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Abstract. Ontologies are a basic tool to formalize and share knowledge.
However, very often the conceptualization of a specific domain depends
on the particular user’s needs. We propose a methodology to perform
user-centric ontology population that efficiently includes human-in-the-
loop at each step. Given the existence of suitable target ontologies, our
methodology supports the alignment of concepts in the user’s conceptual-
ization with concepts of the target ontologies, using a novel hierarchical
classification approach. Our methodology also helps the user to build,
alter and grow their initial conceptualization, exploiting both the target
ontologies and new facts extracted from unstructured data. We evalu-
ate our approach on a real-world example in the healthcare domain, in
which adverse phrases for drug reactions, as extracted from user blogs,
are aligned with MedDRA concepts. The evaluation shows that our app-
roach has high efficacy in assisting the user to both build the initial
ontology (HITS@10 up to 99.5%) and to maintain it (HITS@10 up to
99.1%).

1 Introduction

Maintaining data in a structured and machine-readable form allows easy data
sharing between humans and software agents, and also enables other tasks related
to data handling, including data analysis and data reuse to name a few. In
some domains where the majority of data is only available as unstructured text,
extracting such structured knowledge constitutes a crucial step.

Many available tools extract items of interest (mainly in the form of named
entities) from free text. The extracted instances can be maintained at varying
degrees of complexity: as simple as flat dictionaries, or as rich as a structured
concept organization in the form of an ontology.

While ontologies are an excellent means to formalize and share knowledge,
it is rare to have a single unique conceptualization of a domain: depending on
the field, on the task at hand, and on the specific user, the best representation
can vary, in some cases extensively. It is well known that human annotation
tasks intrinsically carry a level of disagreement among annotators, regardless of
their level of domain expertise [1,43]. While it is important to maintain the user
conceptualization of the domain, connecting it to any existing and well-defined
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ontology in the field is one of the paramount principles of the Semantic Web
movement.

The challenge is to achieve the right balance between the user conceptualiza-
tion and available knowledge, enabling the population and maintenance of the
user ontology with both relevant facts already available in structured form (e.g.
other ontologies), as well as the new extracted facts from unstructured data.

Most of the ontology population solutions proposed in the literature focus
on solutions for open domain problems, where it is not crucial to achieve perfect
performance. However, in many domains near-perfection is required. For exam-
ple, many biomedical applications have near 0% error tolerance, despite datasets
full of uncertainty, incompleteness and noise. Furthermore, some problems in the
medical domain are quite challenging, making the application of fully automated
models difficult, or at least raising questions on the quality of results. Conse-
quently, efficiently including a domain expert as an integral part of the system
not only greatly enhances the knowledge discovery process pipeline [14,15], but
can in certain circumstances be legally or ethically required.

We propose a methodology to perform user-centric ontology population that
efficiently includes human-in-the-loop at each step: the user is assisted in build-
ing, connecting and maintaining their conceptualization of the domain, while
taking advantage of any already available ontology.

Given initial user data comprising a number of concepts and their initial
instances, and assuming the existence of candidate ontologies for the alignment,
available either publicly (the Linked Open Data cloud) or within the enterprise,
our methodology supports three main steps: (i) selecting the relevant ones (tar-
get ontologies); (ii) aligning the concepts in the user’s conceptualization with
concepts of the target ontologies, using a novel hierarchical classification app-
roach; (iii) assisting the user to build, change, and grow their initial ontology, by
(respectively) creating new concepts, splitting or merging concepts, and adding
new instances to each concept, all via exploitation of both target ontologies and
new facts extracted from unstructured data. Each step includes human-in-the-
loop. That is, the methodology is designed to efficiently assist the user rather
than fully automate the process.

The contribution of this work is threefold. First, our approach does not
require the user to have any expertise with the Semantic Web:1 the input data
is a set of coherent concepts defined with only some initial instances that can
be provided as a simple populated taxonomy, or even as disconnected groups.
These instances are used to identify available target ontologies. Second, we pro-
pose a novel hierarchical classification method that allows mapping the user data
to the target ontology. To the best of our knowledge, this is the first method
for ontology population that builds hierarchical classification models that are
dynamically refined and based on user interaction. Finally, the method does not
require any training material (since it only exploits the target ontology), nor any

1 It is expected the user to be able to perform simple browsing and navigation through
data, but no knowledge of Semantic Web Technologies is needed, e.g., RDF, SPARQL
etc.



