®

Check for
updates

Fast Higher-Order Functions for Tensor
Calculus with Tensors and Subtensors

Cem Bassoy®™) and Volker Schatz

Fraunhofer IOSB, 76275 Ettlingen, Germany
cem.bassoy@iosb.fraunhofer.de

Abstract. Tensors analysis has become a popular tool for solving prob-
lems in computational neuroscience, pattern recognition and signal pro-
cessing. Similar to the two-dimensional case, algorithms for multidimen-
sional data consist of basic operations accessing only a subset of tensor
data. With multiple offsets and step sizes, basic operations for subtensors
require sophisticated implementations even for entrywise operations.

In this work, we discuss the design and implementation of optimized
higher-order functions that operate entrywise on tensors and subtensors
with any non-hierarchical storage format and arbitrary number of dimen-
sions. We propose recursive multi-index algorithms with reduced index
computations and additional optimization techniques such as function
inlining with partial template specialization. We show that single-index
implementations of higher-order functions with subtensors introduce a
runtime penalty of an order of magnitude than the recursive and iterative
multi-index versions. Including data- and thread-level parallelization, our
optimized implementations reach 68% of the maximum throughput of
an Intel Core i9-7900X. In comparison with other libraries, the aver-
age speedup of our optimized implementations is up to 5x for map-like
and more than 9x for reduce-like operations. For symmetric tensors we
measured an average speedup of up to 4x.

1 Introduction

Many problems in computational neuroscience, pattern recognition, signal pro-
cessing and data mining generate massive amounts of multidimensional data
with high dimensionality [9,12,13]. Tensors provide a natural representation for
massive multidimensional data [7,10]. Similar to matrix analysis algorithms,
many recently developed iterative tensor algorithms apply basic tensor oper-
ations within subdomains of tensors, i.e. subtensors where their sizes usually
depend on induction variables. For instance, the higher-order Jacobi method
described in [3] accesses different subtensors of the same tensor in each itera-
tion. In [5], subtensors are used to perform a histogram-based tensor analysis.
While basic tensor operations for multidimensional data have been imple-
mented and discussed in the literature, the design and runtime analysis of algo-
rithms with subtensors have only been sparsely considered. The implementation
of entrywise operations for contiguously stored tensors can be efficiently and

© Springer International Publishing AG, part of Springer Nature 2018
Y. Shi et al. (Eds.): ICCS 2018, LNCS 10860, pp. 639-652, 2018.
https://doi.org/10.1007/978-3-319-93698-7_49

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-93698-7_49&domain=pdf

640 C. Bassoy and V. Schatz

conveniently implemented with a single loop where the storage format does not
influence the runtime. In case of contiguously stored tensors, template functions
of the C++ standard algorithm library can be applied. Operating on subten-
sors is more subtle and requires either index transformations for single loops
or algorithms with a complex control-flow for multi-indexed access. Moreover,
we have observed that single-index implementations are slower than recursive
multi-index approaches in case of subtensors even if the spatial data locality is
preserved.

In this work, we discuss optimized implementations of entrywise operations
for tensors and subtensors in terms of their runtime behavior. We provide a set
of optimized C++ higher-order template functions that implement a variety of
map- and reduce-like tensor operations supporting tensors and subtensors with
any non-hierarchical storage and arbitrary number of dimensions. The storage
format, number of dimensions and the dimensions are latter can be specified at
runtime. Our base implementations are based on a single-index approach with a
single loop and multi-index approaches using recursion and iteration. We addi-
tionally present optimization techniques to minimize the performance penalties
caused by recursion including data streaming, parallelization, loop unrolling and
parametrized function inling with template meta-programming techniques. Each
optimization is separately implemented in order to quantify its effects. Our pro-
posed optimizations can also be applied for more complicated tensor operations
such as tensor multiplications or transposition in order to efficiently support
subtensors. In summary, the main contributions and findings of our work are:

— Multi-index higher-order functions with subtensors outperform single-index
ones on a single core by one order of magnitude and perform equally well for
any non-hierarchical storage format using permuted layout tuples.

— Dimension extents corresponding to the loop counts of the inner-most loops
can reduce the throughput of recursively implemented higher-order functions
by 37%. The runtime can be speed up by a factor of 1.6 using templated-based
function inlining.

— Applying data- and thread-level parallelization, our implementations reach
68% of the maximum CPU throughput. Compared to competing implemen-
tations described in [1,6,14] the functions yield a speedup of up to 5x for
map-like and more than 9x for reduce-like operations.

