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Abstract. In this paper, a deep neural network is used to model the
signed distance function (SDF) of a rigid object for real-time tracking
using a single depth camera. By leveraging the generalization capability
of the neural network, we could better represent the model of the object
implicitly. With the training stage done off-line, our proposed methods
are capable of real-time performance and running as fast as 1.29 ms per
frame on one CPU core, which is suitable for applications with limited
hardware capabilities. Furthermore, the memory footprint of our trained
SDF-Net for an object is less than 10 kilobytes. A quantitative com-
parison using public dataset is being carried out and our approach is
comparable with the state-of-the-arts. The methods are also tested on
actual depth records to evaluate their performance in real-life scenarios.
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1 Introduction

The tracking of a rigid object in 3D can be characterized as a problem of esti-
mating the six degrees of freedom (6-DOF) trajectory of an object as it moves
around a scene. Rigid object tracking is a useful tool in various applications
such as augmented reality in which a user interacts with an object, or industrial
automation in which a robot manipulates an assembly part. There are multiple
approaches to achieve 3D tracking such as the use of inertial sensors or fiducial
markers attached to the object. However, the readings of inertial sensors may
drift with time and the marker-based approach can be intrusive. To overcome
those limitations, vision-based tracking offers solutions that are non-invasive,
practical, and cheap [15].

Since the introduction of commodity depth cameras, the availability of depth
data extends RGB tracking methods by utilizing depth information in particle
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filter algorithm [5,14], Gaussian filter algorithm [8], and also the well-established
Iterative Closest Point (ICP) algorithm [3,30]. The ICP aims to find the best
pose estimate to minimize the distance between two sets of depth data and while
there are several variants of ICP with more efficient and robust solutions [23],
the main process of searching for point correspondences can be computationally
expensive and error-prone.

Thus, to avoid the time-consuming point-to-point correspondence search,
depth data could be modelled implicitly to allow point-to-model distance mini-
mization [21]. For example, a minimal set of primitive shapes is used to model
a simple industrial part [26], but for a more complex model, implicit functions
such as implicit B-Spline can be employed to provide a richer data representa-
tion for a better registration [22]. The signed distance function (SDF) is another
representation that implicitly encodes 3D surfaces and can be used directly to
define a cost function for accurate registration [4]. As such, SDF has been applied
in recent works on scene reconstruction [12,25] and rigid object tracking [19].
The SDF of basic geometric shapes such as spheres, cubes, and ellipsoids can be
represented implicitly. For example, the SDF of a sphere of radius r centred at
the origin can be written using the implicit expression

√
x2 + y2 + z2 − r.

However, the SDF of more complex shapes are much more difficult to define
and are thus often represented as sampled volumes [6]. To obtain a continuous
representation of a complex object surface, there are a few works that incorporate
machine learning techniques. For instance, Radial Basis Function (RBF) neural
network can be used to classify a 3D point into three classes, namely internal,
on-surface, and external [17]. To date, the use of a multi-layer neural network to
model the SDF of an object has only been done for brain structures segmentation
[9]. To the best of our knowledge, our work is the first to model the SDF of an
object using a deep neural network for object tracking purpose.

Recently, learning-based methods have revolutionized many areas of com-
puter vision including object tracking. Since Tan and Ilic [27] have proposed
a random-forest-based method to regress the movement of the object from the
change in the observed point cloud, several improvements [1,28,29] have been
made to advance the state-of-the-arts in temporal 3D object tracking without
GPU. On the other hand, Garon and Lalonde [7] claimed to develop the first
end-to-end deep learning for temporal object tracking. However, it needs GPU
for real-time tracking due to the large network size.

The contribution of this paper is the adoption of a learning-based method
to train a deep neural network, which we term as SDF-Net, to approximate
the SDF of an object. In addition, we also propose two methods to utilise the
trained SDF-Net for rigid object tracking. Furthermore, a quantitative compar-
ison on a public dataset is carried out to compare our approach against the
state-of-the-arts. Our methods are also tested with real depth data from two dif-
ferent commodity depth cameras to demonstrate the real-time object tracking
capability in different scenarios.

This paper is organized as follows. Section 2 details the methodology to train
a deep neural network that models the SDF of an object and the two different
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ways to use the network for object tracking. Section 3 outlines the evaluation
methods and Sect. 4 discusses the results. Finally, Sect. 5 presents the conclusion,
as well as the limitation and future work.