114 K. Clarkson et al.

NLP processing or linguistic features. Therefore, the method is also potentially
flexible with respect to different domains and languages.

The main advantage of our approach is that the user has full control of their
level of involvement, with a trade-off on the accuracy of results, so that the more
precise and granular the representation needs to be, the more they can be in the
loop. We test the approach on a real-world example in the setting of Adverse
Drug Reactions. Starting from a concepts representation extracted from user
medical blogs,2 we identify an available ontology, namely MedDRA [2], within
the enterprise knowledge base, and map the user’s initial concepts to the target
ontology. In the experiment, a user concept is a group of coherent phrases, e.g.
teeth grinding, teeth clenching, clench my teeth, jaw clenching, clinching my jaw,
which we help to align to concepts in MedDRA, in this case “Bruxism”. We show
that we can assist the user with the alignment with HITS@10 = 99.5% on the
most general level of the ontology and HITS@10 = 86.5% on the most granular
level of the ontology. We also evaluate the approach for adding new instances,
achieving HITS@10 = 99.1% on the most general level of the ontology and
HITS@10 = 91.27% on the most granular level of the ontology.

In the following, we give an overview of related work in Sect. 2; we formally
define the problem of user-centric ontology population and describe our solution
in Sect. 3; and we test our solution in the medical domain, Sect. 4.

2 State of the Art

There is a vast literature devoted to ontology population from text, with many
established initiatives to foster research on the topic, such as the Knowledge
Base Population task at TAC,3 the TREC Knowledge Base Acceleration track,4

and the Open Knowledge Extraction Challenge [24]. In these initiatives, sys-
tems are compared on the basis of recognizing individuals belonging to a few
selected ontology classes, spanning from the common Person, Place and Organi-
zation [36], to more specific classes such as Facility, Weapon, Vehicle [8], Role [24]
or Drug [31], among others.

FRED and Framester [11] and [10] are an established example of a compre-
hensive solution to the problem. The tools transform text in an internal ontology
representation and then attempt to align it with available Linked Data. FRED
is a general purpose machine reader, mostly based on core NLP tools, which
can potentially process text from any domain and in many different languages
(bounded to the availability of NLP components). In the same direction, there
is a plethora of tools for automatically detecting named entities in free text and
aligning them to a predefined knowledge base, i.e., Spotlight [19], X-Lisa [44],
Babelfy [21]. However, all these tools are able to identify only instances that
already exist in a knowledge base.

2 www.askapatient.com.
3 http://www.nist.gov/tac/2015/KBP.
4 http://trec-kba.org/.

www.askapatient.com
http://www.nist.gov/tac/2015/KBP
http://trec-kba.org/
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Some of the earliest approaches for ontology population from text are based
on pattern matching, string similarity functions, and external glossaries and
knowledge bases. Velardi et al. [37,38] develop OntoLearn which is one of the
first tools for learning and populating ontologies from text. The approach heav-
ily uses NLP parsers, pattern matching, and external glossaries, in combina-
tion with human assistance. Similar approaches are presented in [3,18]. Cimiano
and Völker [4] describe an unsupervised approach, called Class-Word, for ontol-
ogy population based on vector-feature similarity between each concept and a
term to be classified. The feature vectors are generated from the text corpus.
The approach assumes that the entity and the concept usually appear together
in the same sentences. The approach is extended in Tanev and Magnini [35],
called Class-Example, which learns a classification model from a set of classi-
fied terms, exploiting lexico-syntactic features. They upgrade the previous app-
roach by adding features extracted from dependency parse trees. Giuliano and
Gliozzo [12] propose an approach that is based on the assumption that entities
that occur in similar contexts belong to the same concept(s), and so it counts
the shared n-grams in the context of the entities. An overview of pattern-based
approaches is given in a survey by Petasise et al. [25].

