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Abstract. In Mobile Ad-Hoc Networks, cooperative intrusion detection
is efficient and scalable to massively parallel attacks. However, due to
concerns of privacy leak-age and resource costs, if without enough incen-
tives, most mobile nodes are often selfish and disinterested in helping
others to detect an intrusion event, thus an ef-ficient incentive mecha-
nism is required. In this paper, we formulate the incentive mechanism
for cooperative intrusion detection as an evolutionary game and achieve
an optimal solution to help nodes decide whether to participate in detec-
tion or not. Our proposed mechanism can deal with the problems that
cooperative nodes do not own complete knowledge about other nodes.
We develop a game algorithm to maximize nodes utility. Simulations
demonstrate that our strategy can efficiently incentivize potential nodes
to cooperate.
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1 Introduction

The Mobile Ad-Hoc Networks (MANETs), equipped with wireless transceivers
that can communicate with one another without the aid of any centralized infras-
tructure, are complex networks and widely used in various applications, e.g., mil-
itary surveillance, commercial sector and personal area networks [1]. However,
due to the limitation of resources and openness nature, MANETs are suffer-
ing from an increasing number of security intrusions e.g., DDoS, wormhole and
sybil attack [2]. To prevent and mitigate these intrusions, one important thing
that should be done is to design intrusion detection systems (IDS) to identify
intruders, intrusion time/location and intrusion activity. The existing IDSs are
roughly divided into two categories: non-cooperative IDS (NCIDS), and coop-
erative IDS (CIDS) [3]. Because no interaction between multiple NCIDSs takes
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place, NCIDSs cannot detect sophisticated and distributed attacks. To address
this problem, CIDS has been proposed. In CIDS, if an IDS node detects an
intrusion with weak or inconclusive evidence, then it initiates a global detection
procedure and invites other nodes that run IDS agents to cooperatively partici-
pate in the detection. Compared with NCIDSs, CIDSs with high accuracy, high
scalability and low computation overhead have been widely used.

Motivation: In spite of the above advantages, the existing CIDS scheme cannot
efficiently work in MANETs, because most nodes in MANETs are selfish and
disinterested in helping others to detect an intrusion event for the following rea-
sons: (1) Resource limitation. Most nodes in MANETs own the limited resources
(including computation resources and communication resources); they have to
save these resources for their own communications. (2) Privacy issues. Most
nodes depend on open wireless channels to communicate. As a result, an attacker
easily detects other nodes presence, recognizes their identifications and tracks
their locations by periodically monitoring data traffic. Thus, without enough
incentives a selfish node cannot cooperate timely and the number of cooperators
drastically decreases, thus intrusion detection rate is greatly reduced. There-
fore, we should design an incentive mechanism to incentivize nodes to cooperate
timely and ensure that, once a detection task is released, potential cooperators
will immediately participate in task.

From the aspect of methodology being used to incentive participation,
the existing work can be roughly divided into two categories [4]: game-
theoretical approaches and non-game-theoretical approaches. In most of non-
game-theoretical approaches, a center platform is often designed to allocate
incentive resources (e.g., digital cash) to cooperators and maximize its utility.
However, these approaches often ignore the optimal utility of cooperators. To
address this problem, the game-theoretical approaches are proposed. In these
approaches, each potential cooperator is usually assumed to be rational. That
is, individual users make their strategic choice on a wholly rationally deter-
mined evaluation of probable outcomes to maximize their utility. However, this
assumption is not reasonable enough for MANETs, because MANETs have a
large number of mobile nodes and their network topology frequently changes.
As a result, most nodes do not know the global topology completely in practice.
Namely, compared with the adequate rationality assumption in traditional game
theory, it is more realistic to consider the nodes in MANETs to be with bounded
rationality.

Contribution: In this paper, we assume that nodes in MANETs are not ade-
quate rationality but bounded rationality, and the game aspects of CIDSs are
investigated. Our main contributions are as follows.

(1) Considering bounded rationality of users and dynamics of cooperative intru-
sion detection, we formulate the incentive mechanism for cooperative detec-
tion as an evolutionary game.
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(2) We design a budget-assignment mechanism to encourage nodes to timely
cooperate and achieve the Evolutionary Stable Strategy (ESS) in our evolu-
tionary game.