The remainder of the paper is organized as follows. Section 2 discusses existing
libraries that are related to our work. Section 3 introduces the notation and states
the problem based on the preliminary. Section4 provides the research method-
ology and experimental setup used in this work. The following Sect.5 intro-
duces the single- and multi-index implementation. Section 6 describes optimized
multi-index versions of the multi-index implementation. Section 7 discusses and
analyzes benchmark results with other libraries. The last Sect.8 contains the
conclusions.

Fast Higher-Order Functions for Tensor Calculus 641

(b)

Fig. 1. Subtensors with an index offset f, > 1 where (a) is generated with ¢, = 1 for
all » € {1,2,3}, (b) with ¢; > 1 and t2 = t3 = 1 and (c) with ¢, > 1 for all r € {1,2,3}.

2 Related Work

Due to the wide range of applications using tensor calculus, there is a large
number of libraries implementing it. In this section we will restrict ourselves
to implementations that, like ours, support dense tensor operations. Blitz,
described in [14], is one of the first C++ frameworks. It supports tensors up to 11
dimensions including tensor and stencil operations. Multidimensional arrays are
generic data types where the number of dimensions are compile-time parameters.
The framework supports high-level expressions for entrywise tensor operations
and also allows to manipulate subtensors for single core execution. The authors
of [6] describe Boost’s MultiArray. They discuss the design of generic data
types for tensors, including the addressing elements and subtensors with first-
and last-order storage formats. Users of the library must implement their own
higher-order tensor operations using the provided tensor data structures. In [2],
the library MArray and its implementations are presented. The order and dimen-
sions of the tensor templates are runtime parameters similar to our work. The
paper also discusses addressing functions, but only for the first- and last-order
storage format. The entrywise tensor operations can also process subtensors.
The Cyclops-Tensor-Framework (CT) offers a library primarily targeted at quan-
tum chemistry applications. The order and the dimensions of their tensor data
structures are dynamically configurable. LibNT, discussed in [8], serves a similar
purpose. Both frameworks, however, do not allow manipulation of subtensors
with entrywise tensor operations. Eigen’s tensor library is included in the Ten-
sorflow framework [1]. The runtime of the latter contains over 200 standard
operations, including mathematical, array manipulation, control flow, and state
management operation. Among other features, the C++ library framework also
provides entrywise tensor operations with tensors and subtensors.

3 Notation

A tensor of order p shall be denoted by A where p is the number of dimensions.
Dimension extents are given by a shape tuple n = (n4,...,n,) where n, > 1 for

642 C. Bassoy and V. Schatz

Table 1. Implemented higher-order template functions.

Abbreviation | Function Description Example (MATLAB)

scal for_each() Cij..k — O Cij. K C(1:4,:,2:6) = C(1:4,:,2:6)+3
copy copy O) Cij..k — Qij.. .k C(1:4,:,end) = A(2:5,:,end)

add transform() Cij...k — O ajj. . .k C(1:4,:,2:6) = A(2:5,:,3:7)+3
addc transform() Cij..k + Qij...k Obgj . | C(1:4,:,:) = A(2:5,:,:)+B(3:6,:,:)
min min_element () ming;. .k (aij.. k) min(A(2:5,:,3:7)(:))

equal equal() Cij...k éaijmk all(C(1:4,:,:)(:)==A(2:5,:,:)(:))
all all_of () aijx = a all(C(1:4,:,:) (:)==3)

acc accumulate () E”k Aij.. .k sum(C(1:4,:,:)(:))

inner inner_product () Zij“‘kaij_“k'Ci]‘_“k dot(C(1:4,:,:)(:),C(2:6:,:)(:))

1 <r < p. Elements of A are denoted by a;, 4,.....i,, A(i1,i2,...,1p) or A(i) with
i € I, and I, = {1,...,n,} for all p dimensions. The set of all multi-indices is
given by 7 = Iy x --- x I,.

A subtensor denotes a selection of a multidimensional array A that is defined
in terms of p tuples such that A" = A(si,...,s,). The r-th tuple s, has n/
elements with n. < n, and s; € I, for 1 < k < n!. Most tensor algorithms use
index triplets (f,t.,1.), where f,., I, define the first and last index satisfying
1 < f, <, < n,. The parameter t, with ¢, > 0 is the step size or increment
for the r-th dimension such that n!. = | (I, — f)/t-| + 1. The index sets I’. and
the multi-index set Z’ of a subtensor A’ are defined in analogy to the index and
multi-index set of tensor A. Figurel illustrates three types of subtensors with
different index triplet configurations.

