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Abstract. Entity aspect recommendation is an emerging task in seman-
tic search that helps users discover serendipitous and prominent infor-
mation with respect to an entity, of which salience (e.g., popularity) is
the most important factor in previous work. However, entity aspects are
temporally dynamic and often driven by events happening over time. For
such cases, aspect suggestion based solely on salience features can give
unsatisfactory results, for two reasons. First, salience is often accumu-
lated over a long time period and does not account for recency. Second,
many aspects related to an event entity are strongly time-dependent. In
this paper, we study the task of temporal aspect recommendation for
a given entity, which aims at recommending the most relevant aspects
and takes into account time in order to improve search experience. We
propose a novel event-centric ensemble ranking method that learns from
multiple time and type-dependent models and dynamically trades off
salience and recency characteristics. Through extensive experiments on
real-world query logs, we demonstrate that our method is robust and
achieves better effectiveness than competitive baselines.

1 Introduction

Beyond the traditional “ten blue links”, to enhance user experience with entity-
aware intents, search engines have started including more semantic information,
(1) suggesting related entities [4,9,30,31], or (2) supporting entity-oriented query
completion or complex search with additional information or aspects [1,22,26].
These aspects cover a wide range of issues and include (but are not limited
to) types, attributes/properties, relationships or other entities in general. They
can change over time, as public attention shifts from some aspects to others. In
order to better recommend such entity aspects, this temporal dimension has to
be taken into account.

Exploiting collaborative knowledge bases such as Wikipedia and Freebase
is common practice in semantic search, by exploiting anchor texts and inter-
entity links, category structure, internal link structure or entity types [4]. More
recently, researchers have also started to integrate knowledge bases with query
logs for temporal entity knowledge mining [5,30]. In this work, we address the
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temporal dynamics of recommending entity aspects and also utilize query logs,
for two reasons. First, query logs are strongly entity related: more than 70% of
Web search queries contain entity information [19,21]. Queries often also contain
a short and very specific piece of text that represents users’ intents, making it an
ideal source for mining entity aspects. Second, different from knowledge-bases,
query logs naturally capture temporal dynamics around entities. The intent of
entity-centric queries is often triggered by a current event [17,18], or is related
to “what is happening right now”.

Previous work do not address the problem of temporal aspect recommenda-
tion for entities, often event-driven. The task requires taking into account the
impact of temporal aspect dynamics and explicitly considering the relevance of
an aspect with respect to the time period of a related event. To demonstrate the
characteristics of these entity aspects, we showcase a real search scenario, where
entity aspects are suggested in the form of query suggestion/auto-completion,
given the entity name as a prior. Figure 1 shows the lists of aspect suggestions
generated by a well-known commercial search engine for academy awards 2017
and australia open 2017. These suggestions indicate that the top-ranked aspects
are mostly time-sensitive, and as the two events had just ended, the recom-
mended aspects are timeliness-wise irrelevant (e.g., live, predictions).

Fig. 1. [Screenshot] Recommendation generated by a commercial search engine for
academy awards 2017 and australia open 2017, submitted on March 31th, 2017, on a
clean history browser.

Although the exact techniques behind the search engine’s recommendation
are unknown, the mediocre performance might be caused by the effect of aspect
salience (query popularity in this case) and the rich get richer phenomenon: the
salience of an aspect is accumulated over a long time period. Figure 2 illustrates
changes in popularity of relevant searches captured in the AOL (left) and Google
(right) query logs (e.g., ncaa printable bracket, ncaa schedule, and ncaa finals)
for the NCAA1 tournament. The basketball event began on March 14, 2006,
and concluded on April 3, 2006. In order to better understand this issue, we
present two types of popularity changes, namely, (1) frequency or query volume
(aggregated daily), and cumulative frequency. Frequencies of pre-event activities
like printable bracket and schedule gain increased volume over time, especially
in the before event period. On the other hand, up-to-date information about
the event, such as, ncaa results rises in importance when the event has started
1 A major sports competition in the US held annually by the National Collegiate

Athletic Association (NCAA)- https://en.wikipedia.org/wiki/Ncaa.

https://en.wikipedia.org/wiki/Ncaa
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Fig. 2. Dynamic aspect behaviors for entity ncaa in AOL and Google.

(on March 14), with very low query volume before the event. While the popular-
ity of results or finals aspect exceeds that of ncaa printable bracket significantly
in the periods during and after event, the cumulative frequency of the pre-
event aspect stays high. We witness similar phenomenon with the same event in
2017 in the Google query logs. We therefore postulate that (1) long-term salience
should provide good ranking results for the periods before and during, whereas
(2) short-term or recent interest should be favored on triggers or when the tem-
poral characteristics of an event entity change, e.g., from before/during to after
phase. Different event types (breaking or anticipated events) may vary signifi-
cantly in term of the impact of events, which entails different treatments with
respect to a ranking model.

