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Abstract. Social media platforms have become key portals for sharing
and consuming information during crisis situations. However, human-
itarian organisations and affected communities often struggle to sieve
through the large volumes of data that are typically shared on such plat-
forms during crises to determine which posts are truly relevant to the
crisis, and which are not. Previous work on automatically classifying
crisis information was mostly focused on using statistical features. How-
ever, such approaches tend to be inappropriate when processing data
on a type of crisis that the model was not trained on, such as process-
ing information about a train crash, whereas the classifier was trained
on floods, earthquakes, and typhoons. In such cases, the model will need
to be retrained, which is costly and time-consuming. In this paper, we
explore the impact of semantics in classifying Twitter posts across same,
and different, types of crises. We experiment with 26 crisis events, using
a hybrid system that combines statistical features with various semantic
features extracted from external knowledge bases. We show that adding
semantic features has no noticeable benefit over statistical features when
classifying same-type crises, whereas it enhances the classifier perfor-
mance by up to 7.2% when classifying information about a new type of
crisis.
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1 Introduction

The 2017 World Humanitarian Data and Trends report by UNOCHA1 indicated
that in 2016 alone, there were 324 natural disaster, affecting 204 million people,
from 105 countries, causing an overall damage cost of $147 billion. During the
course of natural disasters, large amounts of content are typically published in
real time on various social media outlets. For instance, over 20 million tweets
with the words #sandy and #hurricane were posted in just a few days during
the Hurricane Sandy disaster2.
1 UNOCHA, https://data.humdata.org/dataset/world-humanitarian-data-and-tren

ds.
2 Mashable: Sandy Sparks 20 Million Tweets, http://mashable.com/2012/11/02/

hurricane-sandy-twitter.
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Although these messages act as critical information sources for various com-
munities and relief teams, the sheer volume of data generated on social media
platforms during crises makes it extremely difficult to manually process such
streams in order to filter relevant pieces of information quickly [7]. Automati-
cally identifying crisis-information relevancy is not trivial, especially given the
characteristics of social media posts such as colloquialisms, short post length,
nonstandard acronyms, and syntactic variations in the text. Furthermore, many
posts that carry the crisis hashtag/s can be irrelevant, hence hashtags are inad-
equate filters of relevancy.

Various works explored classification methods of crisis-data from social media
platforms, to automatically categorise them into crisis-related or not related.
These classification methods include both supervised [11,14,20,25] and unsu-
pervised [18] machine learning approaches. Most of these methods are based on
statistical features of the text, such as n-grams, text length, POS, and Hashtags.
Although statistical models have shown to be efficient in classifying relevancy of
crisis-information, their accuracy naturally drops when applied to information
that were not included in the training sets. The typical approach to remedy this
problem, is to retrain the model on new datasets or apply complex domain adap-
tation techniques, which are costly and time consuming, and thus are inadequate
for crisis situations which typically require immediate reaction.

This work aims to bridge this gap by adding semantic features for the identi-
fication of crisis-related tweets on seen and unseen crises types. We hypothesise
that adding concepts and properties (e.g., type, label, category) improves the
identification of crisis information content across crisis domains, by creating a
non-specific crisis contextual semantic abstraction of crisis-related content. The
main contributions of this paper can be summarised as follow:

1. Build a statistical-semantic classification model with semantics extracted
from BableNet and DBpedia.

2. Experiment with classifying relevancy of tweets from 26 crisis events of various
types and in multiple languages.

3. Run relevancy classifiers with multiple feature combinations and when crisis
types are included/excluded from training data.

4. Show that adding semantics increase of classification accuracy on unseen crisis
types by +7.2% in F1 in comparison to non-semantic models.

The paper is structured as follows: Sect. 2 summarises related work. Sections 3
and 4 describe our approach and experiments on classifying relevancy while using
different semantic features and crisis datasets. Results are reported in Sects. 4.2
and 4.3. Discussion and conclusions are in Sects. 5 and 6.

2 Related Work

Large volumes of messages are typically posted across different social media plat-
forms during crisis situations. However, a considerable number of these messages
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are potentially not related and irrelevant. Olteanu et al. [16] made an observa-
tion about the broad categories that crisis reports from social media can be
categorised into: related and informative, related but not informative, and not
related.

Identifying crisis related content from social media is not a new research
area. Most supervised machine learning approaches used in this domain rely
on linguistic and other statistical attributes of the post such as part of speech
(POS), user mentions, length of the post, and number of hashtags. Supervised
machine learning approaches range from traditional classification methods such
as Support Vector Machines (SVM), Naive Bayes, Conditional Random Fields
[8,17,20] to recent trends of deep learning [3]. In [3,4], word embeddings are
applied and semantics are added in the form of extracted entities and their types,
but adaptability of the model to unseen types of crisis data is not evaluated.