2 Method

Our goal is to estimate the current 6-DOF pose θt, which contains an orientation
Rt and a translation t t, of the given object in the camera reference frame {C}.

A depth camera is used to provide a sequence of depth images. For each
depth frame, the following inputs are used in our method:

1. The depth image of the current frame t and the previous frame t − 1.
2. Pose estimation results from the previous frames (θt−h, ..., θt−1) where h > 1

Also, the method has access to the camera intrinsic parameters and the
triangular mesh model of the target object in the object reference frame {H}.

2.1 Method Overview

The SDF of an object is simply a function that takes a 3D point p and returns a
signed Euclidean distance to the closest point on the object surface. In this paper,
the signed distance is defined to be negative when p is inside the object, and
positive when p is outside the object. The intuition behind our fitting approaches
is to use SDF in a form of trained neural network to guide the pose update in
moving sampled points from the observation towards zero signed distance value.

Our method can be divided into two stages. The first stage is to prepare
an approximation of the SDF of the object by training a neural network, while
the second stage utilizes the network for pixel sampling and pose tracking. Two
different methods of pose tracking are proposed. The first method is based on
the conventional ICP approach with an adaptation at the correspondence search.
The second method is based on an optimization approach. Both methods share
the same sparse sampling mechanism which is designed to increase the robustness
of tracking when there is an occlusion. Nonetheless, both methods depend heavily
on the quality of learned SDF-Net.

2.2 Building a Signed Distance Network

Training Data Preparation. The 3D model of the object to be tracked is
translated to make its centroid stays at the origin. To facilitate the learning pro-
cess, the model is scaled with a scaling factor s = 1/d, where d is the maximum
diameter of the object; one unit in this scaled world {S} is equivalent to d.

Three sets of 100,000 points, namely AI , AS and AO, are sampled from the
region inside the object, on the surface, and outside the object respectively. The
points in AO are only sampled from the space outside object up to 1.5 units
from the surface. The space is divided equally into 100 sections with a thickness
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of 0.015 units each. One thousand points are then randomly sampled from each
section to ensure that the training data obtained in AO are evenly distributed.

Let K : R
3 �→ R

3 maps a 3D position to the closest point on the object
surface and Φ′ : R3 �→ R

3 be the expected gradient that returns a unit direction,
which points towards the closest point on the surface when the input lies inside
the object. In contrast, the direction will point away from the closest point on the
surface if the input falls outside the object. All the associated expected gradients
and closest surface mapping at all points in AI and AO are pre-calculated.

Network Structure. Our neural network has three input nodes for a 3D posi-
tion and one output node for the signed distance. The hidden layers are fully-
connected. All the hidden nodes use tanh activation function, except for the
output node which uses linear activation function.

In this study, two different diamond-shaped networks are tested. Network A
is a smaller network with 10 hidden layers, while network B is a bigger network
with 12 hidden layers. The number of nodes in all layers are 3-6-9-12-15-18-
15-12-9-6-3-1 for network A and 3-6-9-12-15-18-21-18-15-12-9-6-3-1 for network
B, with total tunable parameters of 1,369 and 2,162 respectively. The diamond
structure allows a gradual projection of the 3D data to a higher dimensional
space before being slowly reduced to one dimension. Given the same number of
tunable parameters, shallower networks with equal numbers of hidden nodes for
all layers seems to be less effective in learning.

Cost Function. Let Θ represent all weights and biases of a target network.
Function NΘ : R3 �→ R does a feed-forwarding that maps a 3D position (input
layer) to a single number at the output node. Function NΘ

′ : R3 �→ R
3 maps a

3D position to the gradient of NΘ at that spot. The cost function is defined as:

Cost(Θ) =
( 1000

s2|AS |
∑

pi∈AS

NΘ(pi)
2
)

+
( 1000

s|AO|
∑

pi∈AO

max(0,−NΘ(pi))
)

+
( 1000

s|AI |
∑

pi∈AI

max(0, NΘ(pi))
)

+
( 1

|AI | + |AO|
∑

pi∈AI∪AO

‖NΘ
′(pi) − Φ′(pi)‖ + ‖NΘ

′(K(pi)) − Φ′(pi)‖
)

(1)
The first (SurfaceDistancePenalty) term penalizes the network when some out-
puts at surface points deviate from zero. The second term penalizes the network
when some outputs at outsider points are negative. The third term penalizes the
network when some outputs at insider points are positive. Since the gradient is
applied directly in our tracking methods, it is also considered in the training.
Thus, the last (GradientPenalty) term is introduced to penalize the deviation
of gradient from the expectation. This term also applies gradient constraints on
the object surface using the same expected gradient from its correspondence.
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All the weights and biases (Θ) are trained to minimize the cost function in
Eq. 1. The training is done on TensorFlow using ADAM optimizer [13] with a
learning rate of 0.001 for 100,000 iterations.