Our contributions can be summarized as follows.

– We present the first study of temporal entity aspect recommendation that
explicitly models triggered event time and type.

– We propose a learning method to identify time period and event type using
a set of features that capture temporal dynamics related to event diffusion.

– We propose a novel event-centric ensemble ranking method that relies on
multiple time and type-specific models for different event entities.

To this end, we evaluated our proposed approach through experiments using
real-world web search logs – in conjunction with Wikipedia as background-
knowledge repository.

2 Related Work

Entity aspect identification has been studied in [22,26]. [26] focuses on salient
ranking features in microblogs. Reinanda et al. [22] start from the task of mining
entity aspects in the query logs, then propose salience-favor methods for ranking
and recommending these aspects. When regarding an aspect as an entity, related
work connected to temporal IR is [31], where they study the task of time-aware



Multiple Models for Recommending Temporal Aspects of Entities 465

entity recommendation using a probabilistic approach. The method also implic-
itly considers event times as triggering sources of temporal dynamics, yet relies
on coarse-grained (monthly) granularity and does not recognize different phases
of the event. It is therefore not really suitable for recommending fine-grained,
temporal aspects. ‘Static’ entity recommendation was first introduced by the
Spark [4] system developed at Yahoo! They extract several features from a vari-
ety of data sources and use a machine learning model to recommend entities to
a Web search query. Following Spark, Sundog [9] aims to improve entity recom-
mendation, in particular with respect to freshness, by exploiting Web search log
data. The system uses a stream processing based implementation. In addition,
Yu et al. [30] leverage user click logs and entity pane logs for global and person-
alized entity recommendation. These methods are tailored to ranking entities,
and face the same problems as [31] when trying to generalize to ‘aspects’.

It is also possible to relate these entity aspects to RDF properties/relations in
knowledge bases such as FreeBase or Yago. [7,28] propose solutions for ranking
these properties based on salience. Hasibi et al. [10] introduce dynamic fact
based ranking (property-object pairs towards a sourced entity), also based on
importance and relevance. These properties from traditional Knowledge Bases
are often too specific (fact-centric) and temporally static.

3 Background and Problem Statement

3.1 Preliminaries

In this work, we leverage clues from entity-bearing queries. Hence, we first revisit
the well-established notions of query logs and query-flow graphs. Then, we intro-
duce necessary terminologies and concepts for entities and aspects. We will
employ user log data in the form of queries and clicks.

Our datasets consist of a set of queries Q, a set of URLs U and click-through
information S. Each query q ∈ Q contains query terms term(q), timestamps
of queries time(q) (so-called hitting time), and an anonymized ID of the user
submitted the query. A clicked URL u ∈ Uq refers to a Web document returned
as an answer for a given query q. Click-through information is a transactional
record per query for each URL clicked, i.e., an associated query q, a clicked URL
u, the position on result page, and its timestamps. A co-clicked query-URL graph
is a bipartite graph G = (V,E) with two types of nodes: query nodes VQ and
URL nodes VU , such that V = VQ ∪ VU and E ⊆ VQ × VU .

3.2 Problem Definitions

We will approach the task of recommending temporal entity aspect as a ranking
task. We first define the notions of an entity query, a temporal entity aspect,
developed from the definition of entity aspect in [22], and an event entity . We
then formulate the task of recommending temporal entity aspects.

Definition 1. An entity query qe is a query that is represented by one Wikipedia
entity e. We consider qe as the representation of e.
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Fig. 3. Learning time and type-specific ranking models.

Definition 2. Given a “search task” defined as an atomic information need, a
temporal “entity aspect” is an entity-oriented search task with time-aware intent.
An entity-oriented search task is a set of queries that represent a common task
in the context of an entity, grouped together if they have the same intent [22].
We will use the notion of query q to indicate an entity aspect a interchangeably
hereafter.

Definition 3. An entity that is related to a near event at time ti is called an
event-related entity, or event entity for short. Relatedness is indicated by the
observation that public attention of temporal entity aspects is triggered by the
event. We can generalize the term event entity to represent any entity that is
related to or influenced by the event. An event entity e that is associated to the
event whose type C can be either breaking or anticipated. An event entity is also
represented as a query with hitting time t. The association between t and the
event time –defines e’s time period T – that can be either of the before, during
or after phases of the event. When the entity is no longer event-related, it is
considered a “static” entity.

Problem (Temporal Entity-Aspect Recommendation): Given an event
entity e and hitting time t as input, find the ranked list of entity aspects that
most relevant with regards to e and t.

