure with
Neumann boundary condition. Note that, while it is obvious that A� depends
on the viscosity ν, it is also necessary to include ν−1 in the stabilization C�.

The mesh hierarchy T allows to construct an efficient geometric all-at-once
Uzawa multigrid method [12]. For solving the linear system (2), we apply multi-
grid V-cycles with three pre- and post-smoothing steps on level L and on each
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coarser level two extra smoothing steps are added. Using a Uzawa type smoother
then guarantees mesh-independent convergence, and we denote this type of
multigrid as Vvar(3, 3). As the multigrid method acts both on velocity and pres-
sure, the problem that needs to be solved on the bottom of the V-cycle is also of
the form (2). For this, we employ the preconditioned minimal residual method
(PMINRES). Our preconditioner has a block structure, where we apply a Jacobi
preconditioned conjugate gradient method to the velocity part and perform a
lumped mass matrix scaling on the pressure.

The HHG framework is a carefully designed and implemented high perfor-
mance finite element multigrid software package [3,12] which has already demon-
strated its usability for geodynamical simulations [1,22]. Conceptually, refine-
ment of the input mesh T0, which we call macro mesh, generates new nodes
on edges, faces and within the volume of the tetrahedra of the input mesh. In
HHG, these nodal values are organized by their geometric classification into a
system of container data-structures called primitives. The nodal values in the
interior of each macro tetrahedron are stored in a volume primitive, and simi-
larly the values on macro edges, faces and vertices in their respective primitives.
In this way, each nodal value is uniquely assigned to one primitive. Note that,
only starting with refinement level two, we get nodes to store in the volume
primitives. We use T2 as coarsest level in our multigrid solver. HHG’s approach
of splitting nodes between primitives of different geometric dimensionality nat-
urally integrates with distributed-memory parallelism. Primitives are enriched
by the nodal values of neighboring primitives in the form of ghost layer data-
structures and kept up-to-date by MPI-communication in case of off-process
dependencies, [3,4].

The structured refinement of the input mesh, employed in HHG, results in the
same types of tetrahedra being adjacent to each node within a certain primitive
type and, thus, identical coupling patterns for these nodes. For constant ν on
each macro tetrahedron, the discretization results also in the weights of these
coupling being constant when proceeding from one node of a primitive to the
next. This allows to use a constant stencil for all nodes in each volume primitive
in a matrix-free approach, resulting in a significantly improved performance of
computationally-intensive matrix-vector multiplications. In view of the system
matrix in (3), we can identify the non-zero entries of each row of each block by
a stencil and denote it by

sA;m,n
ij = (Amn

� )ij , sD;m
ij = (Dm

� )ij , sG;m
ij = (Gm

� )ij , sC
ij = (C�)ij ,

for row index i and column index j and m,n ∈ {1, 2, 3}. Within each volume
primitive each stencil reduces to 15 non-zero entries. In the following, we will
denote a stencil weight by sij , if there is no ambiguity. The full 15pt stencil at
node i will be written as si,:.

3 Efficient On-the-Fly Stencil Assembly

While the hybrid approach of HHG exhibits superior performance, its geome-
try approximation on curved domains such as the spherical shell, is limited in
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the sense that no refined nodes reside on the actual boundary. To account for
this, in our implementation the fine grid nodes can be projected outwards onto
the spherical surface. Also all interior nodes are projected to form concentric
spherical layers. In a matrix-free framework, this comes at the cost that the FE
stencils have to be repeatedly re-assembled on-the-fly.

We briefly describe the assembly procedure. For brevity, we show this only
for A11

� from (3); the other entries are computed analogously. For linear FE the
stencil weight sij can be computed by

sij =
∑

t∈N (i,j)

J−�
t ∇φ̂iloc · J−�

t ∇φ̂jloc |det(Jt)|
∫

t

ν dx =
∑

t∈N (i,j)

Et
iloc,jloc

ν̄t (4)

where Jt is the Jacobian of the mapping from the reference element t̂,N (i, j) the
set of elements with common nodes i and j, Et ∈ R

4×4 the local element matrix
on t, iloc the element local index of the global node i, and φ̂iloc the associated
shape function. We can use a vertex based quadrature rule for the integral over
ν by summing over the four vertices of t with weights 1/4. This fits naturally to
the HHG memory layout where the coefficients νi are stored point-wise. Also
techniques for elimination of common sub-expressions can be employed, see [14].

