
DomainObserver: A Lightweight Solution
for Detecting Malicious Domains Based

on Dynamic Time Warping

Guolin Tan1,2, Peng Zhang2(B), Qingyun Liu2, Xinran Liu3, and Chunge Zhu3

1 Institute of Information Engineering, Chinese Academy of Sciences, Beijing, China
tanguolin@iie.ac.cn

2 School of Cyber Security, University of Chinese Academy of Sciences,
Beijing, China

pengzhang@iie.ac.cn
3 National Computer Network Emergency Response and Coordination Center,

Beijing, China

Abstract. People use the Internet to shop, access information and enjoy
entertainment by browsing web sites. At the same time, cyber-criminals
operate malicious domains to spread illegal content, which poses a great
risk to the security of cyberspace. Therefore, it is of great importance to
detect malicious domains in the field of cyberspace security. Typically,
there are broad research focusing on detecting malicious domains either
by blacklist or learning the features. However, the former is infeasible
due to its unpredictability of unknown malicious domains, and the later
requires complex feature engineering. Different from most of previous
methods, in this paper, we propose a novel lightweight solution named
DomainObserver to detect malicious domains. Our technique of Domain-
Observer is based on dynamic time warping that is used to better align
the time series. To the best of our knowledge, it is a new trial to apply
passive traffic measurements and time series data mining to malicious
domain detection. Extensive experiments on real datasets are performed
to demonstrate the effectiveness of our proposed method.

Keywords: Malicious domain · Detection · Passive traffic
Time series · Dynamic time warping

1 Introduction

The domain plays an important role in the operation of the Internet by providing
convenience to identify Internet resources, such as computers, networks, and
services. At the same time, cyber-criminals operate malicious domains to spread
illegal information (phishing, malware, fraud and adult content, etc.). It is noted
that close to one-third of all websites are potentially malicious in nature [16]. To
make things worse, new malicious domains emerge on the Internet in endlessly.

c© Springer International Publishing AG, part of Springer Nature 2018
Y. Shi et al. (Eds.): ICCS 2018, LNCS 10860, pp. 208–220, 2018.
https://doi.org/10.1007/978-3-319-93698-7_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-93698-7_16&domain=pdf

DomainObserver: A Lightweight Solution for Detecting Malicious Domains 209

To provide a safe Internet environment for the vast number of Internet users,
there are extensive research focusing on detecting malicious domains. Although
a variety of methods have been applied to the problem of malicious domain
detection with some successes, it is still very challenging for the reason that the
patterns of malicious domains can be evolved by the adversaries to avoid being
detected. Therefore, it is of great importance to discover the inherent patterns
of malicious domains from the perspective of passive traffic measurements.

The passive traffic measurement is the process of measuring the amount
and type of traffic on a particular network, which can help network operators
better understand the properties of traffic. By using the passive measurement
techniques, we can observe and reveal the inherent access patterns of domains.
Moreover, this passive observation has the advantage that the cyber-criminals
have no means to hide or change the access patterns of domains.

In this paper, we propose a novel lightweight solution, i.e., DomainObserver,
to detect malicious domains. The highlight of our solution is that DomainOb-
server is based on dynamic time warping that is used to better align the time
series. As far as we know, it is a new trial to apply passive traffic measurements
and time series data mining to detect malicious domains.

To that end, the primary contributions of this paper are as follows:

1. First, we carefully observe and study the access patterns between Internet
users and domains based on passive traffic measurements. This observation
has the advantage that the cyber-criminals have no means to hide or change
the patterns that we find in passive traffic measurements.

2. Based on the above analysis, we propose a novel lightweight method, i.e.,
DomainObserver, to detect malicious domains, which does not require constant
crowd updates or complex feature engineering. To the best of our knowledge,
no prior work in the literature applies this method to detect malicious domains.

3. Third, we evaluate our solution on real datasets collected from backbone net-
works. Experiment results show that DomainObserver is effective by achieving
83.14% accuracy and 87.11% F1 score in the detection of malicious domains.

The rest of the paper is organized as follows. In the next section, we review the
related work. In Sect. 3, we describes the time series datasets collected by using
passive traffic measurements. Section 4 introduces the classification model based
on time series data mining. We evaluate our approach on real world datasets in
Sect. 5. Finally we conclude our work in Sect. 6.