Different from time-aware entity recommendation [27,31], for an entity query
with exploratory intent, users are not just interested in related entities, but also
entity aspects (which can be a topic, a concept or even an entity); these provide
more complete and useful information. These aspects are very time-sensitive
especially when the original entity is about an event. In this work, we use the
notion of event entity, which is generalized to indicated related entities of any
trending events. For example, Moonlight and Emma Stone are related entities
for the 89th Academy Awards event. We will handle the aspects for such entities
in a temporally aware manner.

4 Our Approach

As event entity identification has been well-explored in related work [14–16],
we do not suggest a specific method, and just assume the use of an appropri-
ate method. Given an event entity, we then apply our aspect recommendation
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method, which is composed of three main steps. We summarize the general
idea of our approach in Fig. 3. First, we extract suggestion candidates using a
bipartite graph of co-clicked query-URLs generated at hitting time. After the
aspect extraction, we propose a two-step unified framework for our entity aspect
ranking problem. The first step is to identify event type and time in a joint
learning approach. Based on that, in the second step, we divide the training
task to different sub-tasks that correspond to specific event type and time. Our
intuition here is that the timeliness (or short-term interest) feature-group might
work better for specific subsets such as breaking and after events and vice versa.
Dividing the training will avoid timeliness and salience competing with each
other and maximize their effectiveness. However, identifying time and type of an
event on-the-fly is not a trivial task, and breaking the training data into smaller
parts limits the learning power of the individual models. We therefore opt for an
ensemble approach that can utilize the whole training data to (1) supplement the
uncertainties of the time-and-type classification in the first step and (2) leverage
the learning power of the sub-models in step 2. In the rest of this section, we
explain our proposed approach in more detail.

4.1 Aspect Extraction

The main idea of our approach for extracting aspects is to find related entity-
bearing queries; then group them into different clusters, based on lexical and
semantic similarity, such that each cluster represents a distinct aspect. The
click-through information can help identifying related queries [25] by exploiting
the assumption that any two queries which share many clicked URLs are likely
to be related to each other.

For a given entity query e, we perform the following steps to find aspect can-
didates. We retrieve a set of URLs Ue that were clicked for e from the beginning
of query logs until the hitting time te. For each uj ∈ Ue, we find a set of distinct
queries for which uj has been clicked. We give a weight w to each query-URL
by normalizing click frequency and inverse query frequency (CF-IQF) [6], which
calculate the importance of a click, based on click frequency and inverse query
frequency. CF − IQF = cf · log(N/(qf +1)), where N is the number of distinct
queries. A high weight CF − IQF indicates a high click frequency for the query-
URL pair and a low query frequency associated with the URL in the whole query
log. To extract aspect candidates from the click bipartite graph, we employ a
personalized random walk to consider only one side of the query vertices of the
graph (we denote this approach as RWR). This results in a set of related queries
(aspects) to the source entity e, ranked by click-flow relatedness score. To this
end, we refine these extracted aspects by clustering them using Affinity Prop-
agation (AP) on the similarity matrix of lexical and semantic similarities. For
semantic measure, we use a word2vec skip-gram model trained with the English
Wikipedia corpus from the same time as the query logs. We pick one aspect with
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highest frequency to represent each cluster, then select top-k aspects by ranking
them using RWR relatedness scores2.

4.2 Time and Type Identification

Our goal is to identify the probability that an event-related entity is of a specific
event type, and in what time period of the event. We define these two targets
as a joint-learning time-series classification task, that is based on event diffu-
sion. In the following, we first present the feature set for the joint-learning task,
then explain the learning model. Last we propose a light-weight clustering app-
roach that leverages the learning features, to integrate with the ranking model
in Sect. 4.3.

Features. We propose a set of time series features for our multi-class classifica-
tion task. seasonality and periodicity are good features to capture the anticipated
-recurrent events. In addition, we use additional features to model the temporal
dynamics of the entity at studied/hitting time te. We leverage query logs and
Wikipedia revision edits as the data sources for short and long span time series
construction, denoted as ψ

(e)
Q and ψ

(e)
WE (for seasonal, periodical event signals)

respectively3. The description of our features follows:

– Seasonality is a temporal pattern that indicates how periodic is an observed
behavior over time. We leverage this time series decomposition technique for
detecting not only seasonal events (e.g., Christmas Eve, US Open) [23] but
also more fine-grained periodic ones that recurring on a weekly basis, such as
a TV show program.

– Autocorrelation, is the cross correlation of a signal with itself or the corre-
lation between its own past and future values at different times. We employ
autocorrelation for detecting the trending characteristics of an event, which
can be categorized by its predictability. When an event contains strong inter-
day dependencies, the autocorrelation value will be high. Given observed
time series values ψ1, ..., ψN and its mean ψ̄, autocorrelation is the similarity
between observations as a function of the time lag l between them. In this
work, we consider autocorrelation at the one time unit lag only (l = 1), which
shifts the second time series by one day.