Several works use machine learning for ontology population. HYENA [42] and
FIGER [17] are two examples of fine-grained multi-label classifiers for named
entity types based on hierarchical taxonomies derived from YAGO. Ling and
Weld [17] also release the benchmark dataset annotated with 112 classes from
YAGO. Typically, the models use standard NLP features extracted from text,
or more sophisticated features such as type relational phrases: either their type
signatures and disjointness constraints [23], or type correlation based on co-
occurring entities [27].

Many approaches for ontology population are based on word and graph
embedding models. WSABIE [41] adopts weighted approximate pairwise loss
to learn embeddings of features and types in a common feature space. Entities
that share the same type appear close to each other in the embedded space.
Similarly, FIGMENT [40] proposes a combination of global and context model,
where the global model performs global embedding over the whole corpus using
multilayer perceptron, while the context model focuses on small context windows
sizes. Ristoski et al. [29] use standard word embeddings and graph embeddings
to align instances extracted from the Common Crawl5 to the DBpedia ontology.

The use of deep learning models has also been explored for this task. Dong
et al. [9] propose the first deep learning architecture for entity typing. The archi-
tecture consist of two models. The mention model uses recurrent neural networks
to recursively obtain the vector representation of an entity mention from the
words it contains. The context model, on the other hand, employs multilayer
perceptrons to obtain the hidden representation for contextual information of a
mention. The approach is evaluated on 22 general types from DBpedia. Shimoaka
et al. [32,33] propose a very simple neural network, using averaging encoder,
LSTM encoder, and attentive encoder, for computing context representations.

5 http://webdatacommons.org/isadb/index.html.

http://webdatacommons.org/isadb/index.html
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Fig. 1. System architecture. Complete workflow of the proposed methodology for ontol-
ogy population.

Similarly, Yaghoobzadeh et al. [39] propose a convolutional neural network for
entity typing. Both approaches are evaluated on 112 entity types. Murty et
al. [22] present TypeNet, a dataset of entity types consisting of over 1941 types
organized in a hierarchy, on which they train several neural models for entity
typing.

None of these methods take into consideration the hierarchical structure of
the ontology, and for all of them the number of types is relatively small and
within a general open domain. In this paper, we present an approach that exploits
such hierarchical structure, which we evaluate on an ontology with significantly
more concepts than related work.

3 Approach

Input. The input of our approach is a set of example entities within a particular
domain, usually extracted from a coherent textual corpus. Given a textual cor-
pus, we assume there is a domain entity extractor (specifically we used SPOT [5])
that produces the set of relevant entities in the corpus IU = i1, i2, . . . , in. The
user refines this set by organizing all instances in IU in concepts. The result is
a finite set of user-defined concepts Cu = cu1, cu2, . . . , cun where each concept
contains at least one instance. Using the user-defined conceptualization Cu, we
scout for ontology candidates that can fit the user data.

Alignment. After a target ontology CT is selected, our goal is to align Cu to
CT . The alignment can be performed at different granularity: given the depth
L (or number of levels from root to leaves) of the target ontology, the user can
specify the desired level for the alignment, and our method will use as target
concepts all concepts lCT = cct1 , cct2 , . . . , cctnat level l.
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a) Flat hierarchical classifica-
tion.

b) Top-down per parent node
hierarchical classification.

c) Combined hierarchical classi-
fication.

Fig. 2. Hierarchical classification for ontology population.

Maintenance. Once the initial alignment is done, we support the maintenance
of user knowledge by providing functions for adding new instances, splitting or
merging concepts and creating new concepts.

Figure 1 illustrates the overall design of the proposed system.

3.1 Aligning User’s Conceptualization with a Target Ontology

We identify available knowledge using simple collective instance matching
between user data and a repository of ontologies. From the repository, either
publicly available (such as the Linked Open Data cloud) or proprietary, the top
N matching ontologies are presented to the user, who chooses a target ontology
CT . This step can be performed using many alternative state-of-the-art meth-
ods [19,28,30]; in this work we consider this step as given, and focus on the
alignment.