Notation. After the training, the network is ready to be used in the scaled
reference frame {S}. To make the notation more compact, the network is aug-
mented so that it can work in the object reference frame {H} and output the
signed distance that relates to the real world scale. We define our learned signed
distance function D : R3 �→ R and its gradient function G : R3 �→ R

3 as

D(Hp) = NΘ(s · Hp)/s and G(Hp) = N ′
Θ(s · Hp) (2)

given that Hp is the input position in the object reference frame {H}. The
function D and G are implemented in a closed-form using the standard feed-
forwarding and back-propagation algorithm. This technique allows the compu-
tation to be vectorised and to run efficiently on a CPU with SIMD capability.

The state of orientation Rt and translation t t represents the transformation
of the object with respect to the camera reference frame at time t:

Cp = Rt Hp + tt (3)

2.3 Current Frame Pose Prediction

At the current frame t, when the θt is not yet calculated, the predicted pose
θ̂t will be calculated using a short series of pose estimation results from the
previous frames (θt−h, ..., θt−1). The predicted translation t̂ t and the predicted
orientation R̂t are calculated independently. For translation, a weighted linear
regression is used to extrapolate t̂ t with weights v1, ..., vh. For orientation, all
the past orientations are expressed in quaternions. Then, we predict the current
orientation q̂t with the following equation:

q̂t = ϑ
( h−1∑

i=1

wi · (qt−1 × (σt−2(t − 1 − i, t − 1))−1 × qt−1)
)

(4)

given that σc(a, b) is a quaternion spherical linear interpolation (Slerp) between
qa and qb at frame c. The function ϑ(·) represents quaternion normalization. The
weights v1, ..., vh and w1, ..., wh−1 allow the adjustment of the responsiveness of
the prediction. An incremental geometric series 2i−1, with i = 1, 2, . . . , h, is used
for both weight series.

2.4 Object Pixel Sampling

Among all the depth pixels in the current frame, a number of pixels will be
sampled and used in object tracking. If a few non-object pixels are sampled to
fit with the object, it could reduce the tracking accuracy and lead to a loss of
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tracking eventually. Therefore, it is important to ensure that all the pixels used
are sampled from the object surface.

As the pose estimation from the previous frame (θt−1 = [Rt−1,t t−1]) is
known, we can transform the 3D associated position of every pixel (from the
previous frame) into the object reference frame and use the learned SDF to clas-
sify whether the pixel belongs to the tracked object. If D(RT

t−1(Cpi − t t−1)) is
less than a small positive value (e.g. 0.004 m), the pixel i of previous frame will
be classified as object surface. Otherwise, it will be classified as non-object.

To accelerate this process, we introduce a classification interval k. Then, we
only consider pixels every k-th row and k-th column with distance from t t−1

less than the maximum object radius ro. All the classified object and non-object
points are kept in the object reference frame as Hpi = RT

t−1(Cpi − t t−1).
In the current frame t, the collected non-object points Hpi from the previous

frame will be transformed by the previous pose θt−1 and the predicted pose
θ̂t separately to represent both non-object points from the previous frame and
predicted non-object points in the current frame. The transformed points are
then projected onto the image plane. When a transformed non-object point is
projected to a pixel, that pixel and its neighbor within Chebyshev distance of k
will record the shallowest depth from all non-object projections. All these records
can be considered as potential occluders, meaning that any point in the volume
behind them should not be sampled.

Then, the collected object points from the previous frame will be transformed
by θt−1 and θ̂t and then projected to the depth image. If the projected depth
is at least 10 cm shallower than the occluder at that pixel and if the current
observed depth is within 5 cm from the projected depth, we consider that pixel
to be safe to sample. Among those survivals, m pixels will be sampled randomly.