4 Methodology and Experimental Setup

Table1 lists some of the implemented and optimized higher-order functions.
The offsets, increments, the number of dimensions and layout of the tensor can
be dynamically set. The first four functions read from and write to memory
regions. The following three functions read from memory regions and perform a
reduce operation returning a scalar result. The last two functions are commonly
used in numerical algorithms and also perform a reduce operation. Our imple-
mentation of higher-order functions support subtensors and tensors with any
non-hierarchical storage format equally well. They can be thought as an exten-
sion of higher-order functions that are described by the C+-+ standard. Being
applicable to contiguously stored tensors, they cannot be used to iterate over a
multidimensional index set of a subtensor. We have applied multiple approaches
and optimizations for all higher-order functions listed in Table 1 each of which
is separately implemented. The implementations are as follows:

Fast Higher-Order Functions for Tensor Calculus 643

single-inder implementation uses a single loop.
multi-index-rec implementation contains recursive functions calls.
multi-index-iter is an iterative version using multi-indices.

The following optimizations are based multi-index and are denoted as follows:

{minindex} contains less index computations.

{inline} avoids recursive function calls for a given compile-time order.
{parallel} applies implicit data- and explicit thread-level parallelism.
{stream} applies explicit data-parallelism and uses stream instrinsics.

We first quantify the runtime penalties that arise from index transformation
within a single loop comparing single-index and multi-index implementations
with subtensors. Based on the unoptimized multi-index implementation, we mea-
sure combinations of optimizations, such as {minindez,inline}. We have defined
multiple setups for measuring the runtime and throughput of the higher-order
functions.

Setup 1 contains four two-dimensional arrays INj of shape tuples for subten-
sors with 10 rows and 32 columns where each shape tuple n, . is of length
r + 1. The initial shape tuples n;; for all arrays are (2!5,28), (2%, 21%),
(28,2,2') and (28,2'%), respectively. The value of the k-th element is given
by n,.(k) = ny1(k) - ¢/2"71. If k = 4, the last element of all shape tuples
instead of the fourth is adjusted. The remaining elements are set to 2 such
that all shape tuples of one column exhibit the same number of subtensor
elements. The subtensor sizes range from 32 to 1024 MB for single-precision
floating-point numbers.

Setup 2 contains two-dimensional arrays Ny of shape tuples with 10 rows
and 64 columns. The shape tuples are similarly created starting with the
same initial shape tuple (24,2!%). The first shape tuple elements are given by
n, (1) = ny1(1) - c. The second and last dimension are adjusted according
ton,.(2) =n11(2) /2" and n, o(r+1) =ny1(r+1) / 2", respectively.
The remaining shape tuple elements are set to 2. The subtensor sizes range
from 32 to 2048 MB for single-precision floating-point numbers.

Setup 3 contains shape tuples that yield symmetric subtensors. The setup
provides a two-dimensional array N of shape tuples with 6 rows and 8 columns
where each shape tuple n,, is of length r + 1. Elements of the shape tuples
n,; for r=1,...,6 are each 212 98 96 95 924 and 23. The remaining shape
tuples for ¢ > 1 are then given by n, . = n, .+k-(c—1) where k is respectively
equal to 2°, 25, 23,22 2 1 for r = 1,...,6. In this setup, shape tuples of a
column do not yield the same number of subtensor elements. The subtensor
sizes range from 8 to 4096 MB for single-precision floating-point numbers.

The first two configurations with 4 x 320 and 2 x 640 shape tuples exhibit an
orthogonal design in terms of tensor size and order, where the algorithms are
run for fixed tensor sizes with increasing tensor order and vice versa. Varying
only one dimension extent for a given order helped us to quantify its influence
on the runtime. The last setup contains 48 tuples for symmetric tensors.