Three novel machine learning approaches are proposed for hierarchical clas-
sification, inspired by existing top-down hierarchical classification methods [34].
Considering the user data as “new instances,” the approaches try to identify
the concepts in the target ontologies that represent the best match. To do so,
we build machine learning models that use the instances of the target ontology
as training data (completely unsupervised), and exploit domain-specific word
embeddings as features.

In the first solution, we perform a flat hierarchical classification. Given Cu,
and considering user-chosen level l of the ontology, we build one classifier with as
many classes as concepts at level l, using the leaves of each concept as instances
for training the classifier. The architecture is shown in Fig. 2a. This model is
rather simple, and it achieves high performance in the upper levels of the hier-
archy. However, in the lower levels of the ontology, when the number of classes
rapidly increases, the complexity of the model rises, and the performance drops.

The second solution is a top-down model, where we build a local classifier for
each parent node. Given Cu, and considering user-chosen level l of the ontology,
the approach builds a classifier for each parent node, starting from the top of the
hierarchy to level l−1, using all children nodes as classes, and their corresponding
leaves as instances to train the model. The architecture is shown in Fig. 2b. This
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approach can easily cope with a large number of classes in the lower levels of the
hierarchy; however, the errors are propagated from the top to the bottom of the
ontology.

To circumvent this drawback, we propose a third hierarchical architecture
(Fig. 2c), which is a combination of the previous two. Given Cu, and considering
user-chosen level l of the ontology, the approach builds (i) a flat classifier for
level l− 1 of the ontology, and (ii) a classifier for each parent node at level l − 1
using the concepts of the l level as classes. This approach is very effective when
there is significant difference in the number of nodes between the l and l − 1
level of the ontology, for two reasons: (i) the flat classifier performs well on level
l− 1, which has smaller number of classes; (ii) the per-parent node classifier will
only be affected by the errors propagated from the previous level, rather than
from the top of the hierarchy.

As classification methods we use standard machine-learning models, i.e., Sup-
port Vector Machines, Logistic Regression, and Random Forests, and state-of-
the-art deep learning models, i.e., Convolutional Neural Networks.

To perform the final alignment for each user concept cu = iu1, iu2, . . . , iun,
we classify each instance of cu into concepts at target level l of the ontology, and
choose the final assignment by majority vote on all instances of cu, weighting
each of them by the class probability distribution returned by the classifier.

The user can define their level of involvement by defining a confidence thresh-
old for each level in the hierarchy: whenever the confidence of the approach is
below the given threshold, the system displays top-N candidates to the user who
can manually select the desired alignment.

3.2 Ontology Maintenance

Once the alignment has been completed, we provide functions for maintaining
the created knowledge base, such as adding instances, adding new concepts and
merging/splitting concepts. These functions have been shown to be of a high
importance, because of the continuous need to add new data as well as to take
into account changes in the user conceptualization over time.

Adding New Instances. When new instances appear, we use the same approaches
proposed in Sect. 3.1 to align them to the user’s conceptualization. In this case,
the models only consider the concepts defined by the user. When an instance
doesn’t fit any of the user-defined concepts, a new concept is added to the user’s
conceptualization (with the “Adding New Concepts” function), which is then
aligned to the target ontology.

Adding New Concepts. To decide if there is a need for a new concept in the
user representation, we follow an approach similar to the one presented in [7],
i.e., using entropy as uncertainty measure for the classifier’s predictions. Given
the class probability distribution [P (C1|x) . . . P (Ck|x)] of existing classes k, for
a new instance x, for a given machine learning approach, we decide that we need
to generate a new class if the class probabilities entropy is larger than 1.0:
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E(x) =
k∑

i=0

P (Ci|x) ∗ log2 P (Ci|x) > 1 (1)

Whenever the entropy is high, we inform the user that there might be the need to
introduce a new concept. Using the hierarchical classification models, we suggest
potential new candidate concepts retrieved from the target ontology.

Merging Concepts. The action of merging concepts is trivial: if two user-defined
concepts are aligned to the same target ontology concept, then the user concepts
are merged.

