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Abstract. The recent JSON-LD standard, that specifies an object nota-
tion for RDF, has been adopted by a number of data providers on the
Web. In this paper, we present a novel usage of JSON-LD, as a compact
format to exchange and query RDF data in constrained environments,
in the context of the Web of Things.

A typical exchange between Web of Things agents involves small
pieces of semantically described data (RDF data sets of less than hun-
dred triples). In this context, we show how JSON-LD, serialized in binary
JSON formats like EXI4JSON and CBOR, outperforms the state-of-the-
art. Our experiments were performed on data sets provided by the lit-
erature, as well as a production data set exported from Siemens Desigo
CC.

We also provide a formalism for JSON-LD and show how it offers a
lightweight alternative to SPARQL via JSON-LD framing.

Keywords: Web of Things · Internet of Things · SPARQL · RDF
EXI · JSON-LD · HDT · CBOR

1 Introduction

The mismatch between the triple structure of RDF and the object-oriented
nature of most programming languages on the Web has probably hindered the
development of Semantic Web technologies. A standard object notation for RDF,
to e.g. manipulate RDF data directly in JavaScript, was a prerequisite for fur-
ther adoption. Such a standard, JSON for Linked Data (JSON-LD), was recently
published by the W3C [26].

JSON-LD documents must link to a context that maps terms to Semantic
Web entities. Given a proper context, documents can be expanded, compacted or
flattened, as well as turned into RDF triples [18]. A JSON-based query language
to match and reshape JSON-LD documents was also requested by the community
but it has not been included in the official W3C standard. A new community
draft (JSON-LD 1.1) attempts to fill this gap by defining a procedure known as
JSON-LD framing [25].
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JSON-LD has rapidly been adopted by a number of data providers, such as
Open Data platforms, as well as by major browser vendors via schema.org1. It
has also become the default exchange format for Linked Data Notifications,
which are e.g. implemented by Mastodon, a successful decentralized micro-
blogging platform2.

Most reported usages of JSON-LD involve large-scale data exchange3. In this
paper, we explore the usage of JSON-LD as a compact RDF serialization, in the
context of the Internet of Things (IoT). It is envisioned that Web technologies
will sustain the massive integration of embedded devices to the Internet, by using
RESTful architectures, with JSON as a primary serialization format [8,27]. In
what would then become a Web of ‘Things’, Semantic Web technologies would
allow connected devices to be self-descriptive and autonomous [2]. Therefore,
JSON-LD appears to be a good candidate as a serialization format for the Web
of Things (WoT).

The major issues with using Semantic Web technologies in an embedded
environment are (1) the verbosity of RDF and (2) the complexity of semantic
processing. In this paper, we show how JSON-LD can address both issues. We
first provide the theoretical foundations for JSON-LD compaction and framing
(Sect. 3). In particular, we show how JSON-LD framing can be implemented in
SPARQL, a language with well-known semantics. Then, we experimentally show
how JSON-LD compaction using a global context can reduce the size of RDF
documents (Sect. 4). Before introducing our work, we present a short overview
of the state-of-the-art with respect to using RDF in constrained environments
(Sect. 2).

2 Related Work

Until today, a large part of research towards storing and querying RDF has
focused on very large, static data sets stored on powerful machines, sometimes
involving parallel computation. In contrast, storage mechanisms for resource-
constrained devices remain mostly unexplored. Until recently, no realistic use
case could be found where computational devices had limited resources but still
IP connectivity. The situation has changed with the coming of the IoT where
RDF is predicted to play a significant role.