644 C. Bassoy and V. Schatz

Ao v Aw
J' 7 T

Fig. 2. Accessing contiguously stored elements requires the computation of scalar
indices in J. Function Ay is applied if tensors are accessed with multi-indices in Z.
Function Ay o+ is applied if subtensor are accessed with multi-indices in Z'. Accessing
elements subtensors with scalar indices in J’ requires the application Ay 0 o)\V_V,l

Subtensors are created with increments equal to one for all dimensions in
order to analyze runtime penalties introduced by index computations and recur-
sive function calls. Each subtensor is selected from a tensor that has a shape
tuple of the last row of the corresponding two-dimensional array IN. One extent
ny of the subtensor is chosen smaller than the dimension extents of the refer-
enced tensor. The sizes of the subtensors were chosen greater than the last-level
cache to avoid caching effects. Spatial data locality is always preserved meaning
that relative memory indices are generated according to storage format. Tensor
elements are stored according to the first-order storage format for all setups. All
of the following findings are valid for any other non-hierarchical storage format
if the optimization in Sect. 6.2 is applied.

The experiments were carried out on an Core i9-7900X Intel Xeon processor
with 10 cores and 20 hardware threads running at a base frequency of 3.3 GHz.
It has a theoretical peak memory bandwidth of 85.312 GB/s resulting from four
64-bit wide channels with a data rate of 2666 MT/s. The examples and tests
were compiled with GCC 7.2 using the highest optimization level including the
-march=native and -pthread options. The benchmark results presented below
are the average of 10 runs. The throughput is given as number of operations
times element size in bytes divided by the runtime in seconds. The comparison
were performed with Eigen’s tensor library (3.3.4), Boost’s multiarray library
(1.62.0) and Blitz’s library (0.9) that were described in the Sect. 2.

5 Baseline Algorithms

If tensors are allocated contiguously in memory, a single index suffices to access
all elements. The set of scalar indices is denoted by J with J = {0,...,7 — 1}
where 7 = [[Y_, n, with |Z| = |7|. The mapping of multi-indices in Z onto
scalar indices in J depends on the layout of a tensor. The following mappings
include any non-hierarchical layouts that can be specified by a layout tuple .
The most common layouts are the first- and last-order storage formats with their
respective layout tuples wp = (1,2,...,p) and w1 = (p,p-1,...,1). The layout
function Ay with

>‘W(1) = Zwr(ir - 1) (1)

Fast Higher-Order Functions for Tensor Calculus 645

Algorithm 1. Recursive algorithm. Algorithm 2. TIterative version.
Input: A€ T, BeT" neNP, Input: A € T%, B € T™ with n € NP,
ieN’, r=p i e NP
Result: Ce T Result: C e T
1 transform(A,B,C,w,n,i,r) 1 transform(A,B,C,w,n,i)
2 if r > 1 then 2 r—1
3 for i, «— 1 to n, do 3 while » < p do
4 | transform(A,B,C,w,n,i,r-1) 4 for k — 2 to r do
5 else ® L =1
6 for iy + 1 to n; do 6 for iy + 1 to n; do
7 j— Awl(i) 7 J = Aw(d)
8 Clj] < Alj] @ Blj] 8 Clj] < Alj] @ B[j]
9 for r — 2 to p do
10 if i, < n,. then
11 L break;
12 L U — 10 + 1

maps multi-indices in 7 to scalar indices in J for a fixed stride tuple w whose
elements are given by w,, =1 and

W, = Wa,_; " Np,_, for 1 <r<p. (2)

"

The inverse layout function A\;' : J — T of A, is given by

k
Ay () =1, and i, = {J + 1, (3)
wy
with kr, = kr,, — W, - ix,,, for r < pandir, = [j/wg,|+ 1. We can
analogously define a scalar index set J’ for a subtensor with 7/ elements where
n' = [[?_, n.. Note that X can only be applied if 1 = f,, [, = n, and 1 = ¢,
such that n. = n,. In any other case, each multi-index in Z' needs be mapped
onto an multi-index in Z. The mapping v : Z — 7 with v(i) = i is given by

ve(in) = fr+ (i = 1) -t =i, (4)

for 1 < r < p. Subtensor elements can be accessed with single indices in 7' by
applying the function Ay © 7 0 Y4 such that

i=X (v (A (1)), (5)

where w’ and w are stride tuples of a subtensor and tensor. Figure 2 illustrates
how a single-loop approach for subtensors requires scalar indices to be trans-
formed according to Eq. (5).