2 Related Work

In the past few decades, the problem of malicious domain detection has been
extensively studied. Much of these techniques can be broadly divided into
two categories: (1) based on crowd-generated blacklists [2,11,20], (2) based on
machine learning [5,10,13,17,19].

Generally, the typical methods based on blacklist are simple and efficient.
However, the number of malicious domains drastically increased over time, which

210 G. Tan et al.

requires constant updates generated by crowd. Moreover, it is almost impossible
to maintain an exhaustive blacklist of malicious domains [16]. That is to say,
these methods cannot predict newly registered malicious domains. In order to
overcome these shortcomings, researchers proposed methods based on machine
learning to detect malicious domains, which requires complex feature engineering
to obtain discriminative features.

In [10], the authors proposes a method for identifying the C&C domains by
using supervised machine learning and the feature points obtained from WHOIS
and the DNS. To ensure the effectiveness of a URL blacklist, the authors of [17]
proposes a framework called automatic blacklist generator (AutoBLG) that auto-
matically expands the blacklist using passive DNS database and web crawler.
[13] employs visible attributes collected from social networks to classify mali-
cious short URLs on Twitter. The work of [19] presents a new deep learning
framework (SdA) for detection of malicious JavaScript codes. In this method,
480 features are extracted from the JavaScript code. In a nutshell, all of these
machine learning methods either need to extract complex features or require
preconditions and specific data input.

The benefit from using our solution (DomainObserver) as opposed to existing
methods is the fact that, our solution is not only more comprehensive in detecting
a variety of malicious domains, but also more lightweight that does not require
specific data input or complex feature engineering. The comparison is as shown
in Table 1

Table 1. Qualitative comparison of existing work and our solutions.

Types of malicious Feature engineering Data collection

AutoBLG Unlimited Yes Active and passive

SdA JavaScript Yes active

DomainObserver Unlimited No Passive

3 Passive Traffic Measurements

To discover the different access patterns between benign and malicious domains,
we tracked and studied the passive network traffic of thousands of the most
popular domains. In this section, we first introduce the domain dataset that
we collect from multiple reliable sources. Then we describe the time series data
collected from backbone networks based on passive traffic measurements. Finally,
we demonstrate how they can be used to detect interesting, anomalous domain
access patterns.

3.1 Domain Dataset

As a starting point for our times series data collection we first construct domain
dataset from multiple reliable sources. We used the Alexa top 20,000 global

DomainObserver: A Lightweight Solution for Detecting Malicious Domains 211

sites [1] as the whitelist. For malicious domains we extensively investigated
many blacklists of various malicious domains, such as malwaredomains.com [11],
Antivirus [2] and Phishtank [14], etc. It is worth mentioning that we are conser-
vative when constructing the domain dataset, since the ground truth has a great
impact on the performance of the classifier. In order to determine whether the
domain we collected is really malicious, for each domain, we validate it multiple
times using different third-party platforms, such as 360 Fraud Reporting [15],
Baidu Website Security Center [3]. Table 2 shows the verification results using
[3]. Finally, we identified 1402 malicious domains and 1813 benign domains as
the seed dataset.

Table 2. Verification results of Alexa top 20,000 domains using Baidu Website Security
Center only.

Type # of domains Results

1 84 Fraud

2 5 Malware

3 196 Adult

4 23 Gambling

5 9509 Benign

6 10183 Unknown

3.2 Time Series Data

A time series is a series of data points indexed in time order. In the last decade,
data mining of time series has attracted significant interest, due to the fact
that time series data are present in a wide range of real-life fields [9]. In this
paper, we combined passive traffic measurements and time series data mining to
detect malicious domains. We categorize the collected time series data as three
types: access, users and entropy, which will be explained later. According to our
experimental evaluation, these data with high discriminative ability are sufficient
to achieve a highly accurate classifier for malicious domain detection.