(3) We design an ESS-based algorithm and carry out the simulation. The results
show that our proposed strategy can efficiently incentivize nodes to partici-
pate in cooperation.

The rest of this paper is organized as follows. In Sect. 2, we discuss the
related work. In Sect. 3, we introduce our system model. Section 4 formulates
the incentive scheme as an evolutionary game and analyzes the factors that
affect nodes benefit. We conduct game analysis in Sect. 5. Simulations and their
analysis are given in Sect. 6. We draw a conclusion in Sect. 7.

2 Related Work

2.1 Cooperative IDS

In our paper, selfishness of nodes in MANETs is assumed to be caused by the
privacy issues and concerns of resource overhead; thus, in this subsection, we
discuss the related work from the aspects of privacy protection and resource
overhead.

Privacy Protection . A large number of techniques (e.g. Bloom filter [5],
multi-party computation [6,7] and different privacy [8]) have been proposed
to address the privacy requirements in intrusion detection. For example, Shu
et al. [5] designed a privacy protection scheme by combining Bloom filters along
with a trusted list of participant peers. In GrIDS [3], a cooperator can only
observe intrusion activity restricted within its boundaries to protect privacy.
Using additive homomorphic encryption, Do and Ng [7] designed a privacy-
preserving scheme for sharing and processing intrusion alert data. Jin et al.
[9] formulated privacy protection in cooperative IDS as a Stackelberg game and
obtained Stackelberg-Nash equilibrium. Although these approaches try their best
to protect privacy, privacy information might be still leaked in practice [10].
Thus, a selfish node might be disinterested in helping others to detect abnormal
behaviors.

Resource Overhead . In CIDSs, a cooperative node has to exchange its local
observations with others, thus, incurring high resource overhead. To reduce
overhead, several solutions have been proposed. For instance, Hassanzadeh and
Stoleru [11] formulated optimal monitoring in CIDS as a multi-objective opti-
mization problem and developed a genetic algorithm to decrease computation
complexity. Gil Perez et al. [12] introduced the notion of trust diversity among to
increase both in detection quality and reduce communication overhead. Subba
et al. [13] used a packet header anomaly detector to analyze the data packets
header and minimize the computational overhead. Undoubtedly, if a node coop-
erates, its consumed resources could not be ignored. Thus, a selfish node does
not cooperate still.
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2.2 Incentive Mechanism

Although a large number of efforts have been spent on incentivizing selfish nodes
to cooperate, little work focuses on the incentives in IDS. Thus, in this subsec-
tion, incentive mechanisms, designed for participatory sensing (which can be
potentially used in CIDS) are overviewed. From the aspect of methodology, the
existing incentive mechanism can be roughly divided into the two categories [4]:
non-game-theoretical approaches and game-theoretical approaches.

The non-game-theoretical approaches, designed for specific or general appli-
cations can be divided into three categories: QoI (quality of information)-aware
mechanisms [14,15], resource-aware mechanisms [4,16] and privacy-aware mech-
anisms [17]. Guo et al. [14] designed an incentive mechanism for IoT searches to
collect real-time data. Considering data quality, Peng et al. [15] paid the partic-
ipants as how well they do, to motivate the rational participants to efficiently
perform tasks. Zheng et al. [16] studied on the coverage problem for incentive-
compatible mobile crowd-sensing and proposed a budget feasible and strategy-
proof incentive mechanism for weighted coverage maximization. Ma et al. [17]
leveraged a conditional random field to model the spatio-temporal correlations
among the contexts, and proposed a speed-up algorithm to preserve privacy
while maximizing the amount of data collection. Although these approaches effi-
ciently maximize the data quality at acceptable costs, they do not maximize the
participant utility.

To address this problem, the game-theoretical approaches are proposed. In
these approaches, each player is assumed to be rational and selfish and interested
in maximizing its own utility. Yang et al. [18] used a Stackelberg game to design
an incentive mechanism and show how to compute the unique Equilibrium. Guo
et al. [19] and Lv et al. [18] used coalitional game theories to evaluate cooperation
in MANETs and VANETs, respectively. Mukhopadhyay et al. [20] proposed
a truthful quality adaptive participatory sensing in an online double auction
environment. However, these efforts focus on the short-term utility of cooperators
and ignore the long-term benefit. To address this problem, the repeated game
for MONs is proposed [21]. Yin et al. [21] use the “dissemination interesting”
to motivate nodes to forward advertisement. Obviously, notation “dissemination
interesting” is not suitable for intrusion detection.