Reassigning Instances. As the user conceptualization grows by adding new
instances and new concepts, the user’s view is also evolving, so reorganization of
the instances might be needed. To assist the user in this step, we train the hier-
archical classification model on all the instances in the user’s conceptualization
data, and then we use the model to classify all the instances. Analyzing the class
prediction distribution, we can identify two types of candidates for reassigning:
(i) Misclassifying an instance indicates that the instance might be an outlier
in the currently assigned concept, implying that the instance is assigned in the
current concept because of a user error; (ii) High entropy (see Eq. 1) indicates
that the instance might fit better in a different concept than the current one.
The system presents the suggestions to the user to decide if the instances need
to be reassigned. When instances are reassigned, the model is retrained on the
updated conceptualization. The stopping criterion for reassignment is that there
are no more updates in the concepts.

4 Experiments

The goal of the experiments is to (i) test the performance of the novel alignment
strategy (Sect. 4.1), and (ii) test the effectiveness of the ontology maintenance
steps: adding new instances to existing user concepts (Sect. 4.2), detecting when
a new concept should be added to the user model (Sect. 4.2), and suggesting
when a concept should be split (Sect. 4.2).

All the experiments were carried out in the medical domain, specifically tack-
ling the problem of Adverse Drug Reactions, for which we worked with a medi-
cal doctor to create a manually annotated gold standard dataset. Starting from
user blogs extracted from http://www.askapatient.com (a forum where patients
report their experience with medication drugs), we extracted all instances refer-
ring to adverse drug events, grouped the instances referring to the same adverse
event into concepts, and aligned them to the MedDRA ontology [2]. MedDRA
is a rich and standardized medical terminology organized in 5 levels, arranged
from very general to very specific concepts: the fifth level contains 95, 061 leaf
instances. The user data contains 203 concepts (adverse drug reactions), each
of them containing several different phrases to refer to each concept, for a total
of 3, 262 instances. The 203 concepts have been manually aligned to MedDRA,

http://www.askapatient.com
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using a total of 169 concepts at the lowest level (some of the user concepts are
aligned to the same MedDRA concept). The details for the user’s dataset and
the MedDRA dataset per level are shown in Table 1.

Table 1. Datasets statistics. Total number of concepts at each level of MedDRA and
the portion used in the gold standard alignment.

MedDRA User’s conceptualization

#level1 27 17

#level2 304 62

#level3 1, 444 106

#level4 20, 935 169

#Instances 95, 061 3, 262

4.1 Aligning User’s Conceptualization with a Target Ontology

Given each user concept, the task is to identify, if it exists, a concept in the
target ontology that identifies it. We assess the performance of our proposed
methods against the gold standard dataset, and compare them against different
baseline methods. To evaluate the approaches, we use the metric HITS@K, which
measures if the correct alignment is in the top-K ranked results of the approach.

We implemented three baselines for comparison:

String-based average-link matching. Given a user concept cu, we calculate
the similarity to each concept ct at a given level of the hierarchy (Eq. 2),
using a Lucene6 token-based similarity score with edit distance of 2 and tf-idf
weighting. We then rank the results and select the top-N classes.

sim(cu, ct) =
1

|cu||ct)|
|cu|∑

i=1

|ct|∑

j=1

sim(xci, xcj) (2)

Word embeddings. To build the word embedding we first collected a domain-
specific text, i.e., patient reports about adverse drug reaction for more than
2, 000 drugs, retrieved from www.askapatient.com, the ADE corpus [13], and
the EMEA dataset7 (European Medicines Agency documents). We use the
corpora of sentences to build both CBOW and Skip-Gram models with the
default parameters proposed in [20].8 Given a user-defined group cu, we calcu-
late the similarity to each concept ct on a given level of the hierarchy, using
Eq. 2, where the similarity between two instances is calculated as a cosine
similarity between the averaged vectors of all the words in the instances.