Passive traffic measurements play a crucial role in understanding the complex
temporal properties of traffic [7]. In our passive traffic measurements, we count
and aggregate the traffic traversing each Point of Presence (PoP) in the backbone
networks to obtain time series data. We formalize the notion employed in time
series data collection as follows:

Definition 1: Traffic Measurement. A traffic measurement M is a tuple (times-
tamp, sip, domain), representing a web request to the domain. Specifically, times-
tamp is the current time when a user start to access a website (represented by
a URL), sip is the source IP address of the user, and domain is the second level
domain name extracted from the URL.

www.malwaredomains.com/

212 G. Tan et al.

Definition 2: Time Window. A time window W is a time bin (e.g., 1 h). When
collecting time series data, we aggregate the traffic measurements by each time
window.

Definition 3: Time Series. A time series T = t1, t2,. . . , tn is a time-ordered set
of n real-valued variables, where n is length of time series T. In our application,
ti is the aggregated number of traffic measurements in each time window.

Definition 4: Time Series Dataset. A time series dataset D = T1, T2,. . . , Tm

is a collection of m such time series.

Definition 5: Time Series Distance. The distance d between two time series
T and S is a function dist(T,S) that measures the similarity between T and S.
Since time series distance plays a crucial role in time series data mining, we will
introduce it in detail in the next section.

In order to collect time series datasets, we monitor web requests of each
domain in the domain dataset (Sect. 3.1) on the backbone networks. Using pas-
sive traffic measurements, finally, we collect three types of time series data.

Access. The time series Access = t1, t2, . . . , tn, where ti is the number of traffic
measurements in a time window W.

User. The time series User = t1, t2, . . . , tn, where ti is the number of distinct
sip in a time window W.

Entropy. The time series Entropy = t1, t2, . . . , tn, where ti is entropy of sip in
a time window that is defined as follows.

E(sip) = −
I∑

i=1

ni

N
log(

ni

N
) (1)

I is the number of distinct sip, ni is the number of a sip and N is the total
number of all sip.

It is important to note that in our passive traffic measurements, not all
domains in domain dataset are observed, simply because some of the domains
have never been accessed by users during passive measurement. Table 3 shows
some basic information of our collected time series datasets over 94 h.

Table 3. Time series datasets.

Type # of domains
in dataset

of observed
domains

Start time End time

Malicious 1402 1296 2017/11/22 11:45 2017/11/26 10:20

Benign 1813 373 2017/11/22 11:45 2017/11/26 10:20

For different types of websites, we find that the access patterns appearing
in time series are different. For example, for pornographic websites, users are

DomainObserver: A Lightweight Solution for Detecting Malicious Domains 213

more likely to access these websites at night. Figure 1 shows the different domain
access patterns. We can see that the number of users accessing malicious domains
usually reaches a significant peak around midnight, while there is no such phe-
nomenon of benign domains. These potential domain access patterns are very
easy to find when using passive traffic measurements. In the next section, we
will introduce how we detect malicious domains using time series data mining.

11/22 11:45 11/23 00:00 11/23 12:00 11/24 00:00 11/24 12:00 11/25 00:00 11/25 12:00 11/26 00:00 11/26 10:20

−1

0

1

2

3

a
ve

ra
g
e
 n

u
m

b
e
r

o
f

u
se

rs
(a

ft
e
r

z−
n
o
rm

a
liz

a
tio

n
)

malicious
benign

Fig. 1. The different access patterns of malicious and benign domains.

4 Time Series Classification

As mentioned in the previous section, time series distance plays a crucial role in
time series data mining. Before we introduce how to detect malicious domains,
we will first describe the time series distance used in our classification algorithm.

4.1 Dynamic Time Warping

There are plenty of distance measures used for evaluating similarity of time
series, such as Euclidean distance (ED) [8], Dynamic Time Warping (DTW)
[4]. Although it is simple and efficient, Euclidean distance is very sensitive to
even slight misalignments. Inspired by the need to handle time warping in sim-
ilarity computation, Dynamic Time Warping was proposed in order to allow a
time series to be “stretched” or “compressed” to provide a better match with
another time series [18]. That is to say, by warping a little to match the nearest
neighbor, DTW can better measure the similarity of time series. The dynamic
programming formulation of DTW is defined as follows.

D(i, j) = d(i, j) + min[D(i − 1, j),D(i − 1, j − 1),D(i, j − 1)] (2)

That is, the DTW distance is the sum of the distance between current points
and the minimum of the DTW distances of the neighboring points. In our work,
we use DTW as the measure of distance because we found that there may be
an advance or delay of the patterns. Figure 2 illustrates this temporal shifting of
malicious domain access patterns.