In these approaches, players are assumed to be completely rational. These
assumptions are not reasonable enough for MANETs, because nodes in MANETs
moves over time and network topology frequently changes. As a result, the
global topology is unknown by most nodes in practice. This means that nodes
in MANETs are not adequate rationality but bounded rationality. Additionally,
in these approaches, the real-time requirement is not considered. Obviously, this
requirement is critical for intrusion detection and if, without timely detection,
cooperative detection will not come to fruition.
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3 Basic Idea and System Model

In CIDSs for MANETs, a potential cooperator that runs an IDS agent partic-
ipates in the global intrusion detection, as follows. If a node (named initiator,
e.g., n0) detects an intrusion even with weak or inconclusive evidence, then it
initiates a global detection procedure and sends a detection request (or detec-
tion task) to potential cooperators N = {n1, . . . , nN}, where N is the number of
potential cooperators. Once receiving this request, cooperators start local detec-
tions and report the detected abnormal behaviors to the initiator. After receiving
r detection reports, the initiator clusters, merges and correlates these abnormal
behaviors. If the initiator confirms an intrusion with sufficient evidence, then
it alerts the whole networks regarding an attack. Generally, the more nodes
participate in the detection, the higher is the intrusion detection rate. Without
loss of generality, we assume that detection rate for each node is ρ. If r nodes
participate in cooperating, then the overall detection rate odr is

odr(r, ρ) = 1 − (1 − ρ)r (1)

As shown in Sect. 1, if a node participates in detecting an intrusion, its privacy
might be exposed and its resource might be consumed. Thus, selfish nodes are
typically disinterested in helping others. To encourage nodes to timely cooperate,
an auction approach is used in this paper. In detail, we regard the detection
service as goods, each potential cooperator that detects an intrusion event acts
as an offer, sells its service and wins virtual credits, and the initiator n0 acts as
a bidder and pays for the service to cooperators.

More specially, for each potential intrusion event to be detected, node n0

divides the whole detection time into slices with the same length, indexed by
natural numbers. In a time slice, a sub-auction is performed. In each sub-auction,
the detection service that a potential cooperator provides is called a sub-service.
Before each sub-auction (i.e., at the first time-slice) starts, the initiator n0 con-
structs a sub-auction pool. Before the sub-auction ends, each potential coopera-
tor can enter the pool. When the auction starts, the initiator n0 broadcasts the
total of budget γ ∈ R that n0 will pay for the total detection service. A poten-
tial cooperator ni (1 ≤ i ≤ N) calculates its cost for the service and evaluates
its possible benefit. Based on the cost and the benefit, cooperator ni decides
whether to make an offer or not. When a time-slice ends (i.e., this sub-auction
ends), the winning neighboring nodes provide the sub-services. After complet-
ing the service, the potential cooperator obtains the rewards from initiator n0

and the next sub-auction starts. Note: the intrusion event to be detected in the
next sub-auction is the same with the intrusion of the previous sub-auction. The
whole auction ends if all time-slices are exhausted or odr is greater than the
threshold value given by initiator n0.

4 Budget and Cost

In this section, we discuss the budget of the initiator and the cost of potential
cooperators in cooperative detection.
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4.1 Total Budget

In our work, we use virtual credits to motivate nodes to cooperate. That is,
virtual credits are paid to cooperators after a detection task is completed. The
total reward for the whole detection relies on budget. Because the main goal of
an initiator is to improve the intrusion detection rate, a higher detection rate
required means a more budget that initiator n0 should pay to cooperators. In
our work, for an intrusion event to be detected, we use γ to denote the budget
that n0 is willing to pay for the detection. Let odr′ be the actual detection rate
provided by the neighboring nodes after the total auction ends. The total reward
paid to all cooperators for the whole detection is odr′ ×γ. Note: the total reward
depends on the budget γ and the actual odr′, and the entire budget does not
have to be used up. This approach is rational. For example, assume that initiator
n0 offers the higher budget to encourage more cooperators, but only one node
cooperates. Obviously, in this case, it would be inappropriate for n0 to assign
the total budget to the only cooperator.