In our context, constrained devices correspond mostly to low-power micro-
controllers (MCUs) with integrated IP communication stack [4]. Typically, such
devices are too constrained to support standard Web technologies (HTTP, XML,
JSON). A range of technologies were however developed in the last years as a
substitute. The Constrained Application Protocol (CoAP), the Efficient XML
Interchange format (EXI) and the Constrained Binary Object Representation
(CBOR) are the counterpart of HTTP, XML and JSON in the so-called “Embed-
ded Web” [23].
1 http://schema.org.
2 https://joinmastodon.org/.
3 https://github.com/json-ld/json-ld.org/wiki/Users-of-JSON-LD.

http://schema.org
https://joinmastodon.org/
https://github.com/json-ld/json-ld.org/wiki/Users-of-JSON-LD


Towards a Binary Object Notation for RDF 99

The European project SPITFIRE [22] paved the way to the use of RDF on
the Embedded Web, combining it with architectural principles of the Web of
Things. Since then, several methods were proposed to serialize and process RDF
data on constrained devices.

2.1 Serializing RDF Data

The first work that addressed constrained devices—and to the best of our knowl-
edge, the only one—is part of SPITFIRE and is called the Wiselib TupleStore
[12]. Built on top of Wiselib, a substitute to the C++ standard library designed
for embedded systems, the Wiselib TupleStore internally stores RDF nodes in a
tree-shaped data structure in order to compact them. In SPITFIRE, the Wiselib
TupleStore was ported on wireless motes (iSense, MICAz, . . . ) and the data
was serialized in a binary format called SHDT [11], a streaming version of the
Header-Dictionary-Triples format for RDF (HDT).

The original objective of HDT was to compact large RDF data sets. e.g.
to fit in the main memory of a standard PC. But as a binary format, its
compression scheme could reasonably be used on small data sets as well. An
HDT document is divided into three sections containing respectively meta-
data (header), resource IRIs (dictionary) and the triples themselves, indexed
by subject (triples). Although most RDF stores also implement a similar par-
titioning, HDT compresses each section separately with dedicated compression
methods [7].

In the original proposal for HDT, all triples are merged in an single array
while separations between them are stored in a bitmap, easily compressible. HDT
achieves high compression ratios compared to classical compression schemes like
gzip. An alternative triple indexing method was also proposed, performing verti-
cal partitioning with k2-tree compression (k2-triples) [1]. k2-triples achieves bet-
ter compression ratios while efficiently processing predicate-bound triple pattern
matching queries.

HDT and k2-triples show excellent results in terms of compression and query
processing speed. However, a recent study suggests that there exists a better
alternative for small data sets, i.e. on embedded devices [15]. The study presents
data sets of semantically annotated sensor measurements where an EXI seri-
alization of RDF/XML data is more compact than HDT. The two approaches
(EXI and HDT) have been combined in a proposal called Efficient RDF Inter-
change (ERI) [6], which, however, primarily addresses data streams (with time
considerations).

2.2 Processing RDF Data

In most use cases of SPITFIRE, the RDF data exposed by IoT devices was
crawled by a Web agent and put in a central RDF repository, which clients
could query through a SPARQL endpoint. In practice, IoT networks can be very
heterogeneous and complex. A more dynamic approach to querying might be
preferable over static crawling.
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Without any change on the SPITFIRE infrastructure, one possible approach
is what is referred to in the literature as Linked Data (LD) queries [10]. To answer
an LD query, Web clients follow links exposed by an RDF source according to
a global strategy defined by the client (e.g. based on statistics from the Linked
Open Data cloud). This type of processing might be encouraged by the recent
standardization by the W3C of Linked Data Platforms (LDPs) [24]. A mapping
of LDPs to CoAP has been proposed [19], which in theory makes LD queries a
possible candidate for RDF data exchange on constrained environments.

In parallel with LDPs, another architecture has been proposed to expose
RDF data sets at low cost: Triple Pattern Fragments (TPFs) [28]. TPFs try to
provide an intermediary in terms of computational cost between a full SPARQL
endpoint and an LDP that serves static data. In contrast to a SPARQL endpoint,
a TPF endpoint restricts queries to triple patterns. As for LD queries, Web
clients must define a strategy to order atomic triple patterns and reconstruct the
result set from the received fragments. A TPF server must also expose metadata
(statistics) to guide clients.