In order to improve the computation efficiency, it is important to restrict
the space of possible warping paths. Therefore, there is a variant of the DTW
algorithm by adding a temporal constraint ω on the warping window size of

214 G. Tan et al.

11/22 11:45 11/23 00:00 11/23 12:00 11/24 00:00 11/24 12:00 11/25 00:00 11/25 12:00 11/26 00:00 11/26 10:20

2

4

6

8
x 10

4

T
h
e
 n

u
m

b
e
r

o
f
u
s
e
rs

 a
c
c
e
s
s
in

g
 d

o
m

a
in

s

11/22 11:45 11/23 00:00 11/23 12:00 11/24 00:00 11/24 12:00 11/25 00:00 11/25 12:00 11/26 00:00 11/26 10:20

2

4

6

8
x 10

4

DTW can better measure the similarity by warping a little
to match the neighbor

similar time series, but there is a peak in advance

Fig. 2. A larger similarity distance measured by the Euclidean distance (top). Com-
pared with ED, DTW can better measure the similarity by warping a little to match
the nearest neighbor (bottom). Similarity is proportional to the sum of the pairwise
distances (indicated by gray lines).

DTW, which is called constrained DTW. The details of the constrained DTW
that is used in our paper are described in Algorithm 1 based on the dynamic
programming approach.

Given two time series t and s, and time warping window ω, we initialize a
two-dimensional DTW matrix whose value represents the DTW distance of the
corresponding points within time series t and s (lines 2–10). Then we traverse
the DTW matrix to calculate the DTW distances (lines 11–19). According to
the time warping window ω, we determine the range of the DTW matrix that
needs to be traversed (lines 12–13). The DTW distance is calculated according
to Eq. 2 (lines 15–17). In order to allow meaningful comparisons between DTW
distances of different DTW path lengths, length normalization must be used. The
subroutine DTWPathLen (shown in Algorithm2) returns the length of the DTW
path (line 20). We calculate the final DTW distance using length normalization
(line 21).

As we show in Algorithm 1, the function DTWPathLen is called to calculate
the length-normalized DTW (NDTW for short) distance. For concreteness, we
briefly discuss the DTWPathLen function in Algorithm2 below.

Given the DTW matrix, the DTW path can be found by tracing backward
in the matrix by choosing the previous points with the lowest DTW distance [4].
In line 5, we calculate the position of the neighboring points with the minimum
DTW distance. From lines 7 to 14, we move the DTW path from the current
position to the neighboring position with the minimum DTW distance until the
start position. And the length of DTW path increases by one for each move in
line 15.

DomainObserver: A Lightweight Solution for Detecting Malicious Domains 215

Algorithm 1. Dynamic Time Warping
Input: time series t, s; warping window ω;
Output: DTW distance dist;
1: function DTWDistance(t, s, ω)
2: m ← size(t)
3: n ← size(s)
4: DTW ← zeros(m + 1, n + 1)
5: for i = 1 → m + 1 do
6: for j = 1 → n + 1 do
7: DTW (i, j) ← Inf
8: end for
9: end for

10: DTW (1, 1) ← 0
11: for i = 2 → m + 1 do
12: lowerBound ← max(2, i − ω)
13: upperBound ← min(n + 1, i + ω)
14: for j = lowerBound → upperBound do
15: currentDist ← (t(i − 1) − s(j − 1))2

16: minDist ← min(DTW (i − 1, j), DTW (i, j − 1), DTW (i − 1, j − 1))
17: DTW (i, j) ← currentDist + minDist
18: end for
19: end for
20: pathLen ← DTWPathLen(DTW);
21: dist ← sqrt(DTW (m + 1, n + 1)/pathLen);
22: return dist
23: end function

Algorithm 2. DTW Path Length
Input: DTW distance matrix DTW ;
Output: DTW path length pathLen;
1: function DTWPathLen(DTW)
2: i ← row(DTW)
3: j ← col(DTW)
4: pathLen ← 0
5: while i �= 2 or j �= 2 do
6: [∼, minIndex] ← min(DTW (i − 1, j), DTW (i, j − 1), DTW (i − 1, j − 1))
7: if minIndex ≡ 1 then
8: i ← i − 1
9: else if minIndex ≡ 2 then

10: j ← j − 1
11: else
12: i ← i − 1
13: j ← j − 1
14: end if
15: pathLen ← pathLen + 1
16: end while
17: return pathLen
18: end function

216 G. Tan et al.

4.2 KNN Classification

We are now in a position to explain how to detect malicious domains. We consider
the most common classification algorithms K-Nearest Neighbor (KNN) [6] in
the time series mining community. In this method, for a new test instance,
the nearest k neighbors are derived from the training dataset using similarity
distance, and then it defines the class of the instance according to the class of
the majority of its k nearest neighbors.