4.2 Budget Assignment

It is of importance to design an appropriate mechanism to assign the budget
to the cooperators. In cooperative detection, one of important concerns is the
real-time. That is, an assignment mechanism should ensure that, once initiator
n0 requests its potential cooperators to help it detect its data, these cooperators
will immediately participate in detection and no one will be in a “wait and see”
state. If a node is in this state, data provided by this node are the old ones. To
address this problem, the designed budget-assignment scheme should guarantee
that, a cooperator who timely participates in detection receives more rewards
than a procrastinator. That is, the earlier a node participates in a cooperation,
the more its reward is.

Let ri denote the number of nodes who cooperatively complete the detection
at the end of sub-auction i. Thus, the number rcoi of cooperators in sub-auction
i is rcoi = ri − ri−1. The reward reward(i), paid to a cooperative node in sub-
auction i, is defined as follows.

reward (i) = γ × odr(ri, ρ) − odr(ri−1, ρ)
rco
i

(2)

Proposition 1. If 0 ≤ ρ < 1 and the arriving rate is the same, the reward(i)
paid to the cooperator of sub-auction i is always greater than reward(i+j) paid
to the node of sub-auction i + j(i, j > 0).

Proof. According to Formula (2), the second derivative of odr(x, ρ) with respect
to variable x is

∂2odr(x, ρ)
∂x2

= −γ
(
(1 − ρ)x(ln(1 − ρ))2

)
(3)
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Due to 0 ≤ ρ < 1 and γ > 0, ∂2odr(x,ρ)
∂x2 < 0 holds. This means that odr(x, ρ) is

convex regarding variable x. Because odr(r, ρ) is the discrete version of odr(x, ρ),
reward(i) > reward(i + j) holds. We can reach this proposition.

Note: This budget-assignment scheme guarantees that, the benefit of an early
cooperator is greater than or equals the benefit of the later one, but not “strictly
greater than” (because all cooperators in a sub-auction averagely share the
rewards paid for this sub-auction). If there is only one cooperator in each sub-
auction, the benefit of an early cooperator is strictly greater than the benefit
of the later one. We do not adopt this scheme because of privacy protection,
discussed in the next subsection.

4.3 Privacy Cost

As shown in Sect. 1, privacy is a key element that affects a potential coopera-
tor whether to participate in cooperation. To mitigate privacy leakage, several
techniques (e.g., pseudonyms and different privacy [8]) have been designed. In
our work, pseudonyms technique is used to protect privacy: in a sub-auction,
cooperators simultaneously and silently change their pseudonym. We use uncer-
tainty, describing a situation involving ambiguous and/or unknown information,
to measure a privacy level [22], as follows.

Assume that rco
i cooperators simultaneously and silently change their

pseudonym while detecting an intrusion. Then the privacy level of each cooper-
ator is defined as log2(1 + rco

i ). When rco
i = 1 (that is, only one node changes

its pseudonym), the privacy level reaches minimum and equals 1. In this case,
an adversary can accurately relate the new pseudonym with the old one, thus,
privacy cost reaches the highest. In our model, privacy cost pc(i) of a cooperator
in sub-auction i inversely proportional to its current privacy level, defined as
follows.

pc(i) =
{ λ

log2(1+rco
i ) if rcoi > 0

0 otherwise
(4)

where λ > 0 is the cost of a pseudonym. From Formula (4), we can see that,
privacy cost equals λ, if there is only one cooperator.