– Correlation coefficient, measures the dynamics of two consecutive aspect
ranked lists at time te and te − 1, return by RWR. We use Goodman and

2 About complexity analysis, the click bipartite graph construction costs O(m + n)
and RWR in practice, can be bounded by O(m+n) for top-k proximity nodes. Note
that m,n are the number of edges and nodes respectively. AP is quadratic O(kn2)
time, (with k is the number of iterations), of our choice as we aim for a simple
and effective algorithm and our aspect candidate sets are not large. A more efficient
algorithm such as the Hierarchical AP can be used when candidate sets are large.
The cost of constructing the similarity matrix is O(n2).

3 Wikipedia page views is an alternative, however it is not publicly available for the
time of our query logs, 2006.
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Kruskal’s gamma to account for possible new or old aspects appear or disap-
pear in the newer list.

– Level of surprise, measured by the error margin in prediction of the learned
model on the time series. This is a good indicator for detecting the starting
time of breaking events. We use Holt-Winters as the predictive model.

– Rising and falling signals. The intuition behind time identification is to
measure whether ψ

(e)
Q is going up (before) or down (after) or stays trend-

ing (during) at hitting time. Given ψ
(e)
Q , we adopt an effective parsimonious

model called SpikeM [20], which is derived from epidemiology fundamentals
to predict the rise and fall of event diffusion. We use the Levenberg-Marquardt
algorithm to learn the parameter set and use the parameters as features for
our classification task.

Learning Model. We assume that there is a semantic relation between the
event types and times (e.g., the before phase of breaking events are different
from anticipated). To leverage the dependency between the ground labels of the
two classification tasks, we apply a joint learning approach that models the two
tasks in a cascaded manner, as a simple version of [11]. Given the same input
instance I , the 1st stage of the cascaded model predicts the event type C with
all proposed features. The trained model M 1 is used in the 2nd stage to predict
the event time T . We use the logistic regression model M 2

LR for the 2nd stage,
which allows us to add additional features from M 1. The feature vector of M 2

LR

consists of the same features as M 1, together with the probability distribution
of P (Ck|e, t) (output of M 1) of as additional features.

Ranking-Sensitive Time and Type Distribution. The output of an effec-
tive classifier can be directly used for determining a time and type probability
distribution of entities; and thus dividing the training entities into subsets for
our divide-and-conquer ranking approach. However, having a pre-learned model
with separate and large training data is expensive and could be detrimental to
ranking performance if the training data is biased. We therefore opt for effec-
tive on-the-fly ranking-sensitive time and type identification, following [3] that
utilizes the ‘locality property’ of feature spaces. We adjust and refine the app-
roach as follows. Each entity is represented as a feature vector, and consists of
all proposed features with importance weights learned from a sample of training
entities (for ranking). We then employ a Gaussian mixture model to obtain the
centroids of training entities. In our case, the number of components for cluster-
ing are fixed before hand, as the number of event types multiplied by the number
of event times. Hence the probability distribution of entity e at time t belonging
to time and type Tl,Ck, P (Tl,Ck|e, t) is calculated as 1 − ‖xe−x

cT l,C k ‖2

max∀T,C‖xe−x
cT l,C k ‖2 ,

or the distance between feature vector xe and the corresponding centroid cT l,Ck
.

4.3 Time and Type-Dependent Ranking Models

Learning a single model for ranking event entity aspects is not effective due to
the dynamic nature of a real-world event driven by a great variety of multiple
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factors. We address two major factors that are assumed to have the most influ-
ence on the dynamics of events at aspect-level, i.e., time and event type. Thus,
we propose an adaptive approach based on the ensemble of multiple ranking
models learned from training data, which is partitioned by entities’ temporal
and type aspects. In more detail, we learn multiple models, which are co-trained
using data soft partitioning/clustering method in Sect. 4.2, and finally combine
the ranking results of different models in an ensemble manner. This approach
allows sub-models to learn for different types and times (where feature sets can
perform differently), without hurting each other. The adaptive global loss then
co-optimizes all sub-models in a unified framework. We describe in details as
follows.

Ranking Problem. For aspect ranking context, a typical ranking problem is to
find a function f with a set of parameters ω that takes aspect suggestion feature
vector X as input and produce a ranking score ŷ: ŷ = f(X , ω). In a learning
to rank paradigm, it is aimed at finding the best candidate ranking model f∗ by
minimizing a given loss function L calculated as: f∗ = arg minf

∑
∀a L (ŷa, ya).