5 Evaluation

In order to examine the feasibility of our solution for detecting malicious
domains, a series of experiments are carried out using the datasets introduced in
Sect. 3.2. In our default experimental evaluation, we use the time series data of
70% domains as the training data while the remaining 30% as the testing data.
Unless otherwise stated, we use KNN as the underlying classifying algorithm,
and the final values are the averages of ten random runs.

5.1 Evaluation Metrics

In order to evaluate our method comprehensively, we utilize the well-known
precision (P), recall (R), accuracy (A) and F1 score to evaluate the performance
of malicious domain detection. These evaluation metrics are functions of the
confusion matrix as shown in Table 4.

Table 4. The confusion matrix of binary classification tasks.

Predicted positive Predicted negative

Actual positive True Positive (TP) False Negative (FN)

Actual negative False Positive (FP) True Negative (TN)

P =
TP

TP + FP
(3)

R =
TP

TP + FN
(4)

F1 =
2 ∗ P ∗ R

P + R
(5)

A =
TP + TN

TP + FP + TN + FN
(6)

DomainObserver: A Lightweight Solution for Detecting Malicious Domains 217

5.2 Results and Analysis

Varying Distance Measures: The first experiment is to evaluate the per-
formance of different distance measures on three time series datasets. Table 5
shows the experimental results, from which several observations can be drawn.
First of all, experiments on real datasets demonstrate that our solution based on
dynamic time warping is effective in detecting malicious domains with 86.43%
F1 score and 81.58% accuracy. We thus believe the proposed method is suitable
for malicious domain detection. Secondly, among these distance measures, the
NDTW is better than the other two. This is because it is not sensitive to noise
and misalignments in time, and able to handle local time shifting, i.e., similar
segments that are out of phase (Fig. 2). As for the time performance, the ED
distance is more efficient, because this distance measure is simpler than DTW
and NDTW, which sacrifices the accuracy. Finally, we observe that there is no
significant difference between datasets Access, User, and Entropy. For the sake
of simplicity, in the following experiments, we use User as the default dataset
and NDTW as the default distance measure.

Table 5. Performance comparison between different distance measures

Dataset Distance P(%) R(%) A(%) F1(%) Avg time (s)

Access ED 82.84 87.97 73.78 85.31 0.0001

DTW 83.20 88.97 79.80 85.98 0.3428

NDTW 83.77 89.41 80.40 86.49 0.6584

User ED 87.20 85.02 79.30 86.09 0.0001

DTW 84.86 87.92 80.32 86.35 0.5335

NDTW 85.55 87.35 81.58 86.43 0.6512

Entropy ED 87.70 82.48 79.00 84.89 0.0001

DTW 88.11 84.89 80.26 85.45 0.5493

NDTW 85.74 85.90 80.72 85.70 0.6722

Varying Warping Windows: The most important parameter of DTW is the
warping window ω (see Algorithm 1), which enforces a temporal constraint on
the warping range and has great influence on the experiment results. We will test
it in the following experiments. The results of malicious domain detection are
presented in Fig. 3(a). It can be clearly seen that the performance of malicious
domain detection does not increase as the warping window ω increases. And
when ω = 4, it achieves the best F1 score of 87.21%. This is because too wide
warping window may introduce pathological matching between two time series
and distort the true similarity [18]. Therefore, we set ω = 4 in the following
experiments.

218 G. Tan et al.

Varying Time Windows: Another important parameter is the time window
of time series (see Definition 2). As shown in Fig. 3(b), the smaller size of time
window has a higher accuracy. This may be because the finer grained time series
can better reflect the domain access patterns. While the F1 score is not sensitive
to the size of time window, which varies only in a narrow range from 85.71% to
87.32%.