Both LD queries and TPFs have the drawback of generating many exchanges
between the client and the (constrained) server. Given that low-power devices
consume most of their energy on data exchange, especially with radio protocols,
these approaches would considerably lower their overall lifetime. We addressed
this issue in a previous work on a SPARQL engine for MCUs [5]. This engine,
which we called the μRDF store, is capable of answering basic graph patterns
(BGPs) and exposes a CoAP interface with RDF/EXI serialization. We imple-
mented it for the ESP8266, a microcontroller with an integrated Wi-Fi chip
(64 kB RAM, 80 MHz). Our experiments show that BGP processing, including
EXI coding, is fast in comparison to sending and receiving the data over Wi-
Fi, while significantly reducing the amount of data exchanged. In the present
work, we show how the μRDF store could support SPARQL beyond BGPs, by
implementing JSON-LD framing.

Another work on embedded systems reported similar observations: shifting
SPARQL joins (AND operator) to the edges in a wireless sensor network results
in 5 to 10 times faster query processing [3]. Although these results apply to
exchanges based on non-IP radio protocols with restricted frame size—thus not
directly comparable to our results, it is consistent with our results and encourages
more experiments in this direction.

3 Theoretical Background

Although JSON-LD 1.0 officially became a W3C recommandation in 2014, it
is still a moving standard. Its version 1.1 is currently under development. To
the best of our knowledge, no formalim has been provided yet for either JSON-
LD 1.0 or JSON-LD 1.1. In the following, we formalize parts of JSON-LD 1.1
(generic syntax, compaction and framing), without aiming at exhaustivity.
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3.1 Definitions

Our formalism is based on the flattened representation of a JSON-LD document,
i.e. an array of node objects without nesting. The notation we use is borrowed
from F-logic, an extension of predicate logic for object-oriented programming
[17]. Predicate logic defines terms and formulas. F-logic extends the definition of
formulas to include class membership and object fields, where object identifiers,
class identifiers and field names and values are constant terms.

Definition 1. Let I,B, L be pairwise disjoint sets of IRIs, blank nodes and lit-
erals, respectively. A JSON-LD (node) object is the formula

id : t1, . . . , tl [p1 → id1, . . . , pm → idm, pm+1 → v1, . . . , pn → vn−m] (1)

where id, idi ∈ (I ∪ B), ti, pj ∈ I and vk ∈ L.

In the JSON-LD terminology, id is an object identifier, t a type, p a property
and v a value. A JSON-LD graph is a set of JSON-LD objects. It can include
several formulas with the same object identifier.

Example 1. The following graph represents a room equipped with a temperature
sensor (IRI namespaces were omitted for the sake of conciseness):

r46 :Thing,Room [hasDataPoint → temp21],
r46 [hasName → ‘Room 46 (conference room)’],
device137 :Thing,Sensor [measures → temp21],
temp21 :Property,Temperature [hasUnit → degreeCelsius]

We now define a straightforward transformation from JSON-LD to RDF,
denoted σR. This transformation is based on the RDF deserialization algorithm
of the JSON-LD processor. In the original JSON-LD syntax, properties are
allowed to be blank nodes, in which case they should be ignored during RDF
deserialization. We exclude blank node properties in the present work.

Definition 2. Let F be the set of formulas as per Definition 1. Let f ∈ F be a
formula. We define σR, as follows:

σR(f) = {(id, type, t1), . . . , (id, p1, id1), . . . , (id, pn, vn−m)} (2)

σR(f) is an RDF graph (type being the RDF type predicate IRI). It is trivial
to define the inverse transformation, from RDF to JSON-LD, along the lines of
the serialization algorithm of the JSON-LD processor.

Example 2. By applying σR on all formulas of Example 1, we obtain the following
merged graph:

{(r46, type,Thing), (r46, type,Room),

(r46, hasDataPoint, temp21), (r46, hasName, ‘Room 46 (conference room)’),

(device137, type,Thing), (device137, type, Sensor),

(device137,measures, temp21), (temp21, type,Property),

(temp21, type,Temperature), (temp21, hasUnit, degreeCelsius)}
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Compaction. Compaction consists in mapping IRIs appearing in a JSON-LD
object to arbitrary (short) UTF-8 character strings. The IRI map required to
turn a compacted JSON-LD object into its original form is called a JSON-
LD context. Compaction is one of the procedures defined by the JSON-LD
processor [18].