5.1 Recursive Multi-index Algorithm multi-indez-rec

The baseline algorithm transform in Algorithm 1 exemplifies an implementation
of entrywise operation for tensors and subtensors where © is be a binary opera-
tion. It is a nonlinear recursive algorithm and has variable number of recursive

646 C. Bassoy and V. Schatz

function calls in each recursion level. The first input arguments denote a tensor
or subtensor of order p all exhibiting the same shape tuple n. Before each recur-
sive function call, an element of the multi-index is incremented and passed to the
following function instance for » > 1. The inner-most recursion level for r = 1
computes the first element i; of the multi-index and applies the layout function
defined in Eq. (1). Once the memory indices for all data structures are computed,
the binary operation in line 7 is applied. Using Egs. (1) and (4), the layout func-
tion of subtensor is given by X = Ay oy such that A, (i") = Aw(f) + Awr (i)
where f is the tuple of the first indices of the subtensor and w” is a modified
stride tuple with w! = w.t,.. The first summand A (f) is an offset with which
the pointer to the tensor data is shifted to set the position of the first subtensor
element. In this way, the algorithm is able to process tensors and subtensors
equally well.

5.2 Iterative Multi-index Algorithm multi-indez-iter

The basline algorithm provides an elegant solution for traversing the multi-index
space and generating unique multi-indices with no redundant computation. How-
ever, recursion may introduce runtime overhead due to stack operations for sav-
ing the callers state [4]. In our case, p — 1 stack frames are repeatedly created
before the inner-most loop is executed.

Nonlinear recursive algorithms can be transformed into an iteration using a
software stack [11,15]. With no processing in between the recursive calls except
the adjustment of the multi-index, we applied the method described in [15] and
eliminated function calls which resulted in a much simpler control flow. We
further simplified the algorithm, by only storing multi-index elements and to
use a single array, where the r-th entry stores the r-th multi-index element.

The resulting iterative version of the recursive baseline algorithm is given in
Algorithm 2. The multi-indices are modified in lines 3 to 5 and 8 to 11 just as it
is done in line 2 to 4 in Algorithm 1. A multi-index element i, is reset in lines 3
to 5 if any i with k& > r has reached the loop count ny.

5.3 Single-Index Algorithm single-index

Higher-order functions for tensors can be implemented with one loop where
tensor elements are accessed with a single index j. The memory address of the
j-th element is given by the addition k + ¢ - j where § is the size of an element
and k the memory location of the first element. We have used higher-order
functions of the C++ standard library to perform elementwise operations for
tensors. However, they cannot be used in case of subtensors where the values of
the induction variable are in 7'. Each memory access with a scalar index needs a
transformation according to Eq. (5). The loop body for first-order storage format

first increments the scalar j with w, -7 and updates k and ¢ with k < kE—w i
and ¢ < k/w!._; where k and i are previously computed values.

Fast Higher-Order Functions for Tensor Calculus 647

Throughput [GB/s] Speedup over single-index

° 19
4 18

17
3 16

15
2 14
1 13

12
0 M—o 11

2 3 4 5 6 7 8 9 10 2 3 4 5 6 7 8 9 10
Tensor Order Tensor Order

Fig. 3. Comparison of —o— single-index, —8— multi-index-rec and —e— multi-index-
iter implementations of the entrywise addition of two subtensors. Data is stored in
single precision. Tests are run on a single core with shape tuples of Setup 1. Left:
Mean throughput. Right: Mean speedup of multi-indez-rec and multi-index-iter over
single-index.

6 Optimizing the Multi-index Algorithm

In this section we will turn to algorithms optimized for accessing subtensors. The
first subsection will present an iterative algorithm for higher-order functions. The
following sections describe successive optimizations of the multi-index recursive
algorithm from Sect.5.1. Three of those subsections explain methods that can
be applied in order to reduce the runtime penalties caused by the recursive
approach. The last subsection discusses data- and thread-level parallelization
with which bandwidth utilization can be maximized.

6.1 Reducing Index Computation {minindez}

The baseline algorithm for higher-order functions computes relative memory
indices in the inner-most loop. We can further reduce the number of index com-
putations by hoisting some of the summands to the previously executed loops.
In each recursion level r, line 3 and 6 only modify the r-th element ¢, of the
multi-index i. Moreover, the k-th function call at the r-th level adds k to i,
i.e. increments the previously calculated index. We can therefore move the r-th
summand w, - i, of Eq. (1) to the r-th recursion level. In this way, unnecessary
index computations in the inner-most loop can be eliminated allowing to pass a
single index j that is incremented by w,.. Algorithm 1 therefore needs to be mod-
ified in line 3, 6 and 7 to substitute j. At the recursion level r, the single index j
is incremented n, times with w, until the stride (r + 1)-th element of the stride
tuple w is reached. The last element of the stride tuple w is given by w, - n,. As
j denotes a memory index, we can manipulate pointers to the data structures