1 3 5 7 9 11 13 15 17 19
70%

75%

80%

85%

90%

warping window size

p
e

rf
o

rm
a

n
ce

P
R
F1
A

(a) Varying Warping Windows

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35
70%

75%

80%

85%

90%

time window size(5 minute bins)

p
e

rf
o

rm
a

n
ce

P
R
F1
A

(b) Varying Time Windows

Fig. 3. (a) Impact of warping window ω to the performance of malicious domain detec-
tion. (b) Impact of time window w to the performance of malicious domain detection.

Varying K-Nearest Neighbor: Finally, we conduct a set of experiments to
evaluate the performance of our solution with different numbers of nearest neigh-
bors. We perform experiments on two time window sizes, 14 and 24 respectively.
Experimental results show that the KNN classifier gives the best F1 score and
accuracy for the value K = 10 over both two time window sizes, which we report
in Table 6.

5.3 Discussion

In a sense, the approach taken here may appear surprising. Most malicious
domain name detection methods are very complicated and heavy-weight, such
as [5,10,12,13,17,19,20]. These methods require complex feature engineering
and specific data input and even constant update of models. So we propose a
lightweight solution that requires very few preconditions can be easily deployed,
although it will slightly deteriorate the performance at an acceptable level.

DomainObserver: A Lightweight Solution for Detecting Malicious Domains 219

Table 6. Performance comparison between different numbers of nearest neighbors.

K Time window size w = 24 Time window size w = 14

P(%) R(%) F1(%) A(%) Time(s) P(%) R(%) F1(%) A(%) Time (s)

1 84.90 83.95 84.41 75.70 319.15 85.68 86.79 86.22 80.12 542.03

2 87.88 79.57 83.50 71.90 312.72 87.53 81.65 84.47 76.26 571.93

3 84.37 86.62 85.46 79.02 315.55 85.52 87.37 86.43 82.18 576.50

4 86.35 84.20 85.25 78.02 313.30 86.34 85.58 85.95 80.44 584.49

5 83.70 88.29 85.92 80.24 312.91 85.07 88.96 86.97 82.64 585.85

6 85.50 87.12 86.28 79.92 310.79 86.32 86.76 86.53 82.76 584.55

7 84.40 89.45 86.84 81.14 310.01 83.93 90.14 86.91 82.12 582.32

8 85.15 87.71 86.39 80.48 309.86 84.59 88.35 86.41 81.50 584.57

9 83.57 89.66 86.49 80.80 310.32 84.01 89.57 86.69 82.20 575.36

10 85.43 89.33 87.33 81.58 310.28 85.12 89.23 87.11 83.14 572.11

11 83.41 90.16 86.65 81.10 323.93 83.30 91.13 87.03 82.06 574.61

12 83.89 89.53 86.61 80.56 312.64 84.14 89.78 86.86 82.26 572.83

13 83.37 90.85 86.94 80.64 322.02 82.80 90.79 86.60 81.54 569.33

14 84.25 90.12 87.08 81.16 337.83 83.83 89.94 86.76 82.24 571.26

15 82.54 90.27 86.22 80.68 333.79 82.89 91.43 86.93 81.44 572.30

6 Conclusion

In this paper, we have described a novel lightweight solution named DomainOb-
server for malicious domain detection, which does not require constant crowd
updates or complex feature engineering. By using time series data mining, we
apply DomainObserver to three different time series data collected in the actual
network. Extensive experiments show that our method can effectively detect
malicious domains by achieving 83.14% accuracy and 87.11% F1 score.

Future work includes: (1) investigate how to improve the efficiency. This is
especially needed for online deployment on real-time ISP networks. (2) study
the misclassified samples to further improve the detection performance.

Acknowledgment. The author gratefully acknowledges support from National Key
R&D Program 2016 (Grant No. 2016YFB0801300), National Natural Science Founda-
tion of China (No. 61402464), and Youth Innovation Promotion Association CAS. And
we also want to thank the anonymous reviewers for the valuable comments.