Multiple Ranking Models. We learn multiple ranking models trained using
data constructed from different time periods and types, simultaneously, thus
producing a set of ranking models M = {MT1,C1 , . . . ,MTm,Cn

}, where Ti is an
event time period, ∈ T , and C = {C1,C2, . . . ,Cn} are the types of an event
entity. We use an ensemble method that combines results from different ranking
models, each corresponding to an identified ranking-sensitive query time T and
entity type C . The probabilities that an event entity e belongs to time period
Tl and type Ck given the hitting time t is P (Tl,Ck|e, t), and can be computed
using the time and type identification method presented in Sect. 4.2.

f∗ = arg min
f

∑

∀a

L (
n∑

k=1

P (Ck|a, t)
m∑

l=1

P (Tl|a, t,Ck)ŷa, ya) (1)

Multi-criteria Learning. Our task is to minimize the global relevance loss
function, which evaluates the overall training error, instead of assuming the
independent loss function, that does not consider the correlation and overlap
between models. We adapted the L2R RankSVM [12]. The goal of RankSVM
is learning a linear model that minimizes the number of discordant pairs in the
training data. We modified the objective function of RankSVM following our
global loss function, which takes into account the temporal feature specificities
of event entities. The temporal and type-dependent ranking model is learned by
minimizing the following objective function:
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min
ω,ξ,e,i,j

1
2
||ω||2 + C

∑

e,i,j

ξe,i,j

subject to,
n∑

k=1

P (Ck|e, t)
m∑

l=1

P (Tl|e, t,Ck)ωT
klX

e
i

≥
n∑

k=1

P (Ck|e, t)
m∑

l=1

P (Tl|e, t,Ck)ωT
klX

e
j + 1 − ξe,i,j ,

∀Xe
i � Xe

j , ξe,i,j ≥ 0.

(2)

where P (Ck|e, t) is the probability the event entity e, at time t, is of type Ck,
and P (Tl|e, t,Ck) is probability e is in this event time Tl given the hitting-time
t and Ck. The other notions are inherited from the traditional model (Xq

i � Xe
j

implies that an entity aspect i is ranked ahead of an aspect j with respect to
event entity e. C is a trade-off coefficient between the model complexity ||ω||
and the training error ξa,i,j .

Ensemble Ranking. After learning all time and type-dependent sub mod-
els, we employ an unsupervised ensemble method to produce the final rank-
ing score. Supposed ā is a testing entity aspect of entity e. We run each of
the ranking models in M against the instance of ā, multiplied by the time
and type probabilities of the associated entity e at hitting time t. Finally, we
sum all scores produced by all ranking models to obtain the ensemble ranking,
score(ā) =

∑
m∈M P (Ck|e, t)P (Tl|e, t,Ck)f∗m(ā).

4.4 Ranking Features

We propose two sets of features, namely, (1) salience features (taking into
account the general importance of candidate aspects) that mainly mined from
Wikipedia and (2) short-term interest features (capturing a trend or timely
change) that mined from the query logs. In addition, we also leverage click-flow
relatedness features computed using RWR. The features from the two categories
are explained in details as follows.

Salience features - or in principle, long-term prominent features.

– TF.IDF of an aspect a is the average TF.IDF (w) of all terms w ∈ a;

TF.IDF (w) is calculated as tf(w,D)l̇og
N

df(w)
, whereas D is a section in

the related Wikipedia articles C of entity e. To construct C, we take all in-
link articles of the corresponding Wikipedia article of e; tf(w,D) is the term
frequency, df(w) denotes the number of sections which w appears.

– MLE-based, where we reward the more (cumulated) frequently occur-
ring aspects from the query logs. The maximum likelihood sMLE is
sumw∈an(w, e)

∑
a′

∑
t∈a′ f (w, e)

, where f (w, e) denotes the frequency a segment (word or

phrase) w ∈ a co-occurs with entity e.
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– Entropy-based, where we reward the more “stable” aspects over time from
the query logs. The entropy is calculated as: sE =

∑
t∈T P (a|t, e)logP (a|t, e),

where P (a|t, e) is the probability of observing aspect a in the context of entity
e at time t.

– Language Model-based, how likely aspects are generated by as statistical
LM based on the textual representation of the entity d(e). We model d(e)
as the corresponding Wikipedia article text. We use the unigram model with
default Dirichlet smoothing.

Short-term interest features, are described as follows.

– Temporal click entropy. Click entropy [8] is known as the measurement
of how much diversity of clicks to a particular query over time. In detail, the
click entropy is measured as the query click variation over a set of URLs for
a given query q. In this work, a temporal click entropy accounts for only the
number of clicks on the time unit that the entity query is issued. The temporal
click entropy TCEt can be computed as

∑

u∈Uq

−P (u|q) log P (u|q) where Uq is

a set of clicked URLs for a given query q at time t. The probability of u being
clicked among all the clicks of q, P (u|q) is calculated as |click(u,q)|∑

ui∈Uq
|click(ui,q)| .

– Trending momentum measures the trend of an aspect based on the query
volume. The trending momentum at time t, Tmt is calculated using the mov-
ing average (Ma) technique, i.e., Tmt = Ma(t, is) − Ma(t, il). Whereas, is,il
denotes the short and long time window from the hitting time.