A traditional matrix-free implementation requires to repeatedly evaluate (4)
on-the-fly. For the full 15pt stencil si,:, this involves the computation of Et on
each of the 24 elements adjacent to node i. Even though we use optimized code
generated by the FEniCS Form Compiler [18] for this task, it constitutes the
most expensive part in the stencil assembly procedure and severely reduces over-
all performance. We term this approach IFEM and it will serve as our baseline
for comparison. We remark that our implementation is node- and not element-
centric. A benefit of this is, e.g., that the central stencil weight, essential for
point-smoothers, is directly available. A disadvantage is that it performs redun-
dant operations as it does not take into account the fact that each element
matrix is shared by four nodes. We could slightly reduce the operation count by
computing only the i-th row of the matrix when dealing with node i. However,
this still involves the Jacobian of the reference mapping which gives the largest
contribution to the number of operations.

In order to recover the performance of the original HHG implementation also
on curved domains we recently proposed an alternative approach in [2] for block-
wise constant ν. It replaces the expensive evaluation of (4) with approximating
the values of sij by a low-order polynomial. The polynomial coefficients are com-
puted via a least-squares fit in a setup phase and stored. Hence we denote the
technique as LSQP. Later, whenever the stencil si,: is needed, one has to evaluate
15 polynomials at node i, one for each stencil weight. In [2] quadratic polyno-
mials gave the best compromise between accuracy and runtime performance
provided that the coarse scale mesh was fine enough. Furthermore, we showed
that this approximation does not violate the optimal approximation order of
the L2-discretization error for linear finite elements, provided that the pairing
of refinement depth L and macro mesh size H is selected carefully. Results for
the Laplace operator [2, Table 4.1] indicated that for eight levels of refinement
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the converted macro resolution of the spherical shell should be at least around
800 km. For the experiments carried out in Sect. 5, this is satisfied except for the
smallest run, though even there we find good results, see Table 2.

For our PDE problem (2), we have to deal with two additional challenges.
Firstly, instead of a scalar PDE operator as used in [2] we have a system of
PDEs. Secondly, we have to incorporate the non-constant viscosity in the elliptic
operators A� and C�. Conceptually, our discrete PDE system (3) consists of 4×4
operator blocks coupling the three velocity components and the pressure. Our
implementation allows to individually replace any of 16 suboperators by a LSQP
approximation. Here, we only report on the most compute time saving approach,
which is to replace all of the suboperators by the surrogates. We do this on all
levels T�, apart from the coarsest one � = 2. We remark that the polynomials
are evaluated at the nodal centers which leads to a small asymmetry in the
operators. In [2] we found this relative asymmetry to be in O(h). This does
not impact the algebraic convergence of the multigrid solver. However, it leads
to a small issue on the coarsest level. There LSQP uses the same matrix L2

as IFEM. That matrix is symmetric positive semi-definite with a trivial kernel.
Due to the asymmetry in our LSQP approach the restricted residual can include
contributions from that kernel, which we fix by a simple projection of the right-
hand side onto Im(L2) to avoid problems with our PMINRES solver.

How to accommodate variable viscosity is a more intricate problem. In addi-
tion to the geometry variation, which can be approximated by quadratic poly-
nomials as shown in [2], we also get variations due to the non-constant viscosity.
If these are smooth enough, LSQP still yields good results. For more complex
viscosity models, like in Sect. 5, with strong lateral variations a low order poly-
nomial approximation may lead to poor results. Also in time-dependent and/or
non-linear simulations where viscosity changes together with temperature and/or
velocity, we would need to regularly recompute the polynomial coefficients. We,
therefore, choose another approach. Recall that the most expensive part in (4)
is the computation of the 24 element matrices. Instead of directly approximat-
ing sij , one can also approximate the contributions of Et by quadratic polyno-
mials. That is we substitute the expensive Et

iloc,jloc
by an inexpensive polyno-

mial approximation Ẽt
iloc,jloc

in (4). The polynomial approximation then solely
depends on the geometry and is independent of the coefficients. Thus, it works
for all kinds of coefficients. To distinguish between the two variants, we denote
the original one as LSQPS and the new modified one as LSQPE. Note that due
to the linearity of the least-squares fit w.r.t. the input data, LSQPE yields the
same stencil weights as LSQPS in case of blockwise constant coefficients.