Definition 3. Let U be the set of UTF-8 character strings. A JSON-LD context
is a map c : U �→ I. By abuse of notation, we denote c(f) the result of applying
c to all UTF-8 strings in the formula f .

Definition 4. Let c be a JSON-LD context. The formula f ′ is a compacted
JSON-LD (node) object against c if c(f ′) is a formula as per Definition 1 (i.e.
if c(f ′) ∈ F ).

It is possible to define a global context cg that would apply to any formula f ,
such that JSON-LD interchange and procedures like framing or RDF serializa-
tion can be done on the compacted form directly. The notion of global context
is key in optimizing the exchange and processing of JSON-LD data.

Example 3. As an example, one can define a simple global context that removes
all characters from an IRI but the first letter(s) of its local name (assuming it
introduces no name collision). A compacted form of Example 1 would then look
like the following:

r46 :T,R [hdp → temp21],
r46 [hn → ‘Room 46 (conference room)’],
device137 : T,S [m → temp21],
temp21 :P,T [hu → dc]

In practice, the ontology for a given domain of application includes a finite set
of concepts and properties. One can therefore build a context cg by assigning the
shortest possible UTF-8 string to all IRIs of this ontology (or set of ontologies). In
Sect. 4, we present experimental results on the performances of this compaction
technique.

Framing. JSON-LD framing is not part of the official W3C recommendation.
The formalism we present in the following is based on the latest community
draft for JSON-LD 1.1, as of December 2017 [25]. JSON-LD framing includes
two aspects: frame matching and re-shaping, analogous to SPARQL’s SELECT
and CONSTRUCT clauses. In the following, we only consider frame matching.

Let V be the set of variables (equivalent to the set of SPARQL variables).
Intuitively, a frame is a set of JSON-LD objects with variables.

Definition 5. A JSON-LD frame object f∗ is one of the following formulas:

1. none, which matches no JSON-LD node object;
2. wildcard, which matches any JSON-LD node object;
3. id∗ : t1, . . . , tl [p1 → id∗

1 , . . . , pm → id∗
m, pm+1 → v1, . . . , pn → vn−m] ;

where id∗, id∗
i ∈ V ∪ I ∪{none,wildcard}. We denote the set of such formulas F ∗.
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A JSON-LD frame is a set of flagged JSON-LD frame objects, that is, of pairs
(f∗, b) ∈ F ∗ ×{true, false}. The boolean flag b indicates that either all properties
or at least one property of a frame object should match a node object. If b is
false, any property can match. In the JSON-LD 1.1 specification, this flag is
referred to as the ‘require all’ flag.

Example 4. The following frame should match any room that contains a sensor
or an actuator (or both):

(room∗ :Room [hasDataPoint → dp∗], true),
(device∗ :Sensor,Actuator [measures → dp∗, actsOn → dp∗], false),
(dp∗[hasUnit → unit∗], true)

The current JSON-LD 1.1 specification lacks clarity on how to match blank
nodes. In the algorithm specification, as well in its reference implementation4, a
frame object identified by a blank node will only match node objects with the
same blank node identifier. Yet, blank nodes are supposed to have a local scope,
that is, they cannot be shared between RDF graphs. We therefore introduced
variables, by analogy with SPARQL. In practice, when evaluating a frame against
a graph, query variables can be defined as blank nodes that are disjoint with the
set of blank nodes in the graph.

3.2 Semantics and Complexity

Given the transformation from Definition 2, it is straightforward to define JSON-
LD entailment according to the well-defined RDF semantics [9,13]. We will focus
here on the semantics of JSON-LD framing only. Although we borrowed aspects
of F-logic in our formalism, F-structures and object semantics are not relevant
in the present work.

Before defining the semantics of JSON-LD framing, we define the transfor-
mation σF from a JSON-LD frame φ to SPARQL. We use the algebraic syntax
of Pérez et al. to express SPARQL graph patterns [21].