– Cross correlation or temporal similarity, is how correlated the aspect wrt.
the main entity. The more cross-correlated the temporal aspect to the entity,
the more influence it brings to the global trend. Given two time series ψe

t

and ψa
t of the entity and aspect at time t, we employ the cross correlation

technique to measure such correlation. Cross correlation CCF (ψe
t , ψ

a
t ) gives

the correlation score at lagging times. Lagging time determines the time delay
between two time-series. In our case, as we only interest in the hitting time,
we take the maximum CCF in a lag interval of [−1, 1].

– Temporal Language Model-based, similar to the salient feature, only the
textual representation d(e) is the aggregated content of top-k most clicked
URLs at time t.

5 Evaluation

In this section, we explain our evaluation for assessing the performance of our
proposed approach. We address three main research questions as follows:

RQ1: How good is the classification method in identifying the most relevant
event type and period with regards to the hitting time?

RQ2: How do long-term salience and short-term interest features perform
at different time periods of different event types?

RQ3: How does the ensemble ranking model perform compared to the single
model approaches?
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In the following, we first explain our experimental setting including the
description of our query logs, relevance assessment, methods and parameters
used for the experiments. We then discuss experimental results for each of the
main research questions.

5.1 Experimental Setting

Datasets. We use a real-world query log dataset from AOL, which consists
of more than 30 million queries covering the period from March 1, to May 31,
2006. Inspired by the taxonomy of event-related queries presented in [13], we
manually classified the identified events into two distinct subtypes (i.e., Breaking
and Anticipated). We use Tagme4 to link queries to the corresponding Wikipedia
pages. We use the English Wikipedia dump of June, 2006 with over 2 million
articles to temporally align with the query logs. The Wikipedia page edits source
is from 2002 up to the studied time, as will be explained later. To count the
number of edits, we measure the difference between consecutive revision pairs
extracted from the Special:Export5.

Identifying Event Entities. We reuse the event-related queryset from [14],
that contains 837 entity-bearing queries. We removed queries that refer to past
and future events and only chose the ones which occured in the period of the AOL
dataset, which results in 300 distinct entity queries. Additionally, we construct
a more recent dataset which consists of the volume of searches for 500 trending
entity queries on Google Trend. The dataset covers the period from March to
May, 2017. To extract these event-related queries, we relied on the Wikipedia
Portal:Current events6 as the external indicator, as we only access Google query
logs via public APIs. Since the click logs are missing, the Google Trend queryset
is used only as a supplementary dataset for RQ1.

Dynamic Relevance Assessment. There is no standard ground-truth for this
novel task, so we relied on manual annotation to label entity aspects dynamically;
with respect to the studied times according to each event period. We put a
range of 5 days before the event time as before period and analogously for after.
We randomly picked a day in the 3 time periods for the studied times. In our
annotation process, we chose 70 popular and trending event entities focusing on
two types of events, i.e., Breaking (30 queries) and Anticipated (40 queries). For
each entity query, we make used of the top-k ranked list of candidate suggestions
generated by RWR, cf. Sect. 4.1. Four human experts were asked to evaluate a
pair of a given entity and its aspect suggestion (as relevant or non-relevant) with
respect to the event period. We defined 4 levels of relevance: 3 (very relevant), 2
(relevant), 1 (irrelevant) and 0 (don’t know). Finally, 4 assessors evaluated 1,250
entity/suggestion pairs (approximately 3,750 of triples), with approximately 17

4 https://tagme.d4science.org/tagme/.
5 https://en.wikipedia.org/wiki/Special:Export.
6 https://en.wikipedia.org/wiki/Portal:Current events.

https://tagme.d4science.org/tagme/
https://en.wikipedia.org/wiki/Special:Export
https://en.wikipedia.org/wiki/Portal:Current_events
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suggestions per trending event on average. The average Cohen’s Kappa for the
evaluators’ pairwise inter-agreement is k = 0.78. Examples of event entities and
suggestions with dynamic labels are shown in Table 1. The relevance assessments
will be made publicly available.

Table 1. Dynamic relevant assessment examples.

Entity Suggestion Dynamic Label
Before During After

kentucky derby + odds VR VR R
kentucky derby + contenders VR R R
kentucky derby + winner NR R VR
kentucky derby + results NR VR VR

Methods for Comparison. Our baseline method for aspect ranking is RWR,
as described in Sect. 4.1. Since we conduct the experiments in a query log context,
time-aware query suggestions and auto-completions (QACs) are obvious com-
petitors. We adapted features from state-of-the-art work on time-aware QACs
as follows. For the QACs’ setting, entity name is given as prior. Instead of making
a direct comparison to the linear models in [22] – that are tailored to a different
variant of our target – we opt for the supervised-based approach, SV Msalient,
which we consider a fairer and more relevant salient-favored competitor for our
research questions.