Complex domain adaptation methods has found its application in the areas of
text classification and sentiment analysis [6], but have not been applied to crisis
situations. In crisis classification, a closely related work [8] took a step towards
domain adaptation by considering crisis data from two disasters, Joplin 2011 tor-
nado and Hurricane Sandy. They trained the model on a part of Joplin tornado,
and tested it on Hurricane Sandy and remaining part of Joplin data. However,
their work was limited to only two crises; one hurricane and one tornado, which
often cast similar types of impact on human life and infrastructure. Additionally,
the semantic aspect of the crisis was not taken into consideration, which could
have potentially highlighted the applicability of the method in multiple crisis
scenario.

Unsupervised methods were also explored, often based on clustering [18] and
keyword based processing. Our work in this paper complements and extends
the aforementioned studies by investigating the use of semantics, derived from
knowledge graphs, such as entities occurring in the tweets, and expanding them
to their hypernyms and extended information through DBpedia properties.

Previously, we used hierarchical semantics from knowledge graphs to perform
crisis-information classification through a supervised machine learning approach
[12]. However, the study was limited to 9 crisis events, and confined to training
and testing on the same type of crisis-events (i.e., no cross-crisis evaluation).

Some systems were developed that use semantics extracted with Named
Entity Recognition tools on DBpedia and WordNet, to support searching of
crisis-related information (e.g., Twitcident [2], Armatweet [23]). These system
are focused on search, and do not include machine learning classifiers.

As opposed to previous work, we focus on applying these classifiers to two
particular cases. First, when the classification model was trained on the data
that contained crisis-event type, and secondly, when the crisis event type was
not included in the training set. These two cases are aimed to help us bet-
ter understand if, and when, adding semantics outperforms purely statistical
approaches.
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3 Semantic Classification of Crisis-Related Content

The automatic identification of crisis-related content on social media requires
the training and validation of a binary text classifier that is able to distinguish
between crisis-related and not related crisis content. In this paper, we focus on
generating statistical and semantic features of tweets and then training different
machine learning models. In the following sections, we present (i) the dataset
used for training our classifiers, (ii) the statistical and semantic set of features
used for building the classifiers, and (iii) the classifier selection process.

3.1 Dataset and Data Selection

In this study, we use the CrisisLexT263 dataset [16]. It contains annotated
datasets of 26 different crisis events, which occurred between 2012 and 2013,
with 1000 labeled tweets (‘Related and Informative’, ‘Related but not Informa-
tive’, ‘Not Related’ and ‘Not Applicable’ ) for each event. The search keywords
used to collect the original data used hashtags and/or terms that are often
paired with the canonical forms of a disaster name and the impacted location
(e.g., Queensland floods) or meteorological terms (e.g., Hurricane Sandy). We
selected all 26 events, and for each event we combined the Related and Informa-
tive and Related but not Informative into the Related class, and combined the
Not Related and Not Applicable into the Not Related class. These two classes
are then used for distinguishing crisis-related content from unrelated content for
creating binary text classifiers.

To reduce content redundancy in the data, we removed replicated instances
from the collection of individual events by comparing tweets pairs after removing
user-handles (i.e., ‘@’ mentions), URL’s, and special characters. This resulted in
21378 documents annotated with the Related label and 2965 annotated with the
Not Related label. For avoiding classification bias towards the majority class, we
balanced the data from each event by matching the number of Related documents
with the Not Related ones. This was achieved by randomly selecting the same
number of Related and Not Related tweets in any given event. This resulted in a
final overall size of 5931 tweets (2966 Related and 2965 Not Related documents).
Table 1 shows the distribution of selected tweets for each event.

3.2 Features Engineering

In order to assess the advantage of using semantic features compared to more
traditional statistical features, we distinguish two different feature sets; (1) sta-
tistical features, and; (2) semantic features. Statistical features have widely been
used in the literature [8,9,11,14,20,25] and are posed as the baseline approach
for our work. They capture quantifiable linguistic features and other statistical
properties of a given post. On the other hand, semantic features capture more
contextual information of documents, such as the named entities emerging in

3 CrisisLexT26 http://crisislex.org/data-collections.html#CrisisLexT26.

http://crisislex.org/data-collections.html#CrisisLexT26
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Table 1. Crisis events data, balanced between related and not-related classes

Nb. Id Event Category Nb. Id Event Category

Related Not-

related

Total Related Not-

related

Total

1 CWF Colorado

Wildfire

242 242 484 2 COS Costa Rica

Earthquake

470 470 940

3 GAU Guatemala

Earthquake

103 103 206 4 ITL Italy

Earthquake

56 56 112

5 PHF Philippines

Flood

70 70 140 6 TYP Typhoon

Pablo

88 88 176

7 VNZ Venezuela

Refinery

60 60 120 8 ALB Alberta

Flood

16 16 32

9 ABF Australia

Bushfire

183 183 366 10 BOL Bohol

Earthquake

31 31 62

11 BOB Boston

Bombing

69 69 138 12 BRZ Brazil

Nightclub

Fire

44 44 88

13 CFL Colorado

Floods

61 61 122 14 GLW Glasgow

Helicopter

Crash

110 110 220

15 LAX LA Airport

Shoot

112 112 224 16 LAM Lac Megantic

Train Crash

34 34 68

17 MNL Manila Flood 74 74 148 18 NYT NY Train

Crash

2 1 3

19 QFL Queensland

Flood

278 278 556 20 RUS Russia

Meteor

241 241 482

21 SAR Sardinia

Flood

67 67 134 22 SVR Savar

Building

305 305 610

23 SGR Singapore

Haze

54 54 108 24 SPT Spain Train

Crash

8 8 16

25 TPY Typhoon

Yolanda

107 107 214 26 WTX West Texas

Explosion

81 81 162

a given text, as well as their hierarchical semantic information extracted from
external knowledge graphs.