Each element matrix Et contributes four values to one stencil si,:. Thus,
in total the LSQPE version requires to define 4 · 24 quadratic polynomials per
macro element. For the full system (2) with general ν, we approximate the sten-
cils of A� and C� via LSQPE, while for G� and G�

� the faster LSQPS version is
used.
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4 Towards a Rigorous Performance Analysis

The LSQPS approach was shown in [2] to be significantly faster than the tra-
ditional IFEM implementation. A more fundamental performance study must
employ an absolute metric that does not rely on just quantifying the speed-up
with respect to an arbitrary baseline implementation. To account for the real
algorithmic efficiency and scalability of the implementation in relation to the rel-
evant hardware limitations, we follow [14] where the notion of textbook multigrid
efficiency [5] was extended to analyze massively parallel implementations. This
metric is known as parallel textbook multigrid efficiency (parTME) and relies on
detailed hardware performance models. While this goes beyond the scope of our
current contribution, this section will provide first results and lay the foundation
for further investigations.

The parTME metric is based on an architecture-aware characterization of a
work unit (WU), where one WU is defined as one operator application of the full
system. Here, we restrict ourselves to one scalar suboperator of (3). Conceptually,
the extension to the full system is straightforward. The operator application can
be expressed in terms of stencil based nodal updates ui ←

∑15
j=1 sijuj . The

number of such updates performed per unit time is measured as lattice updates
per second (Lup/s). This quantifies the primary performance capability of a given
computer system with respect to a discretized system. A careful quantification
of the Lup/s with an analytic white box performance model will often exhibit
significant code optimization potential, as shown in [14]. Equally important,
it provides absolute numbers of what performance can be expected from given
hardware. This is crucial for a systematic performance engineering methodology.
Our target micro-architecture is the eight-core Intel Sandy Bridge (SNB) Xeon
E5-2680 processor with clock frequency 2.7 GHz as used in SuperMUC Phase 1.
This processor delivers a peak performance of 21.6 double precision GFlops per
core, and 172.8 GFlops per chip. However, this is under the assumptions that
the code vectorizes perfectly for the Sandy Bridge AVX architecture, that the
multiply-add instructions can be exploited optimally, and that no delays occur
due to slow access to data in the different layers of the memory hierarchy.

We start with a classic cost count per update to derive an upper bound
for the maximal achievable Lup/s. Here, we will compare the versions IFEM,
LSQPS and LSQPE that are extensions of (CC) and (VC) for domains with
curved boundaries.

First, we briefly recapitulate the cost for (CC) and (VC) and refer to [14] for
details. On a blockwise regular mesh with constant coefficients, also the stencils
are blockwise constant. Thus, for (CC) only one single 15pt stencil is required
per block. This can be easily stored and loaded without overhead. Therefore, the
cost for one stencil based update is 14 add/15 mult. For variable coefficients, the
stencils have to be assembled on-the-fly. This requires the additional evaluation
of (4). In the (VC) implementation, one can exploit the fact that on a polyhedral
domain there exist only six different congruency classes of local elements. Thus,
again per block its contributions to (4) can be pre-computed.
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Table 1. Maximal and measured performance on one Intel SNB core

Kernel Domain Coefficients Add/Mult pmax
core Measured

CC Polyhedral Blockwise constant 14/15 720 MLup/s 176 MLup/s

VC Polyhedral Variable 136/111 79.4 MLup/s 39.5 MLup/s

IFEM Curved Variable 1480/1911 5.7 MLup/s 0.7 MLup/s

LSQPS Curved Moderately variable 44/45 245 MLup/s 71.7 MLup/s

LSQPE Curved Variable 328/303 33.0 MLup/s 11.3 MLup/s

Now, we turn to curved domains. The LSQPS approach is the extension of
(CC) with the additional cost of 15 evaluations of a quadratic polynomial, one
for each stencil component. For the evaluation, we use the scheme described in [2]
that allows to evaluate a quadratic polynomial with 2 multiply-add operations.
We note that LSQPS can also be seen as an extension of (VC) for moderately
variable coefficients. For problems with strongly variable coefficients, we propose
either to use IFEM or the LSQPE approach. Different from (VC), the contri-
butions of the 24 neighboring element matrices must be re-computed on-the-fly.
For IFEM, we count 56 additions and 75 multiplications per element matrix.
The advantage of LSQPE is obvious, since only 4 polynomial evaluations, one
for each of the four contributions are required per element matrix. Again, this
can be achieved with 8 multiply-add operations. In Table 1, we report the total
number of operations for the different algorithms. Based on the operation count,
the processor peak performance provides an upper limit on the achievable per-
formance. In Table 1 we show these upper bounds as well as the measured values.
For (CC) and (VC) the values are taken from [14]. For the measurements, we
employed the Intel C/C++ Compiler 17.0 with flags -O3 -march=native -xHost.