The rationale of this method is to cover both static occlusions and those
which move together with the object such as hand and fingers. Therefore, θt−1

and θ̂t are used to represent the two kinds of occlusions. Moreover, the expansion
of the occlusions after projection will give some margins for the error in pose
prediction and unpredicted movements of those occlusions.

2.5 ICP-Based Fitting Approach

This approach is similar to the well-established ICP except for the correspon-
dence searching step. Instead of finding the exact closest point on the object
surface, the trained SDF is used to infer the correspondence. The latest state of
the pose θ̃ = [R̃, t̃ ], initialized as θ̃ := [Rt−1, t̂ t], will be updated iteratively until
a stopping condition is met.

Pseudo-Correspondence Inference. Given Hpi = R̃T (Cpi − t̃), with i =
1, 2, . . . ,m, as the transformed sampled 3D points from Sect. 2.4 using the latest
state of the pose θ̃, their correspondences will be

Hei = Hpi − D(Hpi) · N (G(Hpi)) (5)

where N (·) is the vector normalization.
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Pose Update. Let Hcp be the centroid location calculated from all Hpi and
Hce be the centroid location calculated from all Hei . The optimal orientation
ΔR can be found by minimizing the sum of pair-wise distances:

E(ΔR) =
m∑

i=1

‖(Hce + ΔR(Hpi − Hcp)) − Hei‖2. (6)

Let P be a matrix whose i-th column is a vector Hpi − Hcp and Q be a matrix
whose i-th column is a vector Hei − Hce. E is minimized by performing a
singular value decomposition (SVD) to the cross-covariance matrix M = PQ�

which results in M = UWV �. The rotation matrix is obtained from ΔR = V U�.
As a consequence, the optimal translation will be Δt = Hce − ΔR Hcp.

While ΔR and Δt moves the sampled observation points to fit with the
signed distance field in the object reference frame, the state R̃ and t̃ perform
the opposite. Therefore, an inversion will be applied to update the parameters
in the following order:

t̃ := t̃ − R̃Δt then R̃ := R̃(ΔR)T (7)

Stopping Condition. The iteration will stop when the number of iterations
has reached nmax or the update is small. For the latter criterion, we set the
condition to be (3 − Trace(ΔR))/3 < 10−6 and Δt < 10−5. Then, the latest
state will be assigned to the final pose estimation θt := θ̃.

2.6 Optimization-Based Fitting Approach

Cost Function. This approach makes use of an optimization algorithm to per-
form the fitting for current frame t. In our application, the Levenberg-Marquardt
algorithm (LM) is used to minimize a cost function defined as

F (ΔR,Δt) =
m∑

i=1

D
(
ΔRR̃�[

Cpi − (t̃ + Δt)
])2

(8)

where ΔR and Δt are the changes of orientation and translation respectively,
and m is the number of sampled points used in the optimization.

In contrast to Sect. 2.5, the current state θ̃ = [R̃, t̃ ] is initialized as θ̃ :=
[Rt−1, t t−1], while ΔR and Δt are initialized to be the identity rotation and the
zero vector respectively.

Formulation of Jacobian. For the cost function in Eq. 8, the rotation ΔR is
represented using a quaternion q = w + xî + yĵ + zk̂.

Given that ω = [x y z]�, a point p rotated by the quaternion q is

protated = p + 2w(ω × p) + 2[ω × (ω × p)] (9)



SDF-Net: An Object Tracking Using a Deep Signed Distance Network 35

For each point Cpi, we define p ′
i = R̃�[

Cpi − (t̃ + Δt)
]
, Di = D(ΔRp ′

i) and
Gi = G(ΔRp ′

i). The Jacobian J can be derived as follow:
(

∂F

∂Δt

)

i

= −G�
i (ΔRR̃�) (10)

(
∂F

∂w

)

i

= 2G�
i

(
[ω]×p ′

i

)
(11)

(
∂F

∂v

)

i

= 2G�
i

[(
w[ev ]× + [ev ]×[ω]× + [ω]×[ev ]×

)
p ′

i

]
(12)

where v ∈ {x, y, z}, ev are the respective standard basis vectors, and [·]× repre-
sents the skew symmetric matrix.