648 C. Bassoy and V. Schatz

Throughput [GB/s] Speedup over multi-index-rec
12.8 8
12.6
12.4 7
12.2 6
12
11.8 5
11.6
11.4 4
11.2 3
11
2 3 4 5 6 7 8 9 10 2 3 4 5 6 7 8 9 10
Tensor Order Tensor Order

Fig.4. Comparison of the multi-indez-rec{minindex} —m— and multi-indez-iter
{mininder} —o— implementations of the entrywise addition of two subtensors. Data
is stored in single precision. Tests are executed on a single core with shape tuples of
Setup 1. Left: Mean throughput. Right: mean speedup over multi-index-rec implemen-
tation.

in the same manner. In this way only a dereferencing in the inner-most loop is
necessary. The same holds for subtensors.

6.2 Preserving Data Locality

The spatial data locality of Algorithm 1 is always preserved for the first-order
storage as the inner-most loop increments the first multi-index by w; = 1. For
any other layout tuple, the elements are accessed with a stride greater than
one. This can have a greatly influence the runtime of the higher-order function.
In order to access successive element, we can reorder the loops or stride tuple
according to the layout tuple. However, the modification of a stride tuple can
be performed before the initial function call. Using the property 1 < wg, < ws,
for 1 < g <r < p, anew stride tuple v with v, = w,,_ for 1 < r < p can be
computed. The runtime penalty for the permutation of the stride tuple becomes
then negligible.

6.3 Reducing Recursive Function Calls {inline}

The recursion for the multi-index approach consists of multiple cases where each
function call contains multiple recursive function calls, see [11]. Function inlining
is more likely to be achieved if calls to the next recursion level is performed with
a different function type. This can be accomplished with class templates and
partial specialization with a static member function containing a loop in order
to reduce the number of function implementations. The order of the tensor and
subtensor is a template parameter that allows the compiler to generate jump

Fast Higher-Order Functions for Tensor Calculus 649

Throughput [GB/s] Throughput [GB/s]

732 416 800 1184 1568 1952 732 416 800 1184 1568 1952
Tensor Size [MB] Tensor Size [MB]

Fig. 5. Comparison of the recursive multi-index implementations of the entrywise sub-
tensor addition with {minindez,inline} —o— and {mininder} —8— optimizations. Data
is stored in single precision. Tests are executed on a single core with shape tuples of
Setup 2. Left and right plots contain mean throughputs of the implementations exe-
cuted with the first N; and second shape tuple array N2, respectively.

instructions for the specified order and to avoid recursive function calls. In order
to leave the order runtime flexible, the static function is called from a switch
statement. If the runtime-variable order is larger than the specified template
parameter, the standard recursive implementation is called. In order to prevent
a code bloat of multiple implementations for different orders, we chose the order
to 20.

6.4 Data- and Thread-Parallelization {parallel,stream}

By data-level parallelization we refer to the process of generating a single instruc-
tion for multiple data. The inner-most loop of the higher-order function is an
auto-vectorizable loop if the stride of a tensor or subtensor is equal to one. In
such a case, the compiler generates vector instructions with unaligned loads and
regular store operations. In order to yield a better memory bandwidth utiliza-
tion, we have explicitly placed Intel’s aligned load and streaming intrinsics with
the corresponding vector operation in the most inner loop. Note that pointers to
the data structures must be aligned and the loop count must be set to a multiple
of the vector size.

By thread-level parallelization we refer to the process of finding independent
instruction streams of a program or function. Thread-level parallel exuction is
accomplished with C++ threads executing the higher-order function in parallel
where the outer-most loop is divided into equally sized chunks. Each thread
executes its own instruction stream using distinct memory addresses of the tensor
or subtensor. In case of reduction operations such the inner product with greater
data dependencies, threads perform their own reduction operation in parallel and

650 C. Bassoy and V. Schatz

Throughput [GB/s] Throughput [GB/s]

60 30

40 20

20 10

o Iz AN Dol o lallz] U Wz iz g s
> o IS 5 o > o > s o
S & =) O N > > O O
had v,b & \},\0 3 Mg ?,b & x@Q A

B Our InBlitz 0 0 Eigen A8 Boost BoOur InBlitz 1 0Eigen B9 Boost

Fig. 6. Comparison of our implementation B0 to Blitz BN , Eigen 00 and Boost A8 .
Entrywise operations are executed with subtensors in single precision on all available
cores. Function descriptions are found in Table 1. Left: Setup 1 was used for this bench-
mark. Our refers to multi-index-rec {minindez,inline,parallel,stream} reaching 68% of
the theoretical peak memory bandwidth. Right: Setup 3 was used for this benchmark.
Our refers to multi-indez-rec {minindez,inline,parallel}.

provide their results to the parent thread. The latter performs the remaining
reduction operation.