References

1. Alexa: Alexa top 1m. http://s3.amazonaws.com/alexa-static/top-1m.csv.zip.
Accessed 7 Nov 2017

2. Antivirus: Network Security Threat Information Sharing Platform. https://share.
anva.org.cn/en/index

http://s3.amazonaws.com/alexa-static/top-1m.csv.zip
https://share.anva.org.cn/en/index
https://share.anva.org.cn/en/index

220 G. Tan et al.

3. Baidu: Baidu Website Security Detection Platform. http://bsb.baidu.com/
4. Berndt, D.J., Clifford, J.: Using dynamic time warping to find patterns in time

series. In: KDD Workshop, Seattle, WA, vol. 10, pp. 359–370 (1994)
5. Bilge, L., Sen, S., Balzarotti, D., Kirda, E., Kruegel, C.: Exposure: a passive DNS

analysis service to detect and report malicious domains. ACM Trans. Inf. Syst.
Secur. (TISSEC) 16(4), 14 (2014)

6. Cover, T., Hart, P.: Nearest neighbor pattern classification. IEEE Trans. Inf. The-
ory 13(1), 21–27 (1967)

7. Duffield, N.: Sampling for passive internet measurement: a review. Stat. Sci. 472–
498 (2004)

8. Faloutsos, C., Ranganathan, M., Manolopoulos, Y.: Fast subsequence matching in
time-series databases. In: SIGMOD 1994. Citeseer (1994)

9. Grabocka, J., Schilling, N., Wistuba, M., Schmidt-Thieme, L.: Learning time-series
shapelets. In: Proceedings of the 20th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, pp. 392–401. ACM (2014)

10. Kuyama, M., Kakizaki, Y., Sasaki, R.: Method for detecting a malicious domain
by using WHOIS and DNS features. In: Third International Conference on Digital
Security and Forensics (DigitalSec2016), p. 74 (2016)

11. Malware: Malware Domain Block List. http://www.malwaredomains.com/
12. Manadhata, P.K., Yadav, S., Rao, P., Horne, W.: Detecting malicious domains via

graph inference. In: Kuty�lowski, M., Vaidya, J. (eds.) ESORICS 2014. LNCS, vol.
8712, pp. 1–18. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-11203-
9 1

13. Nepali, R.K., Wang, Y.: You look suspicious!!: leveraging visible attributes to clas-
sify malicious short URLs on Twitter. In: 2016 49th Hawaii International Confer-
ence on System Sciences (HICSS), pp. 2648–2655. IEEE (2016)

14. OpenDNS: Phishtank. http://www.phishtank.com/
15. Qihu 360: 360 Fraud Reporting Center. https://110.360.cn/
16. Sahoo, D., Liu, C., Hoi, S.C.: Malicious URL detection using machine learning: a

survey. arXiv preprint arXiv:1701.07179 (2017)
17. Sun, B., Akiyama, M., Yagi, T., Hatada, M., Mori, T.: Autoblg: automatic URL

blacklist generator using search space expansion and filters. In: 2015 IEEE Sym-
posium on Computers and Communication (ISCC), pp. 625–631. IEEE (2015)

18. Wang, X., Mueen, A., Ding, H., Trajcevski, G., Scheuermann, P., Keogh, E.: Exper-
imental comparison of representation methods and distance measures for time
series data. Data Min. Knowl. Discov. 26, 1–35 (2013)

19. Wang, Y.: Cai, W.d., Wei, P.c.: A deep learning approach for detecting malicious
Javascript code. Secur. Commun. Netw. 9(11), 1520–1534 (2016)

20. Zhang, J., Porras, P.A., Ullrich, J.: Highly predictive blacklisting. In: USENIX
Security Symposium, pp. 107–122 (2008)

http://bsb.baidu.com/
http://www.malwaredomains.com/
https://doi.org/10.1007/978-3-319-11203-9_1
https://doi.org/10.1007/978-3-319-11203-9_1
http://www.phishtank.com/
https://110.360.cn/
http://arxiv.org/abs/1701.07179

	DomainObserver: A Lightweight Solution for Detecting Malicious Domains Based on Dynamic Time Warping
	1 Introduction
	2 Related Work
	3 Passive Traffic Measurements
	3.1 Domain Dataset
	3.2 Time Series Data

	4 Time Series Classification
	4.1 Dynamic Time Warping
	4.2 KNN Classification

	5 Evaluation
	5.1 Evaluation Metrics
	5.2 Results and Analysis
	5.3 Discussion

	6 Conclusion
	References