5 Evolutionary Cooperation Game and Its Analysis

We model cooperative detection in an inadequate rational environment as an
evolutionary game. We refer to this model as Evolutionary Cooperation game.
The key aspect of the game-theoretic analysis is to consider benefit and cost of
a potential cooperator. For a potential cooperator, if its benefit is greater than
its cost, it will cooperate. Next we define our game.
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5.1 Evolutionary Cooperation Game

Evolutionary Cooperation game is defined as a triplet G = ({n0} ∪ N ,S,U),
where N = {n1, . . . , nN} is the set of a potential cooperators, S = {Sj}N

j=1 is
the set of strategies of nodes, where Sj = {C,D} denotes the strategy chosen
by nj(1 ≤ j ≤ N), C and D stand for Cooperation and Defect, respectively. For
simplicity, the strategy chosen by node j is denoted by sj and strategies of all
nodes but j are denoted by set s−j. U = {ui,1(s1, s−1), . . . ,ui,N(sN, s−N)} is the
set of payoff functions of nodes at sub-auction i, where the payoff ui,j(sj , s−j)
of node j in sub-auction i is the difference between its gain and its cost, defined
as follows.

– If there are rco
i > 0 cooperators in sub auction i, then the payoff ui,j(sj , s−j)

for cooperator j is ui,j(sj , s−j) = reward(i) − pc(i)

= γ ×
(1 − ρ)ri−1

(
1−(1 − ρ)rco

i

)

rcoi

− λ

log2(1 + rcoi )
(5)

– Otherwise, the payoff ui,j(sj , s−j) for defector j equals 0.

In Formula (5), a potential cooperator easily obtain parameters γ, ρ, λ and
ri−1. If a node knows the number rcoi of cooperators in Formula (5) in advance,
then it can easily make an optimal decision. Namely, for node j, if ui,j(sj , s−j) ¿0,
then its optimal section is to participate in cooperation; otherwise it will reject
cooperation. However, in practice, no node apart from the initiator knows rcoi

because rcoi is the private information of the initiator. To address this problem,
we formulate the game as evolutionary game. Namely, a potential cooperator
plays game repeatedly and its behavior evolves over time. At time t, a potential
cooperator chooses strategy s (s ∈ {C,D}) with probability X (X ∈ [0, 1]);
at time (t + 1 ), it adjusts the probability with the growth rate X dX

dt , where
is proportional to the difference between its current payoff u(s) that adopts
strategy s and the current average payoff u(s) of all nodes. Given parameters γ,
ρ, λ and ri−1, if probability X converges to evolutionary stable strategy (ESS)
x regardless the initial value of X, then the optimal decision for the potential
cooperator is to cooperate with probability x. To calculate the ESS, we define
replicator dynamics as follows.

5.2 Replicator Dynamics

To specify replicator dynamics, we first define the notations as shown in Table 1,
where u(C) = γ odr(ri−1+XN,ρ)−odr(ri−1,ρ)

XN − λ
log2(1+XN) and u(C) = Xu(C).

Replicator dynamic express which describes how X change with time t, can be
defined as follows.
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dX

dt
= X(u(C) − u(C))

= X(1 − X)

⎛
⎝γ(1 − ρ)ri−1

(
1 − (1 − ρ)XN

)

XN
− λ

log2 (1 + XN)

⎞
⎠

(6)

Table 1. Notations in replicator dynamics.

X Probability with which nodes use the cooperation strategy

N Number of potential cooperators

u(C) Benefit of a cooperator

u(C) Average benefit of cooperators

5.3 Replicator Dynamics

An evolutionary stable strategy (ESS) is a strategy which if adopted by a popula-
tion cannot be invaded by any competing alternative strategy1. Namely, strategy
X is an ESS if the following two conditions are satisfied [23]: (1) an individual
adopting strategy X must do better against another individual adopting strategy
X than any other strategy; and (2) should a new strategy evolve (X ′) that does
equally well against strategy X for X to be an ESS, an individual employing
strategy X must do better than an individual employing strategy X ′. Formally,
let u(s, t) represent the utility for playing strategy s against strategy t, the strat-
egy pair (s, s) is an ESS in a two player game if and only if one of the following
conditions is true for both players and for all t �= s:

1. u(s, s) > u(t, s), or
2. u(s, s) = u(t, s) and u(s, t) > u(t, t)

Next, we conduct an ESS analysis.
Let f(X) = dX

dt = 0. We have X = 0, 1 or X which satisfy the following
equation:

γ(1 − ρ)ri−1
(
1 − (1 − ρ)XN

)

XN
=

λ

log2 (1 + XN)
(7)

The derived function of f(X) is
f

′
(X) = (1 − 2X)(γ(1−ρ)ri−1 (1−(1−ρ)XN )