Definition 6. Let φ be a frame, i.e. a set of pairs (f∗
h , bh), 1 ≤ h ≤ |φ|. The

transformation function σF is defined as follows:

σF (φ) = P1 AND . . . AND P|φ| (3)

where each Ph is the graph pattern

Ph = (((id∗, type, t1) UNION . . . UNION (id∗, type, tl)) AND P ) (4)

such that

P =

{
P1 AND . . . AND Pn, if bh is true
P1 UNION . . . UNION Pn, otherwise

(5)

4 https://github.com/ruby-rdf/json-ld/.

https://github.com/ruby-rdf/json-ld/
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where each Pi, i ≤ m, is a graph pattern of the form

Pi =

⎧⎪⎨
⎪⎩

(id∗, pi, id∗
i ), if id

∗
i ∈ (V ∪ I)

(id∗, pi, ?wildcardi), if id∗
i is wildcard

(id∗, pi, ?nonei) FILTER (¬bound(?nonei)), if id∗
i is none

(6)

and each Pi, i > m is the triple pattern (id∗, pi, vi−m).

Example 5. The frame of Example 4 maps to the following SPARQL query:

(((?room, type, Room) AND (?room, hasDataPoint, ?dp)) AND
(((?device, type, Sensor) UNION (?device, type, Actuator)) AND
((?device, measures, ?dp) UNION (?device, actsOn, ?dp))) AND
(dp?, hasUnit, ?unit))

The range of σF is comprised in the subset of SPARQL that includes three
operators (UNION, AND, FILTER) and two filtering predicates (¬, bound).
However, the two are not equivalent. For instance, there is no frame φ such that
σF (φ) = ((?s1, ?p1, ?o1) UNION (?s2, ?p2, ?o2)).

It is also interesting to note that, despite the existence of the frame object
none which can exclude node objects, it is not necessary to include the operator
NOT in the definition of σF .

The transformation σF allows us to base the semantics of JSON-LD framing
on the semantics of SPARQL, which relies on the definition of a mapping μ and
an evaluation function [[·]]G [21]. Here, we override the definition of μ as follows:
a mapping μ : V �→ I ∪ B is a partial function representing a match for a frame
φ against a graph γ (a set of node objects). We also define the evaluation of φ
against γ as a function, denoted eval.

Definition 6 translates the special formulas none and wildcard into SPARQL
variables (?nonei, ?wildcardi) which are however irrelevant to define the seman-
tics of framing. We therefore must define a projection of mappings on the set
of variables only appearing in the original frame φ. We denote Vφ this set of
variables and ΠVφ

(M) the projection on Vφ of every mapping μ ∈ M returned
by the evaluation of σF (φ).

Definition 7. Let φ be a frame, let γ be a graph.

eval(φ, γ) = ΠVφ
([[σF (φ)]]σR(γ)) (7)

Example 6. Applying the room frame (Example 4) on the room graph (Exam-
ple 1) should return the mapping μ, such that μ(room∗) = r46, μ(device∗) =
device137, μ(dp∗) = temp21 and μ(unit∗) = degreeCelsius.

Proposition 1. The semantics we define here is equivalent to the procedural
semantics of the W3C JSON-LD 1.1 framing algorithm.

Some elements exposed here differ from the JSON-LD 1.1 draft. For instance,
we define the ‘require all’ flag on a per-object basis while the W3C algorithm



Towards a Binary Object Notation for RDF 105

defines it once for the whole frame. It is, however, possible to rewrite any frame
as per Definition 5 as a (more verbose) frame φ such that all flags bh, 1 ≤ h ≤ |φ|,
are set to the same value.

Similarly, for the sake of simplicity, we did not consider value pattern match-
ing and identifier matching in our formalism. These aspects, however, are mostly
syntactic sugar and do not influence the general semantics of framing.

To conclude with theoretical considerations, we give an insight into the com-
plexity of JSON-LD framing evaluation. In particular, the next theorem shows
that a SPARQL normal form can be computed in polynomial time for any JSON-
LD frame. A normal form is a disjunction of UNION-free graph patterns.