When ΔR and Δt are the identity rotation and the zero vector respectively,
we have p ′

i = R̃(Cpi − t̃) and the Jacobian calculations are simplified to
(

∂F

∂Δt

)

i

= −G�
i R̃�,

(
∂F

∂w

)

i

= 0,

(
∂F

∂v

)

i

= 2G�
i

(
[ev ]×p ′

i

)
(13)

Pose Update. The change in pose parameters δ is computed from
[
J�J + λK

]
δ = J�r (14)

where r = −[D1 D2 . . . Dm]�, λ is the damping factor of the optimization. K
can be chosen as the identity matrix or diag

(
J�J

)
.

Adding the respective components of δ to the zero translation and the iden-
tity quaternion, we have Δt = [Δtx Δty Δtz]� and Δq = 1 + Δxî + Δyĵ + Δzk̂,
where the latter is normalizedbefore being converted to the rotation matrix ΔR.

The current pose R̃ and t̃ are updated with R̃ := R̃(ΔR)� and t̃ := t̃ + Δt .
The terms ΔR and Δt are always reset to the identity rotation and the zero
vector for the next iteration.

The optimization process is iterated until the cost function (Eq. 8), its change,
or the magnitude of δ falls below their respective thresholds, or the number of
iterations has reached nmax.

3 Evaluation

3.1 Quantitative Evaluation

Our proposed method is evaluated using synthetic dataset from Choi and Chris-
tensen [5] which consists of four RGB-D sequences with ground truth object
trajectories. The parameters used in the ICP-based method are m = 50, k = 5,
and nmax = 20. The parameters used in the LM-based method are m = 30,
k = 11, λinit = 0.1, λscaling = 2, nmax = 20, and K = I. The pose is initialized
using the ground truth in the first frame for each sequence. The algorithms are
run on a single CPU thread on Intel Core i7-4770 @ 3.4 GHz.
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3.2 Qualitative Evaluation

The tracking methods are tested on two different real objects, namely the Stan-
ford Bunny and a detergent bottle. The bunny is 3D-printed using the mesh
model obtained from the Stanford 3D Scanning Repository [16]. Meanwhile, the
detergent bottle is scanned using Microsoft Kinect V2 and 3D Scan software. In
the evaluation, we demonstrate our dynamic tracking with occlusions by nearby
objects and by the hand holding the object. We have also tested the algorithms
on two types of depth cameras: Intel RealSense SR300 that uses a structured-
light sensor and Microsoft Kinect V2 that uses a time-of-flight (ToF) sensor.

4 Results and Discussion

4.1 The Trained Networks

Multiple Stages in the Training. All the networks, despite the random-
ized weight initializations, have evolved automatically through a few stages in a
surprisingly systematic way. During the initial few thousands of iterations, the
network would flatten the value of the output node to a very small value as it
tries to satisfy the SurfaceDistancePenalty term in Eq. 1. As a side effect, all the
gradient magnitudes in the whole volume would be almost close to zero. Most of
the gradient errors in the GradientPenalty term will stay slightly below one as
we expect all the gradients to have a magnitude of one. Next, the network will
slowly shape the terrain to satisfy the GradientPenalty term while the surface
points are already loosely nailed at the near zero output value.

Single Point Convergence. To verify that the SDF-Net and its gradient can
be used to guide any point in the surrounding region towards the object surface,
we try to reconstruct the surface using random points sampled from the region.
Each point will get updated by p := p − 0.01G(p) · sign(D(p)) iteratively until
D(p) passes a zero-crossing point. Then, the zero-crossing position is linearly
interpolated from the two latest positions. The estimated zero-crossing points
are collectively shown in Fig. 1. All the random points are able to converge on
the surface in a virtually straight trajectory without being trapped in any local
minimum. Refer to the interactive results in the supplementary materials [10].

Surface Smoothing Error. One inherent nature of the neural network is to
smooth out noises in its training data. Thus, some small regions on the object
surface may not be modelled accurately, especially protruding volumes such as
the corner of a box or a deep concave surface that is too small. As they are small
relative to the whole surface area, it should not largely affect the tracking.



SDF-Net: An Object Tracking Using a Deep Signed Distance Network 37

Fig. 1. Convergence of random points. Grey cloud: points on the actual model surface.
Red cloud: points converged from random positions. Green lines: some examples of
point travelling paths from a random position to the surface. 3D interactive interface
of all trained network can be found in the supplementary repository [10]. (Color figure
online)

4.2 Object Tracking

Quantitative Results. For the ICP-based method, we obtain the best average
accuracy with a 0.85 mm translation error and a 0.27◦ orientation error with an
average processing time of 5.11 ms. The accuracy is better than the LM-based
method, which has average accuracies of 0.93 mm and 0.48◦ for translation and
rotation errors respectively. However, the LM-based method runs at a faster rate
of 1.29 ms. In terms of memory usage, our method requires the least memory
footprint among the state-of-the-arts at 9 kB or lower if a smaller network is
used.