Table 1 clearly shows that the peak rates are far from being obtained. For
the simpler kernels (CC) and (VC), we carefully analyzed the performance dis-
crepancy using the roofline and Execution-Cache-Memory models, see [14] and
the references therein. Reasons why the peak rates are not achieved, are the lim-
itations in bandwidth, but also bottlenecks that occur in the instruction stream
and CPU-internal memory transfers between the cache layers. A full analysis
for the advanced kernels is outside the scope of this contribution, but will be
essential in the future to exhibit the possible optimization potential. But even
the simple Flop count and the measured throughput values indicate the success
of LSQPS and LSQPE in terms of reducing operation count as compared to a
conventional implementation, such as IFEM. Similarly, the MLup/s show a sub-
stantial improvement. Both together, and the comparison with (CC) and (VC)
indicate that there may be further room for improvement.

5 Accuracy and Weak Scaling Results

In this section, we analyze the accuracy and scaling behavior of our implemen-
tation for a geophysical application. Our largest simulation run will be with a
global resolution of the Earth’s mantle of ∼1.7 km.
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System: We run our simulations on SuperMUC Phase1, a TOP500 machine at
the LRZ, Garching, Germany. It is an IBM iDataPlex DX360M4 system equipped
with eight-core SNB processors, cf. Sect. 4. Per core around 1.5 GB of memory
are available to applications. Two sockets or 16 cores form one compute node,
and 512 nodes are grouped into one island. The nodes are connected via an
Infiniband FDR10 network. In total, there are 147 456 cores distributed on 18
islands with a total peak performance of 3.2 PFlop/s. We used the Intel compiler
with options as in Sect. 4 and the Intel 2017.0 MPI library.

Setup: The icosahedral meshing approach for the spherical shell does not allow
for an arbitrary number of macro elements in the initial mesh and the smallest
feasible number of macros would be 60 already. Also we are interested in the
scaling behavior from typical to large scale scenarios. Thus, we perform exper-
iments starting on one island and scaling up to eight islands. We try to get as
close as possible to using the full number of nodes on each island, while keeping
the tangential to radial aspect ratio of the macro elements close to 1:1.

Inside a node, we assign two macro elements to each MPI process running
on a single core. As the memory consumption of our application is on aver-
age about 1.7 GB per core, we utilize only 12 of the 16 available cores per
node. These 12 cores are equally distributed on the two sockets by setting
I MPI PIN PROCESSOR LIST=0-5,8-13. A deep hierarchy with 8 levels of
refinement is used. This yields problem sizes with 1.3 · 1011 DoFs on 5 580 cores
(one island), 2.7 · 1011 DoFs on 12 000 cores (two islands), 4.8 · 1011 DoFs on
21 600 cores (four islands) and 1.1 · 1012 DoFs on 47 250 cores (eight islands).

Geophysical Model: In order to have a realistic Stokes-type problem (1) as
it appears in applications, we consider the following model. On the top of the
mantle we prescribe non-homogeneous Dirichlet boundary conditions, composed
of a no-outflow component and tangential components given by present day plate
velocity data from [20]. On the core-mantle boundary vanishing tangential shear
stress resulting in a free-slip condition is enforced.

In terms of viscosity, we employ a similar model as used in [9]. The vis-
cosity is the product of a smooth function depending on the temperature and
the radial position and a discontinuous function reflecting a viscosity jump in
radial direction due to an asthenospheric layer, a mechanically weak zone where
the viscosity is several orders of magnitude smaller than in the lower mantle.
The concrete thickness of the asthenosphere is unknown and subject to active
research, see e.g. [22]. Here, we choose the model from [22] with a thickness of
660 km as this depth is one of two transition zones of seismic wave velocities.
The viscosity model in non-dimensional form is given by

ν(x, T ) = exp
(

2.99
1 − ‖x‖2
1 − rcmb

− 4.61T

) {
1/10 · 6.3713d3a for ‖x‖2 > 1 − da,

1 else.