Theorem 1. Let φ be a frame. Let η be the number of frame objects in φ, such
that the ‘require all’ flag is false, let l, n be the maximum number of types and
properties (respectively) in a frame object of φ. A SPARQL normal form can be
computed for σF (φ) in O(η · l · n).

Proof. As a preliminary, we recall that the AND and UNION operators are
associative and commutative. Moreover, the following equivalence holds [21]:
(P1 AND (P2 UNION P3)) ≡ ((P1 AND P2) UNION (P1 AND P3)).

More generally, one can observe that if P1, P2 are both normal forms with
respectively i and j UNION-free patterns, then (P1 AND P2) has an equivalent
normal form with i · j patterns. This applies in particular to any Ph as defined
in Eq. 4 (l · n patterns).

σF (φ) can be rewritten by commuting AND clauses until there exists an
index η, such that ∀1 ≤ h ≤ η, bh is false and ∀η < h ≤ |φ|, bh is true. Let
Pη be the pattern (Pη+1 AND . . . AND P|φ|). Pη is in normal form. Using the
same observation as above, we can obtain a normal form NFη for (Pη AND Pη).
The same applies to (Pη−1 AND Pη−1) ≡ (Pη−1 AND NFη), recursively. We can
therefore obtain a normal form for σF (φ) in η iterations.

The UNION-free patterns we obtain from φ include only AND and FILTER
operators (BGPs). Deciding whether a mapping is a solution to a BGP query
is polynomial [21]. However, it becomes NP-complete if we include UNION pat-
terns. JSON-LD framing is therefore equivalent to an intermediate subset of
SPARQL that includes the UNION operator but for which the decision problem
remains polynomial. In practice, this means that JSON-LD framing can be easily
implemented on top of BGP processing.

3.3 Summary

Our primary motivation in the context of this paper is the exchange and process-
ing of RDF data on embedded devices (MCUs). The main limitation of MCUs
is the low amount of RAM available (8 to 64 kB). In this section, we highlighted
two important aspects of JSON-LD that can be leveraged to reduce the mem-
ory footprint of RDF processing: (1) it is possible to process JSON-LD data
in a compacted form, given a global context cg and (2) JSON-LD framing is a
lightweight alternative to SPARQL that can be reduced to BGP processing in
polynomial time.
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4 Experiments and Discussion

We implemented JSON-LD framing on the ESP8266. This implementation
extends our previous work on the μRDF store, which already demonstrated the
feasibility of processing BGPs on an MCU. As suggested in the previous section,
frames are first pre-processed to obtain a normal form and then processed by
the μRDF store. JSON-LD frames and graphs are processed in their compacted
form, no transformation to RDF is required.

In the following, we concentrate on JSON-LD compaction. As underlined
in Sect. 2, the state-of-the-art in binary formats for RDF includes two main
approaches: HDT and RDF/EXI. JSON-LD compaction allows for a third alter-
native: encoding JSON-LD in its compacted form (using a global context) in a
binary JSON format. The binary formats we selected for these experiments are
EXI for JSON (EXI4JSON) and CBOR. EXI4JSON is an extension of EXI to
represent JSON documents in binary XML [20].

Building a global context, as mentioned in Sect. 3.1, is somewhat arbitrary.
For instance, one could either choose to include all ontological concepts exposed
on the Semantic Web in a single context or tailor an application-specific context
covering a limited set of ontologies. In our experiments, we generated two con-
texts for every test set. The first one acts as a ‘minimal’ context, for comparison
purposes: for a test set with n distinct IRIs, the minimal context maps the n
first UTF-8 characters to them. The second context acts as a more realistic one:
for a test set with n distinct IRIs defined in m distinct vocabularies, the second
context maps the |vocab1|+. . .+|vocabm| first UTF-8 characters to all IRIs found
in the vocabularies. Compaction using this context will not perform as good as
with the minimal context but it better estimates the performances one should
expect in a production environment.