Among the methods that can run at sub-degree accuracy with a real-time
speed on CPU, most of them [1,28,29] are developed on a decision-forest-based
regression method [27]. Some methods are learning-free [11,20] but developed
on a well-established PWP3D method [18] which relies heavily on the colour
data. Our new branch of methods has reached the similar level of accuracy and
calculation time on one CPU core without relying on any decision forest or
colour-based method. Refer to Table 1 for detailed results.

According to Table 1, the translation errors perpendicular to the optical axis
(tx and ty) are 2–3 times larger than the translation errors along the depth axis
(tz) in our methods and in Tan et al.’s method [29]. However, the drifts (tx
and ty) are minimized in Tan et al.’s later method [28] as they utilise colour to
extract edge points, which constrain the whole model from sliding along the plane
perpendicular to the optical axis; hence, the overall error is reduced significantly.
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Fig. 2. (a) An example of fitting results from the dataset [5] with partial occlusion.
(b–g) Examples of post-fitting segmentation of objects with occlusions; green and red
regions represent pixels classified as object and non-object points respectively. (g–h)
When the object is lifted abruptly, the tracking fails as the predicted pose θ̂ lags
behind the actual observation, causing the failure in sampling some key features, e.g.
the handle of the detergent, that are critical in determining the object pose. (Color
figure online)

The comparison between the ICP-based and the LM-based methods is pre-
sented in Table 2. The LM-based method is found to take much lesser time when
compared with the ICP-method. This is because of the fast convergence rate
due to the low damping factor λ, which results in lower iteration count. In addi-
tion, a sparser classification interval k and a lower number of sampled points
m are used. This configuration greatly reduces the computational time without
compromising much accuracy.

Table 2 also compares the result from the small and the large neural network.
As expected, network B with more memory capacity has a better overall accuracy
but requires additional 20% of calculation time when compared with network A.

In terms of memory footprint, our representation is the most compact, with
6 kB and 9 kB for the network A and B respectively. With this size, a discrete
representation of SDF can only represent a crude model of the surface.

Qualitative Results. The results show that the object remains tracked even
when more than half of it is occluded (Fig. 2b, f). Also, our methods are able to
track the object when it is toppled and thrown (Fig. 2d). Videos of our tracking
results can be found in the supplementary repository [10].

When the object is static, the fitted model generally shows slight jitter when
the ICP-based method is used; this is less likely to be seen for the LM-based
method. This is because the LM algorithm always verifies if a particular update
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Table 1. Benchmark comparison of the RMS errors in translation (mm), orientation
(degree) and the runtime (ms) on a synthetic dataset [5]. The required memory foot-
prints used to store pre-calculated content are approximated. The results from our two
methods, ICP-based and LM-based, are from the bigger network B.

Errors PCL
[24]

C&C
[5]

Krull
[14]

Tan’15
[29]

Kehl
[11]

S.A
[2]

Tan’17
[28]