where da = 660/R with the Earth radius R = 6371 (km). Finally, we used
present day temperature and density fields to compute the buoyancy term f and
the viscosity, see [7].
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Table 2. Results for one island scenario with 1.3·1011 degrees of freedom: differences in
the velocities inside the mantle obtained with IFEM and LSQP for different refinement
levels (left); characteristic velocities in cm/a for level 8 (right).

level discr. L2 max-norm

4 2.81·10−4 2.58·10−2

5 4.05·10−4 4.84·10−2

6 5.19·10−4 6.70·10−2

7 5.75·10−4 7.89·10−2

8 6.83·10−4 8.58·10−2

charac. velocities IFEM LSQP difference

avg. (whole mantle) 5.92 5.92 5.60·10−5

avg. (asthenosphere) 10.23 10.23 1.10·10−4

avg. (lower mantle) 4.48 4.48 1.12·10−4

max. (asthenosphere) 55.49 55.49 2.61·10−4

max. (lower mantle) 27.46 27.46 6.33·10−4

Accuracy: Before considering the run-time and scaling behavior of our new
LSQP approach, we demonstrate its applicability by providing in Table 2 a com-
parison to results obtained with IFEM. We observe that the differences are
sufficiently small in relation to typical mantle velocities and the uncertainties
in the parameters that enter the model. The fact that the differences slightly
grow with level reflects the two-scale nature of LSQP, as the finite element error
decreases with mesh size h of the finest level, while the matrix approximation
error is fixed by the mesh size H of the coarsest level, see also [2].

Memory Consumption: One important aspect in large scale simulations is
memory consumption. Ideally, it should stay constant in weak scaling runs, as
the number of DoFs per process remains the same. However, this is not always
the case, especially in large scale simulations, due to buffer sizes that scale with
the number of MPI ranks, see [10] for some examples.

To determine how strongly this affects our application, we measure the mem-
ory consumption per MPI process using the Intel MPI Performance Snapshot
(mps) tool [16]. In Fig. 1 (left), we report the mean and maximum memory
usage over all MPI processes. For each process, we assigned two volume prim-
itives. The difference between the mean and maximum value comes from the
different numbers of lower dimensional primitives attached to one process.

Fig. 1. Left: mean and max memory usage over all MPI processes. Right: percentage
of computation versus communication (non-overlapping).
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Table 3. Default and tuned Intel MPI DAPL settings (p = total no. of MPI processes.)

Environment variable Default Tuned

I MPI DAPL UD SEND BUFFER NUM 16 + 4p 8208

I MPI DAPL UD RECV BUFFER NUM 16 + 4p 8208

I MPI DAPL UD ACK SEND POOL SIZE 256 8704

I MPI DAPL UD ACK RECV POOL SIZE 512 + 4p 8704

I MPI DAPL UD RNDV EP NUM 4 2

For the default MPI buffer settings, we observe a significant linear increase
in the memory usage caused by MPI. As a result the eight islands case runs out
of memory. We therefore reduced the number of cores per node for this run to
10 resulting in configuration (B) (Table 4). Alternatively, one could decrease the
number of MPI ranks for the same problem size and core count by using hybrid
MPI/OpenMPI parallelism as done in [11]. This does, however, also not attack
the root of the problem. For this, we need to deal with the MPI library instead.

On an Infiniband cluster the Intel MPI library uses the Shared Memory
(SHM) transport mechanism for intra-node communication, while for inter-node
communication it uses the Direct Access Programming Library (DAPL). While
the UD (User Datagramm) version of DAPL is already much more memory con-
servative than the RC (Reliable Connection) version, the default buffer pool sizes
still scale with the number of MPI processes, [10]. This can be seen from the
default configuration values in Table 3. As suggested in [10], we set the internal
DAPL UD buffer sizes to the fixed values given in Table 3, leading to a sig-
nificant decrease of the memory consumption. The latter, now, shows almost
perfect weak scalability and allows to go to extreme scales. Compared to the all-
to-all communication scenarios shown in [10], we even see a much better scaling
behavior up to 47 250 MPI ranks. We also do not notice any performance loss.

Computation vs. Communication: Current supercomputers provide tre-
mendous computing capacities. This makes computations relatively cheap com-
pared to communication that gets more expensive, the more processes are used.
So, often communication is the bottleneck in high-performance codes.

To investigate the ratio of both, we again employ the Intel mps tool to mea-
sure the time for computation, i.e., mean time per process spent in the appli-
cation code versus time for MPI communication. The latter is the time spent

Table 4. Configurations used in our experiments; default is to use configuration (A).