We compared the compaction performances of the three approaches on four
data sets: a sample from the Billion Triples Challenge (BTCSAMPLE), a single
sensor measurement (NODE), the output of a proxy service for sensor data
(SSP) and an export of a building model from the Siemens Desigo CC platform
(DESIGO). The first three data sets were provided by Hasemann et al. in the
context of SPITFIRE. We added the last one to provide a comparison on real-
world data, exported from a production environment. We provide statistics on
these data sets on Table 1. For each of them, the set of ontologies we used to
build a realistic JSON-LD context is as follows:

BTCSAMPLE – RDF, FOAF, DC, SIOC, SKOS, SWIVT;
NODE – RDF, RDFS, OWL, DC, SPITFIRE, SSNX, DUL, QUDT;
SSP – RDF, RDFS, OWL, DC, SPITFIRE, SSNX, DUL, SWEET;
DESIGO – RDF, CC, CCBA, SAREF, TD.

All data sets and context files can be found online5.

5 https://github.com/vcharpenay/urdf-store-exp/.

https://github.com/vcharpenay/urdf-store-exp/
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Table 1. Test set statistics

BTCSAMPLE NODE SSP DESIGO

Nb. of triples 174 73 4859 84908

Nb. of distinct subjects/nodes 174 26 1345 21527

Nb. of pieces – – 313 1843

Avg. nb. of triples (piecewise) – – 15 70

Min. nb. of triples (piecewise) – – 13 5

Max. nb. of triples (piecewise) – – 19 662

4.1 SPITFIRE Data Sets

The BTCSAMPLE data set includes 174 random triples from a large social
network. All subject, predicate and object IRIs are disjoint. These IRIs come
from a variety of vocabularies, such as FOAF6, GeoNames7 or SKOS8. The
main purpose of BTCSAMPLE as a test set is to evaluate how the different
approaches perform on IRI compaction, regardless of the data structure.

In contrast to BTCSAMPLE, NODE and SSP mostly use the SSNX vocab-
ulary9 to express the semantics of sensor measurements. The former is a small
data set produced by one single sensor (73 triples) while the latter includes the
measurements of hundreds of sensing devices (4859 triples). SSP shows many
redundancies in the data. Both NODE and SSP are realistic WoT data sets.

4.2 Desigo CC Data Set

Our last data set, which we denote DESIGO, was generated from a simulated
Siemens building managed by the Desigo CC platform, at a real scale. The data
is exported from Desigo CC as a collection of WoT Thing Descriptions (TDs)
[14]; the examples of Sect. 3 are taken from this data set. A TD is a document
providing pointers to Web resources allowing a WoT client to interact with the
server exposing them. These Web resources can e.g. encapsulate measurement
values (room temperature reading), commands (start/stop ventilation) or events
(fire alarm). The data set, which includes around ten thousand data points, is
the sum of 1843 interlinked TDs.

In the Web of Things architecture, TD documents are not meant to be cen-
tralized in a unique data set. Instead, every IoT device should carry its own
TD as a self-descriptive agent, so that machine-to-machine interaction is possi-
ble [16]. We therefore consider DESIGO both as a whole and as an aggregation
of separate pieces of information, scattered across a network. Similarly, SSP

6 http://xmlns.com/foaf/0.1/.
7 http://www.geonames.org/ontology.
8 http://www.w3.org/2004/02/skos/core.
9 http://purl.oclc.org/NET/ssnx/ssn.

http://xmlns.com/foaf/0.1/
http://www.geonames.org/ontology
http://www.w3.org/2004/02/skos/core
http://purl.oclc.org/NET/ssnx/ssn
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(a) BTCSAMPLE (b) NODE

(c) SSP (d) DESIGO

Fig. 1. Compaction results (whole data sets)

is an aggregation of sensor measurements, which could also be exchanged in a
machine-to-machine fashion. This WoT principle drove our experiments, as later
shown in Sect. 4.3.