XN ) + X(1 − X)g(X), where

g(X) =
λN log2e

1+XN

(log2(1 + XN))2
+

γ(1 − ρ)ri−1((1 − ρ)XN (−NX ln(1 − ρ) + 1) − 1)
X2N

1 https://en.wikipedia.org/wiki/Evolutionarily stable strategy.

https://en.wikipedia.org/wiki/Evolutionarily_stable_strategy
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– Consider X = 1. If f
′
(1) = −

(
γ(1−ρ)ri−1(1−(1−ρ)N)

N − λ
log2(1+N)

)
< 0, then

X = 1 can be ESS. That is, if γ
λ > N

log2(1+N)(1−ρ)ri−1 (1−(1−ρ)N )
, then X = 1

is ESS.
– Consider X = 0. Because the derived function of f(X) is not well-defined at

0, we consider the limit of derived function at 0.
lim

X→0+
f

′
(X) = Z1 + Z2 + Z3 , where

Z1 = lim
X→0+

(1 − 2X)

⎛
⎝γ(1 − ρ)ri−1

(
1 − (1 − ρ)XN

)

XN
− λ

log2 (1+XN)

⎞
⎠

= −γ(1 − ρ)ri−1 ln(1 − ρ) − lim
X→0+

λ(1 − 2X)
log2(1 + XN)

Z2 = lim
X→0+

X(1 − X)
λN log2e

1+XN

(log2(1 + XN))2

Z3 = lim
X→0+

X(1 − X)
γ(1 − ρ)ri−1((1 − ρ)XN (−NX ln(1 − ρ) + 1) − 1)

X2N
= 0

So, lim
X→0+

f
′
(X) = Z1 + Z2

= −γ(1 − ρ)ri−1 ln(1−ρ)− lim
X→0+

λ(1 − 2X)

log2(1 + XN)
+ lim

X→0+
X(1−X)

λN log2e
1+XN

(log2(1 + XN))2

Due to lim
X→0+

X(1 − X)
λN

log2e
1+XN

(log2(1+XN))2
− lim

X→0+

λ(1−2X)
log2(1+XN) = −λ(N−2)

2N ln 2, we

have the following results.

lim
X→0+

f
′
(X) = −γ(1 − ρ)ri−1 ln(1 − ρ) +

−λ(N − 2)
2N

ln 2

Namely, when γ(1 − ρ)ri−1 ln(1 − ρ) > λ(N−2)
2N ln 2 holds, X = 0 is ESS.

– Given ρ, λ, γ, N and ri−1, if the solution of equation exists (let it be X ′) and
f

′
(X) < 0, then X = X ′ is an ESS.

Given ρ, λ, γ, N and ri−1, we can easily obtain its solutions of Formula (7)
using either bisection or Newton’s method [24]. Based on the ESS, we can design
algorithms (as shown in Algorithms 1 and 2) to incentivize inadequately rational
nodes to maximize their benefit.
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Algorithm 1. Game for Initiator
Initiating phase: given a potential intrusion event to be detected, n0

selects a budget γ, the round rd of the allowed sub-auctions, the allowed
auction period apd for each sub-auction and the expected overall
detection rate odr; n0 sets the initial number of cooperators r0 = 0, the
initial overall detection rate odr = 0 and the current auction round i = 1;
Auction phase:
while i ≤ rd and odr < odr do

n0 broadcasts i, γ and ri − 1 to its all potential cooperators;
i = i + 1;
for (;;) do

n0 records the number rco
i of bidders;

if the sub-auction period > apd then
break;

end
end
ri = ri−1 + rco

i ;
Computing odr = odr(ri, ρ) according to Formula (1);

end
Pay-off phase: After completing detection, n0 allocates rewards to each
bidder according to Formula (3).

6 Experiment Evaluation

In the simulation, without the special statement, we set the default value of the
parameters to ρ = 0.5, λ = 1, γ = 100, and N = 15.

Evolution Process. We fixed parameters ρ, λ, and N , and then picked different
γ and initial cooperation probability x of a neighboring node in order to check
how the evaluation process is conducted. The evolution was updated in the
following manner: x = x + dx

dt × t, where t = 0.001 is a step size. From Fig. 1,
we can see that for a given total budget γ, the replication dynamics always
converges to the ESS x∗ regardless the initial probability x.