Configuration Macro elements
per core

Cores
per node

# Cores
(8 islands)

# DoFs
(8 islands)

A 2 12 47 250 1.1 · 1012

B 2 10 40 500 9.1 · 1011

C 1 16 60 840 6.8 · 1011
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inside the MPI library. This tool also reports the MPI imbalance, i.e., the mean
unproductive wait time per process spent in the MPI library calls, when a pro-
cess is waiting for data. This time is part of the reported MPI communication
time. Here, a high percentage of computation is favorable, while the MPI imbal-
ance should be small. Note that we do not overlap computation and commu-
nication. Using overlapping communication does not improve the performance
significantly [13].

Besides our default configuration (A) and configuration (B), we consider a
third case (C) for the eight islands run. Here, we increase the number of cores per
node to the maximum of 16. This increases the total number of MPI processes to
60 840. To make this feasible, we assign one single macro element per rank. This
can be seen as the most critical run in terms of communication as it involves the
largest number of MPI processes.

The results are shown in Fig. 1 (right), where all initialization times are
excluded. We find only a slight increase of communication during weak scaling.
And even for the extreme cases the amount of communication is only about
25%. However, we also observe a relatively high MPI imbalance of around 20%.
This is partly due to the imbalance of lower dimensional primitives and could
be improved by a load balancing scheme that takes the cost of face primitives
into account. Changing the number of macro elements per MPI process (C), or
varying the number of cores per node (A, B) does hardly affect the results.

Parallel Efficiency: Finally, we report in Table 5 the time-to-solution. For these
runs, we switch off any profiling. The iteration is stopped when the residual is
reduced by 105 starting with a zero initial guess. For our geophysical application
such a stopping criterion is more than sufficient. The high viscosity jump in our
application makes the problem particularly difficult for the coarse grid (c.g.)
solver. Choosing the right stopping criterion is essential for the Uzawa multigrid
(UMG) convergence rate, while tuning it becomes quite tricky. It turned out
that a criterion based on a maximal iteration count is favorable compared to a
tolerance based criterion. In Table 5, we also report the best values we came up
with. We remark that for the two islands case we could not find an acceptable
number of c.g. iterations that reduced the UMG V-cycles below 10. For this run,

Table 5. Weak scaling results for geophysical application: Runtime w/ and w/o coarse
grid solver (c.g.) and no. of UMG iterations. Values in brackets show no. of c.g. itera-
tions (preconditioner/Minres). Parallel efficiency is shown for timings w/ and w/o c.g.
∗Timings and parallel efficiency are scaled to 7 UMG iterations.

Islands Cores DoFs Global
resolution

UMG
V-cycles

Time-to-
solution

Time-to-sol.
w/o c.g

Parallel
efficiency

1 5 580 1.3 · 1011 3.4 km 7 (50/150) 1347 s 1151 s 1.00/1.00

2 12 000 2.7 · 1011 2.8 km 10∗ (100/150) 1493 s 1183 s 0.90/0.97

4 21 600 4.8 · 1011 2.3 km 7 (50/250) 1468 s 1201 s 0.92/0.96

8 47 250 1.1 · 1012 1.7 km 8∗ (50/350) 1609 s 1209 s 0.83/0.95
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the element aspect ratio deviates most from 1:1. For all other simulations, the
UMG iterations are stable around 7. Note that for the largest simulation the
residual reduction was 9.9 · 104 after 7 iterations, so the stopping criterion was
only slightly missed. For a fair comparison of runtimes, we scaled all timings to 7
iterations. On up to eight islands, we find a parallel efficiency of 83%. Taking into
account that it includes the c.g. solver with its non-optimal complexity, this is an
excellent value. Examining the time-to-solution with the c.g. solver excluded, we
find an almost perfect parallel efficiency on up 47 250 cores of 95%. Compared to
the IFEM reference implementation, we observe for the smallest run a speed-up
of a factor larger than 20. In order to save core-h, and thus energy, we did not
perform such a comparison for the larger scenarios.

6 Outlook

We extended our LSQP approach to systems of PDEs with variable coefficients
and demonstrated that it is suitable for large scale geophysical applications.
A systematic performance analysis demonstrates the new matrix-free techniques
lead to substantial improvements compared to conventional implementations and
they indicate that there is potential for further improvement. In future work, we
will expand our study by detailed performance models for a rigorous performance
classification and optimization.
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