7 Results and Discussion

A comparison of the single-index, multi-index-rec and multi-indez-iter imple-
mentations of the entrywise addition for subtensors is provided in Fig.3. The
throughput for a given order is constant over all subtensor sizes and only varies
between two different orders. The throughput of the multi-indezx-rec and multi-
indez-iter implementations speed up with increasing order and run up to 20
times faster than the single-index version. Note that both multi-index imple-
mentations perform equally well. We observed similar speedups for all other
implemented higher-order functions.

Hoisting the index computation of the recursive multi-index approach with
the {minindex} optimization significantly reduces the number of index compu-
tations, as shown in Fig. 4. The recursive and iterative multi-index {minindex}
linearly speed up with increasing order outperforming the unoptimized versions
by almost a factor of 8. We measured a slowdown of at most 10% for any tuple
shape of Setup 1.

Without the {inline} optimization, the recursive multi-index implementation
runs slower for tensors and subtensors with a small extent of the first dimen-
sion. We did not observe similar behavior for shape tuples belonging to Setup I
where the extents of the first dimension is kept always greater than 256. Figure 5
illustrates the impact of the first dimension where only the first dimension is

Fast Higher-Order Functions for Tensor Calculus 651

increased from 16 to 1024. Decreasing the first dimension causes a slow down
almost up to a factor of 2. The positioning of the large dimension has a minor
impact on the throughput. The {inline} optimization reduces the runtime up to
a factor of 1.6.

Comparing the throughput of the recursive implementations in Figs. 4 and 6
using {minindez,inline} and {minindez,inline,parallel, stream} reveals that data-
and thread-parallel execution with stream operations almost quadruples the sus-
tained throughput from almost 14 GB/s on a single-core to almost 58 GB/s
reaching about 68% of the theoretical peak performance. In comparison to other
C++ libraries our fastest implementation performs up to 5x faster for map-like
operations and 9x for reduce operations with unsymmetric subtensors. Using
implicit vectorization with unaligned access and store instructions reduces the
throughput by 37%. With shape tuples of Setup 3, we did not use explicit vec-
torization and vector streaming instructions. In this case, higher-order functions
utilized at most 34% of the theoretical peak memory bandwidth. Despite the
lower throughput, all our functions yield speedups between 2x and 4x compared
to the competing implementations as shown in Fig. 6. While higher-order func-
tions had almost a constant throughput with Setup I, we measured a linear
decrease of the throughput with increasing order for all implementations with
Setup 3. This observation coincides with measurements based on the previous
description shown in Fig. 5.

Although Blitz does not support parallel execution, some of its entrywise
operations perform almost as fast as our implementations on a single core. A
parallelized version could also compete with our functions in terms of runtime.
However, the implementation only supports a fixed number of dimensions which
allows to provide an optimized implementation for each version. We implemented
all entrywise operations for subtensors using Boost’s data structures and exe-
cuted them on a single core. Figen’s implementation executes entrywise opera-
tions in parallel. We observed a decrease of the throughput with increasing order
as well. The performance of the reduce-like operations provided by the libraries
is lower compared to the map-like operations.

8 Conclusion and Future Work

We have investigated the runtime behavior of higher-order functions for subten-
sors and showed that the recursive multi-index implementation linearly speeds
up with increasing order over the single-index approach. Experimenting with a
large amount of shape tuples we have shown that the dimension extents corre-
sponding to the loop counts of the inner-most loops can reduce the throughput
by 37%. Hoisting index computation and inlining function calls, the multi-index
approach can be optimized, minimizing the performance penalties introduced by
the recursion.

Applying explicit data-level parallelism with stream instructions and thread-
level parallelism, we were able to speed up higher-order functions reaching 68% of
the theoretical peak performance. In comparison to other C++ libraries our fastest

652 C. Bassoy and V. Schatz

implementation performs up to 5x faster for map-like and 9x for reduce-like
operations with unsymmetric subtensors. For symmetric subtensors we measured
an average speedup of up to 4x. The findings of our work are valid for any type
of tensor operation that includes recursive implementations.