Most popular completion (MLE) [2] is a standard approach in QAC. The
model can be regarded as an approximate Maximum Likelihood Estimator
(MLE), that ranks the suggestions based on past popularity. Let P (q) be the
probability that the next query is q. Given a prefix x, the query candidates
that share the prefix Qc, the most likely suggestion q ∈ Qc is calculated as:
MLE(x) = argmaxq∈Qc

P (q). To give a fair comparison, we apply this on top
of our aspect extraction cf. Section 4.1, denoted as RWR + MLE; analogously
with recent MLE.

Recent MLE (MLE-W) [24,29] does not take into account the whole past
query log information like the original MLE, but uses only recent days. The
popularity of query q in the last n days is aggregated to compute P (q).

Last N query distribution (LNQ) [24,29] differs from MLE and W-MLE
and considers the last N queries given the prefix x and time xt. The approach
addresses the weakness of W-MLE in a time-aware context, having to determine
the size of the sliding window for prefixes with different popularities. In this
approach, only the last N queries are used for ranking, of which N is the trade-
off parameter between robust (non time-aware bias) and recency.

Predicted next N query distribution (PNQ) employs the past query popu-
larity as a prior for predicting the query popularity at hitting time, to use this
prediction for QAC [24,29]. We adopt the prediction method proposed in [24].
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Table 2. Example entities in May 2006.

Anticipated may day, da vinci code, cinco de mayo, american idol,

anna nicole smith, mother’s day, danica patrick, emmy rossum,

triple crown, preakness stakes, belmont stakes kentucky derby,
acm awards

Breaking david blaine, drudge report, halo 3, typhoon chanchu,

patrick kennedy, indonesia, heather locklear

Table 3. Event type and time classification performance.

Dataset Model Accuracy Weighted F1

Event-type AOL Majority votes 63.7% 57.6%

SVM 78.7% 89.2%

GoogleTrends Majority votes 60.8% 67.6%

SVM 82.7% 84.5%

Event-time AOL Logistic regression 67.5% 71.5%

Cascaded 72.8% 83.4%

GoogleTrends Logistic regression 70.8% 77.5%

Cascaded 74.5% 81.8%

Parameters and Settings. The jumping probability for RWR is set to
0.15 (default). For the classification task, we use models implemented in
Scikit-learn7 with default parameters. For learning to rank entity aspects, we
modify RankSVM. For each query, the hitting time is the same as used for rel-
evance assessment. Parameters for RankSVM are tuned via grid search using
5-fold cross validation (CV) on training data, trade-off c = 20. For W-MLE,
we empirically found the sliding window W = 10 days. The time series predic-
tion method used for the PNQ baseline and the prediction error is Holt-Winter,
available in R. In LNQ and PNQ, the trade-off parameter N is tuned to 200.
The short-time window is for the trending momentum feature is 1-day and long
il is 5-days. Top-k in the temporal LM is set to 3. The time granularity for all
settings including hitting time and the time series binning is 1 day.

For RQ1, we report the performance on the rolling 4-fold CV on the whole
dataset. To seperate this with the L2R settings, we explain the evaluating
methodology in more details in Sect. 5.2. For the ranking on partitioned data
(RQ2), we split breaking and anticipated dataset into 6 sequential folds, and use
the last 4 folds for testing in a rolling manner. To evaluate the ensemble method
(RQ3), we use the first two months of AOL for training (50 queries, 150 studied
points) and the last month (20 queries as shown in Table 2, 60 studied points)
for testing.

7 http://scikit-learn.org/.

http://scikit-learn.org/
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Metrics. For assessing the performance of classification methods, we measured
accuracy and F1. For the retrieval effectiveness of query ranking models, we
used two metrics, i.e., Normalized Discounted Cumulative Gain (NDCG) and
recall@k (r@k). We measure the retrieval effectiveness of each metric at 3 and
10 (m@3 and m@10, where m ∈ {NDCG,R}). NDCG measures the ranking
performance, while recall@k measures the proportion of relevant aspects that
are retrieved in the top-k results.

5.2 Cascaded Classification Evaluation

Evaluating methodology. For RQ1, given an event entity e, at time t, we need
to classify them into either Breaking or Anticipated class. We select a studied
time for each event period randomly in the range of 5 days before and after the
event time. In total, our training dataset for AOL consists of 1,740 instances of
breaking class and 3,050 instances of anticipated, with over 300 event entities.
For GoogleTrends, there are 2,700 and 4,200 instances respectively. We then bin
the entities in the two datasets chronologically into 10 different parts. We set
up 4 trials with each of the last 4 bins (using the history bins for training in a
rolling basic) for testing; and report the results as average of the trials.

Fig. 4. Performance of different models for event entities of different types.