6 https://lucene.apache.org/.
7 http://opus.lingfil.uu.se/EMEA.php.
8 Additionally we fix window size = 5; dimensions = 200; number of iterations = 15;

negative sampling for optimization; negative samples = 25; average input vector for
CBOW.

www.askapatient.com
https://lucene.apache.org/
http://opus.lingfil.uu.se/EMEA.php
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a) Results for level 1 of the hierarchy b) Results for level 2 of the hierarchy

c) Results for level 3 of the hierarchy d) Results for level 4 of the hierarchy

Fig. 3. Results per level of the hierarchy. Each plot shows the results for the two
baselines, and the best performing models for the three hierarchical classification
approaches.

LDA. We use the Stanford Labeled LDA tool [26] to build a supervised topic
model, using the nodes in each level of the hierarchy as labels. To select the
top-N classes for each user-defined group, we perform majority vote using the
topic probabilities as weights.

Our three methods (Sect. 3.1) are not bound to the choice of the specific
classifier. We use the instances of the target ontology to train each classifier,
which is then used to classify the user’s concepts. We report the performances
for the following classifiers: Support Vector Machines (SVM) with RBF kernel,
Random Forests (RF), Logistic Regression (LR), and Convolutional Neural Net-
work (CNN). All classifiers use the domain-specific word2vec word embedding as
features, the same as the baseline method. The architecture of the CNN model is
inspired by Collobert et al. [6] and Kim [16], which has shown high performances
in many NLP tasks.9

9 We selected the following parameters for the CNN model: an input embedding layer,
4 convolutional layers followed by max-pooling layers, a fully connected softmax
layer, rectified linear units, filter windows of 2, 3, 4, 5 with 100 feature maps each,
dropout rate of 0.2 and mini-batch size of 50. For the embedding layer we use the
word2vec embeddings used in the baseline approach to initialize the weighing matrix.
We train 100 epochs with early stopping.
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Figure 3 shows the results for HITS@1 to HITS@10 for each level of the
hierarchy. For each of the three hierarchical approaches we report the best clas-
sifier.10 The LDA approach performs rather poorly, therefore we exclude it from
the plots. The HITS@1 results for all approaches are shown in Table 2. As the
curves show (Fig. 3), while HITS@1 results (fully automated approach) are very
encouraging, including human-in-the-loop (proposing the 10 most likely options)
increases the performance up to 99.5% accuracy (on level 1 of the hierarchy)
which is desirable in this domain.

Table 2. HITS@1 results for the baseline approaches and the three hierarchical clas-
sification approaches. The best results for each approach are marked in bold. The best
overall approach is marked in bold and asterisk.

Level 1 Level 2 Level 3 Level 4

Baselines

String-based 66.99 64.53 58.12 57.14

Embeddings 67.54 65.05 60.09 57.63

LDA 33.52 28.23 10.83 7.64

Flat hierarchical classification

SVM 68.47 60.59 56.15 /

RF 72.9 69.45 61.57 /

LR 71.92 70.44 68.47 /

CNN 77.83 71.92 68.62 35.96

Top-down per parent node hierarchical classification

SVM 68.47 42.85 16.26 5.41

RF 72.9 38.37 22.16 12.31

LR 71.92 58.12 52.38 50

CNN 77.83 69.07 65.22 53.46

Combined hierarchical classification

SVM 68.47 66.92 58.64 46.03

RF 72.9 5.9 32.5 18.43

LR 71.92 70.59 69.24 63.25

CNN *77.83 *73.05 *70.39 *66.78

We can observe that all three approaches outperform the baseline meth-
ods, with a larger margin as we move down in the hierarchy. The word embed-
dings approach outperforms the string-based baseline approach on all levels. The
CNN classifier outperforms the standard classifiers, although Logistic Regression

10 Note that for the first level we report only the results for the flat hierarchical clas-
sification approach, because the results are the same for all three approaches.
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Fig. 4. HITS@10 results for adding new instances per level.

achieves comparable performance. It is noteworthy that the flat hierarchical clas-
sification approach performs rather well on the first 3 levels, however the per-
formance drops at level 4, where the number of classes is significantly higher.
Furthermore, we were not able to build flat SVM, RF and LR models for the
lowest level of the hierarchy, as the number of class labels is rather high, the
models ran out of memory. The top-down per parent node approach shows com-
parable results for HITS@1, however the propagation of errors from the previous
levels leads to poor performances for HITS@10, i.e., if an instance is incorrectly
classified in level l − 1, in level l the HITS will not increase when k increases
because the model cannot find the correct concept in the ontology. The com-
bined hierarchical classification approach outperforms all the others on all levels
of the hierarchy.