Desigo CC includes a core object-oriented data model, which has been for-
malized in OWL (CC)10. The CCBA ontology11 is a specialization of CC for
building automation, with alignments with the SAREF ontology12.

4.3 Results

We compared the following compaction methods: HDT with bitmap encod-
ing, HDT with k2-triples encoding, JSON-LD with minimal context (both with
EXI4JSON and CBOR encoding), JSON-LD with ontology-based context (again
with EXI4JSON and CBOR encoding) and RDF/EXI. The results are shown on
Figs. 1a–d.

What our results first show is that k2-triples, although highly efficient on
large datasets, performs poorly on small ones: on NODE, the size for k2-triples
is 16 kB while all others remain under 3 kB. This observation consolidates our
previous results on the μRDF store. Moreover, on all data sets, RDF/XML is
outperformed by other approaches. In particular, it is outperformed by HDT,

10 Currently in the process of being publicly released.
11 Idem.
12 https://w3id.org/saref.

https://w3id.org/saref


Towards a Binary Object Notation for RDF 109

(a) SSP (b) DESIGO

Fig. 2. Compaction result distributions (piecewise data sets)

contrary to what earlier results suggested [15]. The difference in performances
most likely rests on the fact that EXI performs good on data sets with many
non-string literals (e.g. numeric sensor values), which happens not to be the case
in these data sets. It is interesting to note, however, that EXI performs better
than CBOR on compressing structural patterns (as in SSP).

HDT was originally designed to compress very large datasets but it also per-
forms good on medium size data sets, like SSP and DESIGO. It is more than
twice as performant as EXI4JSON and by far better than CBOR (which is con-
sistently outperformed by EXI4JSON). However, on the small NODE dataset,
EXI4JSON and HDT have comparable results, regardless of the context used.
The results on BTCSAMPLE illustrate the impact of choosing a context on
the overall compaction performances: the minimal context allows for 37% com-
paction compared to the ontology-based context (5409 kB/8639 kB). Indeed, the
higher the variety of IRIs used in an application, the more arduous it is to design
a context that fits.

JSON-LD compaction shows best results on datasets of less than hundred
triples, the typical size of a TD document carried by a constrained WoT agent.
Figure 2a and b show how EXI4JSON and CBOR are more efficient than HDT on
SSP and DESIGO, when pieces of data are serialized separately (using the same
ontology-based context). For median results on DESIGO, EXI4JSON and CBOR
achieve a compaction ratio of 58% and 50% compared to HDT (respectively).
Compaction ratios on SSP are similar: 62% and 59%. Interestingly, CBOR per-
forms better on median results but it shows a higher variance than EXI4JSON.
One can also note that the DESIGO data set appears skewed towards small TDs.
The reason is that many TDs in the data set are logical entities, without any
Web resource attached (and thus relatively small TDs). It is the case for e.g.
buildings, floors, rooms, etc.

The overhead of HDT on small data sets is due to the dictionary it embeds in
all individual documents (mostly redundant). One could note that the principle
of defining a global context for a set of documents could also apply to HDT dic-
tionaries. However, splitting a dictionary into global and local parts would lower
the compaction ratio and require decompression on the MCU before processing
(e.g. a SPARQL or JSON-LD framing query).



110 V. Charpenay et al.

5 Conclusion

Throughout this paper, we considered the use of JSON-LD as a serialization
format for embedded devices (MCUs). Our formalization of JSON-LD highlights
how compaction can address the verbosity of RDF, by defining a global JSON-LD
context shared across agents in a network, and how framing extends SPARQL
basic graph patterns.

This work follows on from of our development of the μRDF store, an RDF
store for MCUs. We regard JSON-LD framing as an important building block
for autonomous systems, a driver of machine-to-machine communication.

Experimentally, we found that JSON-LD compaction, coupled with EXI4-
JSON or CBOR, can lead to compaction ratios around 50–60% compared to
the state-of-the-art (HDT) for small WoT data sets (around hundred triples).
JSON-LD has already been adopted by many providers in the Web of data but
the results we presented in this paper suggest that it might as well become a
reference in the Web of Things.
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