Results. The baseline and the best results of our 1st stage event-type classifi-
cation is shown in Table 3-top. The accuracy for basic majority vote is high for
imbalanced classes, yet it is lower at weighted F1. Our learned model achieves
marginally better result at F1 metric.

We further investigate the identification of event time, that is learned on
top of the event-type classification. For the gold labels, we gather from the
studied times with regards to the event times that is previously mentioned. We
compare the result of the cascaded model with non-cascaded logistic regression.
The results are shown in Table 3-bottom, showing that our cascaded model, with
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features inherited from the performance of SVM in previous task, substantially
improves the single model. However, the overall modest results show the difficulty
of this multi-class classification task.

5.3 Ranking Aspect Suggestions

For this part, we first focus on evaluating the performance of single L2R mod-
els that are learned from the pre-selected time (before, during and after) and
types (Breaking and Anticipate) set of entity-bearing queries. This allows us to
evaluate the feature performance i.e., salience and timeliness, with time and
type specification (RQ2). We then evaluate our ensemble ranking model (results
from the cascaded evaluation) and show it robustly improves the baselines for all
studied cases (RQ3). Notice that, we do not use the learned classifier in Sect. 5.2
for our ensemble model, since they both use the same time period for training,
but opt for the on-the-fly ranking-sensitive clustering technique, described in
Sect. 4.2.
RQ2. Fig. 4 shows the performance of the aspect ranking models for our event
entities at specific times and types. The most right three models in each metric
are the models proposed in this work. The overall results show that, the perfor-
mances of these models, even better than the baselines (for at least one of the
three), vary greatly among the cases. In general, SV Msalience performs well at
the before stage of breaking events, and badly at the after stage of the same
event type. Whereas SV Mtimeliness gives a contradictory performance for the
cases. For anticipated events, SV Mtimeliness performs well at the before and
after stages, but gives a rather low performance at the during stage. For this
event type, SV Msalience generally performs worse than SV Mtimeliness. Overall,
The SV Mall with all features combined gives a good and stable performance, but
for most cases, are not better than the well-performed single set of features L2R
model. In general, these results prove our assumption that salience and timeli-
ness should be traded-off for different event types, at different event times. For
feature importances, we observe regularly, stable performances of same-group
features across these cases. Salience features from knowledge bases tend to per-
form better than from query logs for short-duration or less popular events. We
leave the more in-depth analysis of this part for future work.
RQ3. We demonstrate the results of single models and our ensemble model
in Table 4. As also witnessed in RQ2, SV Mall, will all features, gives a rather
stable performance for both NDCG and Recall, improved the baseline, yet not
significantly. Our Ensemble model, that is learned to trade-off between salience
and timeliness achieves the best results for all metrics, outperforms the baseline
significantly. As the testing entity queries in this experiment are at all event times
and with all event types, these improvements illustrate the robustness of our
model. Overall, we witness the low performance of adapted QAC methods. One
reason is as mentioned, QACs, even time-aware generally favor already salient
queries as follows the rich-get-richer phenomenon, and are not ideal for entity
queries that are event-related (where aspect relevance can change abruptly).
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Table 4. Performance of the baselines (RWR relatedness scores, RWR + MLE,
RWR+ MLE-W, LNQ, and PNQ) compared with our ranking models; ∗,†, ∓ indi-
cates statistical improvement over the baseline using t-test with significant at p < 0.1,
p < 0.05, p < 0.01 respectively.

Methods NDCG@3 NDCG@10 R@3 R@10

RWR 0.3208 0.4137 0.1208 0.3749

RWR+ MLE +29.94% +9.73% −21.09% +5.15%∗
RWR+ MLE-W +11.56% +11.46% −18.93%∗ +3.28%

LNQ +15.39% −3.75% −19.74% −30.31%

PNQ +13.19% −9.95% −23.46% −33.53%

SVMsalience +41.75%∗ +9.18% +23.32%∗ +9.93%

SVMtimeliness +15.19% +17.53% +14.77% +11.3%

SVMall +52.65%∗ +40.87%∗ +9.73%† +24.3%

Ensemble +85.12%∓ +45.34%† +42.78%∗ +17.45%∗

Time-aware QACs for partially long prefixes like entities often encounter sparse
traffic of query volumes, that also contributes to the low results.

6 Conclusion

We studied the temporal aspect suggestion problem for entities in knowledge
bases with the aid of real-world query logs. For each entity, we ranked its tem-
poral aspects using our proposed novel time and type-specific ranking method
that learns multiple ranking models for different time periods and event types.
Through extensive evaluation, we also illustrated that our aspect suggestion app-
roach significantly improves the ranking effectiveness compared to competitive
baselines. In this work, we focused on a “global” recommendation based on pub-
lic attention. The problem is also interesting taking other factors (e.g., search
context) into account, which will be interesting to investigate in future work.
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