In future work, we intend to create fast implementations of other tensor
operations such as the tensor transposition and contractions and analyze the
impact of the recursion.

References

1. Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., Devin, M.,
Ghemawat, S., Irving, G., Isard, M., Kudlur, M., Levenberg, J., Monga, R.,
Moore, S., Murray, D.G., Steiner, B., Tucker, P., Vasudevan, V., Warden, P.,
Wicke, M., Yu, Y., Zheng, X.: TensorFlow: a system for large-scale machine learn-
ing. In: Proceedings of the 12th USENIX Conference on Operating Systems Design
and Implementation, OSDI 2016, pp. 265-283. USENIX Association, Berkeley
(2016)

2. Andres, B., Kothe, U., Kroger, T., Hamprecht, F.A.: Runtime-flexible multi-
dimensional arrays and views for C++98 and C++0x. CoRR abs/1008.2909 (2010)

3. Brazell, M., Li, N.; Navasca, C., Tamon, C.: Solving multilinear systems via tensor
inversion. STAM J. Matrix Anal. Appl. 34, 542-570 (2013)

4. Cohen, N.H.: Eliminating redundant recursive calls. ACM Trans. Program. Lang.
Syst. (TOPLAS) 5(3), 265-299 (1983)

5. Fanaee-T, H., Gama, J.: Multi-aspect-streaming tensor analysis. Knowl.-Based
Syst. 89, 332-345 (2015)

6. Garcia, R., Lumsdaine, A.: MultiArray: a C+4+ library for generic programming
with arrays. Softw. Pract. Exper. 35(2), 159-188 (2005)

7. Hackbusch, W.: Numerical tensor calculus. Acta Numer. 23, 651-742 (2014)

8. Harrison, A.P., Joseph, D.: Numeric tensor framework: exploiting and extending
einstein notation. J. Comput. Sci. 16, 128-139 (2016)

9. Kolda, T.G., Sun, J.: Scalable tensor decompositions for multi-aspect data mining.
In: Proceedings of the 8th IEEE International Conference on Data Mining, pp.
363-372. IEEE, Washington (2008)

10. Lim, L.H.: Tensors and hypermatrices. In: Hogben, L. (ed.) Handbook of Linear
Algebra, 2nd edn. Chapman and Hall, New York (2017)

11. Liu, Y.A., Stoller, S.D.: From recursion to iteration: what are the optimizations?
ACM SIGPLAN Not. 34(11), 73-82 (1999)

12. Savas, B., Eldén, L.: Handwritten digit classification using higher order singular
value decomposition. Pattern Recogn. 40(3), 993-1003 (2007)

13. Suter, S.K., Makhynia, M., Pajarola, R.: Tamresh - tensor approximation multires-
olution hierarchy for interactive volume visualization. In: Proceedings of the 15th
Furographics Conference on Visualization, EuroVis 2013, pp. 151-160. Eurograph-
ics Association (2013)

14. Veldhuizen, T.L.: Arrays in blitz++. In: Caromel, D., Oldehoeft, R.R., Thol-
burn, M. (eds.) ISCOPE 1998. LNCS, vol. 1505, pp. 223-230. Springer, Heidelberg
(1998). https://doi.org/10.1007/3-540-49372-7 24

15. Ward, M.P., Bennett, K.H.: Recursion removal/introduction by formal transfor-
mation: an aid to program development and program comprehension. Comput. J.
42(8), 650-650 (1999)

https://doi.org/10.1007/3-540-49372-7_24

	Fast Higher-Order Functions for Tensor Calculus with Tensors and Subtensors
	1 Introduction
	2 Related Work
	3 Notation
	4 Methodology and Experimental Setup
	5 Baseline Algorithms
	5.1 Recursive Multi-index Algorithm multi-index-rec
	5.2 Iterative Multi-index Algorithm multi-index-iter
	5.3 Single-Index Algorithm single-index

	6 Optimizing the Multi-index Algorithm
	6.1 Reducing Index Computation {minindex}
	6.2 Preserving Data Locality
	6.3 Reducing Recursive Function Calls {inline}
	6.4 Data- and Thread-Parallelization {parallel,stream}

	7 Results and Discussion
	8 Conclusion and Future Work
	References