4.2 Ontology Maintenance

Adding New Instances. In this experiment the goal was to add new instances
to the user’s knowledge base. To do so, we first built a CNN model for each level
of the already aligned user hierarchy. Then we retrieved additional 298 instances
of Adverse Drug Events from www.askapatient.com, which were not included in
the initial data, and used the previously built model to assign each of them in
the user’s knowledge base.

The results for HITS@10 at each level of the hierarchy are shown in Fig. 4.
The results show that we were able to classify the instances in the correct user
concepts with HITS@10 = 99.1% on the most general level, and HITS@10 =
91.27% on the lowest level of the hierarchy.

Adding New Concepts. In this experiment we evaluated the model’s ability
to notify the user that a new concept should be introduced, i.e., a new instance
doesn’t fit in any of the defined concepts, therefore a new concept should be
added. To do so, we selected 500 instances from the MedDRA ontology that
don’t belong to any of the user’s concepts, i.e., positive instances for which the
model is expected to create a new concept, and 500 instances that belonged to

www.askapatient.com
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some of the user’s concepts, i.e., negative instances for which the model shouldn’t
create a new concept.11 Then we used the previously built CNN model for the
last level of the hierarchy to classify the set of instances. We used the approach
for adding new concepts (shown in Sect. 3.2) to decide if for each instance we
need to add new concept. We expect the approach to notify the user that a new
concept should be added for the first 500 instances.

For this task we measure precision (P), recall (R) and F-score(F). The app-
roach achieved P = 73.8%, R = 84.6% and F = 78.83%.

Reassigning Instances. In this experiment we evaluated the model’s ability
to reassign instances to other concepts. We try to identify (i) mistakes made
by the user in the conceptualization or (ii) alternative and potentially better
concepts for a given instance (if any is found). Also, the user’s view is evolving
over time, so reorganization of the instances might be needed.

The model was able to identify 82 instances that needed to be reassigned. The
instances were reviewed by a medical doctor, who accepted 67 instances to be
reassigned, yielding precision P = 81.7%. For those instances, we used the model
to assign new concepts, achieving HITS@1 = 76.11% and HITS@5 = 91.05%.
Using our approach we were able to easily identify misclassifications caused by
user error. For example, “stomach aches” was initially assigned in the “Emo-
tional disorder” concept, which was identified by our model as a mistake and
was reassigned to “Abdominal distension”. Beside the trivial cases, the model
proposes to the user to review instances that might fall in different concepts.
For example, “sensitivity to light” was initially assigned in the “Visually impair-
ment” concept, but after the growth of the concepts, the model suggested to
move the instance to “Photophobia”, which was accepted by the user.

5 Conclusions and Future Work

In this paper we introduce a methodology to perform user-centric ontology popu-
lation that efficiently includes human-in-the-loop at each step: the user is assisted
in building, connecting and maintaining their conceptualization of the domain,
while taking advantage of already available ontologies. We design a novel hier-
archical classification method for ontology population, which builds hierarchical
classification models that are dynamically refined based on user interaction. Our
main objective is not to fully automate the process but rather to assist the user
in achieving their goals more efficiently and effectively. The experiments confirm
that the approach supports the user to achieve nearly perfect performance. The
user has full control on their level of involvement in the process, depending on
the requirements for quality and precision of the data, and her time/cost limit.

As future work, we are performing experiments on a broader task in the
medical domain and using UMLS 12 for the alignment. Furthermore, we will

11 Note that these examples were not used in the training phase.
12 https://www.nlm.nih.gov/research/umls/.
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analyze to which extent our approach can be applied to different languages, and
perform cross-lingual alignment.
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