Cost v.s. Cooperation Probability. Figure 2 presents the change of coop-
eration probability over pseudonyms cost. From Fig. 2, we can see that, given
the number of potential cooperators N , the cooperation probability x decreases
as the pseudonyms cost λ increases, and increases as budget γ increases. This
phenomenon is reasonable: if privacy cost increases or budget decreases, then
the benefit of a node in each cooperation decreases, thus, it is disinterested in
cooperation.
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Algorithm 2. Game for Potential Cooperator
Initiating phase: Each potential cooperator first sets ρ, λ and observes
the number N of potential cooperators;
Auction phase:
The potential cooperator receives i, γ and ri−1 from the initiator;
if γ

λ > N
log2(1+N)(1−ρ)ri−1 (1−(1−ρ)N )

then
the potential cooperator participates in detecting the intrusion event;

end
else if −γ(1 − ρ)ri−1 ln(1 − ρ) < λ(N−2)

2N ln 2 holds then
the potential cooperator refuses to cooperate;

end
else

Calculate the probability X by solving Formula (7)
if f ′(X) < 0 holds then

the potential cooperator participates in detecting the intrusion
event with probability X;

end
else

the potential cooperator refuses to cooperate.
end

end

Pay-off Phase: If the potential cooperator bids, then it participates in
detection. After detecting the intrusion, it gets rewards from the initiator.

Number of Completed Tasks . In the experiment, we adopted a city sce-
nario including 17937 GPS records of 1792 taxis in three representative areas
of Beijing C the Guangqumen area, covering 1.885 km× 1.752 km, the Shi-
jingshan area, covering 1.078 km× 2.532 km, and the Changping area, covering
3.144 km× 5.701 km. These records were gathered from 8:00:00 a.m. to 8:59:59
a.m. on August 13, 2015. During this period, the densities of vehicles in the
Guangqumen, Shijingshan and Changping areas were high, middle and low,
respectively (namely a dense scenario, a medium scenario, and a sparse sce-
nario, respectively). The numbers N of potential coopera-tors of the three areas
(which denote the numbers of taxis of the three areas) are 824, 526 and 442,
respectively. We assume that: (1) each passenger in a taxi own a smartphone
to collect data, (2) budget γ = 50, detection rate ρ = 0.65, pseudonyms cost
λ = 0.2, the odr required by node n0 is greater than 0.98, then according to For-
mula (1), at least 5 neighboring nodes cooperatively detect the data collected
by n0. Assume that Next, we discuss 5 strategies: ‘selflessness’ strategy (i.e., all
nodes are selfless), ‘70%-selflessness’ strategy (i.e., 70% of nodes are selfless),
‘30%-selflessness’ strategy (i.e., 30% of nodes are selfless), ‘selfishness’ strategy
(i.e., all nodes are selfish) and our strategy.

As shown in Fig. 3, the number of tasks completed in our approach is always
greater than the number in the other approaches. For instance, when the number
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Fig. 3. Number of initial pseudonyms v.s. number of completed tasks.

of initial pseudonyms is 10, we can see that: (1) In the dense scenario, 2622
tasks were completed if the 70%-selfless approach was used, 3158 tasks were
completed if the selfless approach was used, and 3478 tasks were completed if our
approach was used. (2) In the sparse scenario, the number of tasks completed
in our approach was 54 times greater than the number of tasks completed in
the 30%-selfless approach. The reason is as follows: if without incentive, once
pseudonyms of a node are exhausted, it does not detect messages any more.
In our approach, even if pseudonyms of a node are exhausted, it can use the
obtained reward enough to purchase new pseudonyms. Therefore, our approach
has overwhelming advantages over the other approaches.

7 Conclusion

We have considered the incentive mechanism for cooperative detection to moti-
vate nodes to participate in cooperation. In detail, a game-theoretic approach
is proposed to guarantee that mobile nodes participating in detection maximize
their utility while reducing resource consumption. To address the problem that
nodes are inadequately rational, we have established evolutionary games. We
also have developed algorithms for evolutionary game to encourage nodes to
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participate in cooperation. The simulation demonstrates the efficiency of our
approach.
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