Ours

ICP LM

Kinect
box

tx 43.99 1.84 0.83 1.54 0.76 0.30 0.15 1.27 1.12

ty 42.51 2.23 1.67 1.90 1.09 0.49 0.19 1.22 1.81

tz 55.89 1.36 0.79 0.34 0.38 0.31 0.09 0.50 0.56

Roll 7.62 6.41 1.11 0.42 0.17 0.21 0.09 0.16 0.16

Pitch 1.87 0.76 0.55 0.22 0.18 0.27 0.06 0.17 0.30

Yaw 8.31 6.32 1.04 0.68 0.20 0.23 0.04 0.10 0.17

Time 4539 166 143 1.5 8.10 1.71 2.2 5.62 1.37

Milk tx 13.38 0.93 0.51 1.23 0.64 0.63 0.09 0.98 1.01

ty 31.45 1.94 1.27 0.74 0.59 1.19 0.11 0.80 0.76

tz 26.09 1.09 0.62 0.24 0.24 0.48 0.08 0.32 0.36

Roll 59.37 3.83 2.19 0.50 0.41 0.19 0.07 0.20 0.34

Pitch 19.58 1.41 1.44 0.28 0.29 0.28 0.09 0.27 0.76

Yaw 75.03 3.26 1.90 0.46 0.42 0.27 0.06 0.15 0.22

Time 2205 134 135 1.5 8.54 1.70 2.1 4.99 1.26

Orange
juice

tx 2.53 0.96 0.52 1.10 0.50 0.39 0.11 1.12 1.15

ty 2.20 1.44 0.74 0.94 0.69 0.37 0.09 0.88 0.96

tz 1.91 1.17 0.63 0.18 0.17 0.37 0.09 0.67 0.67

Roll 85.81 1.32 1.28 0.35 0.12 0.12 0.08 0.41 0.44

Pitch 42.12 0.75 1.08 0.24 0.20 0.17 0.08 0.25 0.65

Yaw 46.37 1.39 1.20 0.37 0.19 0.15 0.08 0.39 0.65

Time 1637 117 129 1.5 8.79 1.69 2.2 4.79 1.25

Tide tx 1.46 0.83 0.69 0.73 0.34 0.42 0.08 0.99 1.01

ty 2.25 1.37 0.81 0.56 0.49 0.51 0.09 1.03 1.05

tz 0.92 1.20 0.81 0.24 0.18 0.64 0.07 0.28 0.30

Roll 5.15 1.78 2.10 0.31 0.15 0.22 0.05 0.09 0.24

Pitch 2.13 1.09 1.38 0.25 0.39 0.29 0.12 0.54 1.03

Yaw 2.98 1.13 1.27 0.34 0.37 0.30 0.05 0.13 0.34

Time 2762 111 116 1.5 9.42 1.70 2.2 5.04 1.30

Mean Transl 18.72 1.36 0.82 0.81 0.51 0.50 0.10 0.85 0.93

Rot. 29.70 2.45 1.38 0.37 0.26 0.22 0.07 0.27 0.48

Time 2786 132 131 1.5 8.71 1.7 2.2 5.11 1.29

Requires Memory - - - 7.4 MB 10MB 123 kB 13 MB 9 kB

GPU - � � - - - - -

Colour � � � - � - � -

Depth � � � � � � � �



40 P. Jatesiktat et al.

Table 2. Comparison of our methods using two different networks on the synthetic
dataset [5]. Note that the translation and orientation errors in this table are different
from those in Table 1; we use the Euclidean distance and the angle difference between
the estimated and the ground truth orientation to compute the errors as these measures
are invariant under coordinate transformation.

Network ICP-based method LM-based method

A (smaller) B (bigger) A (smaller) B (bigger)

Average translation error (mm) 1.62 1.49 1.70 1.55

Maximum translation error (mm) 15.75 4.82 10.02 8.27

Average orientation error (deg) 0.43 0.33 0.77 0.74

Maximum orientation error (deg) 3.59 3.06 6.80 4.30

Average number of iterations 13.84 12.89 2.32 2.05

Calculation time per frame (ms) 4.03 5.11 1.11 1.29

will lower the cost function (Eq. 8), making it tend to stay at its pose from the
previous frame; this feature is not present in the ICP-based method.

The comparison between the tracking results on both short-ranged and long-
ranged cameras shows that the latter generally yields sub-par performance. This
is mainly due to a larger depth error at far distance together with the multi-path
effect which only occurs in ToF camera.

After the fitting process is done in each frame, as a by-product, SDF-Net can
be used to differentiate object and non-object pixels without the use of colour.
Hands and fingers on the object are also segmented out (Fig. 2c, f). This feature
could be useful in hand tracking applications with object interaction.

5 Conclusion and Future Work

We have shown that a deep neural network trained with our proposed method
could be used to learn an approximation of an object SDF which is accurate
enough for object tracking purpose. Our results have been shown to reach up to
sub-millimeter and sub-degree accuracy when evaluated on a public dataset. The
real-time capability of our rigid object tracking method has been demonstrated
using depth data from commodity depth cameras and the algorithm could run
on a single CPU thread.

As the proposed tracking method works by finding the transformation param-
eters between consecutive frames, the initial pose of the object must be provided.
Also, in case of tracking loss, the object pose has to be reinitialized manually.
Hence, initialization and detection of the object in real-time are to be investi-
gated in the future.
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