Statistical Features: For every tweet in the dataset, the following statistical
features are extracted:

– Number of nouns: nouns generally refer to different entities involved in the
crisis event such as locations, actors, or resources involved in the crisis event
[8,9,20].

– Number of verbs: verbs indicate actions that occur in a crisis event [8,9,20].
– Number of pronouns: as with nouns, pronouns may indicate involvement of

the actors, locations, or resources.
– Tweet Length: number of characters in a post. The length of a post may

determine the amount of information contained [8,9,19].
– Number of words: number of words may be another indicator of the amount

of information contained within a post [8,11].
– Number of Hashtags: hashtags reflect the themes of the post and are manually

generated by the posts’ authors [8,9,11].
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– Unigrams: The entire data (text of each post) is tokenised and represented
as unigrams [8,9,11,14,20,25]

The Part Of Speech (POS) features (e.g., nouns, verbs, pronouns) are
extracted using the spaCy library.4 Unigrams are extracted with the regexp
tokenizer provided in NLTK.5 Stop-words are removed using a stop-words list,6

Stemming is also performed using the Porter Stemmer. Finally, TF-IDF vector
normalisation is also applied in order to weigh the importance of words (tokens)
in the documents according to their relative importance within the dataset. This
resulted in a total number of 10757 unigrams (i.e., vocabulary size) for the entire
balanced dataset.

Semantic Features: Semantic features are designed to generalise information
representation across crises. They are designed to be less crisis specific com-
pared to statistical features. We use the Name Entity Recogniser (NER) ser-
vice Babelfy,7 and two different knowledge bases for creating these features: (1)
BabelNet,8 and; (2) DBpedia:9

– Babelfy Entities: the entities extracted by the BabelNet NER tool (e.g., news,
sadness, terremoto). Babelfy extracts and disambiguates entities linked to the
BabelNet [15] knowledge base.

– BabelNet Senses (English): the English labels associated with the entities
returned by Babelfy (e.g., news → news, sadness → sadness, terremoto →
earthquake).

– BabelNet Hypernyms (English): the direct English hypernyms (at distance-
1) of each entities extracted from BableNet. Hypernyms can broaden the
context of an entity, and can enhance the semantics of a document [12] (e.g.,
broadcasting, communiucation, emotion).

– DBpedia Properties: a list of properties associated with the DBpedia URI
returned by Babelfy. The following properties are queried using SPARQL:
dct:subject, rdfs:label (only in English), rdf:type (only of the type
http://schema.org and http://dbpedia.org/ontology), dbo:city, dbp:state,
dbo:state, dbp:country and dbo:country (the location properties fluctuate
between dbp and dbo) (e.g., dbc:Grief, dbc:Emotions, dbr:Sadness).

Using hypernyms shown to enhance the semantics of a document [12], and
can assist the context representation of documents by correlating different enti-
ties with a similar context. For instance, the following four entities fireman,
policeman, MP (Military Police), and garda (an Irish word for police) share a
common English hypernym: defender. To generalise the semantics for tweets in
4 SpaCy Library, https://spacy.io.
5 Regexp Tokenizer (NLTK), http://www.nltk.org/ modules/nltk/tokenize/regexp.

html.
6 Stop Words List, https://raw.githubusercontent.com/6/stopwords-json/master/

stopwords-all.json.
7 Babelfy, http://babelfy.org.
8 BabelNet, http://babelnet.org.
9 DBpedia, http://dbpedia.org.

http://schema.org
http://dbpedia.org/ontology
https://spacy.io
http://www.nltk.org/_modules/nltk/tokenize/regexp.html
http://www.nltk.org/_modules/nltk/tokenize/regexp.html
https://raw.githubusercontent.com/6/stopwords-json/master/stopwords-all.json
https://raw.githubusercontent.com/6/stopwords-json/master/stopwords-all.json
http://babelfy.org
http://babelnet.org
http://dbpedia.org
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different languages, we formulate the semantics in English. As a result, we pre-
vent the sparsity that results from the varying morphological forms of concepts
across languages (see Table 2 to see an example). The senses and hypernyms
are both derived from the BabelNet, and together form the BabelNet Semantics.
The semantic expansion of the data-set through BabelNet Semantics expands
the vocabulary (in comparison to the case with statistical features) by 3057
unigrams.

Table 2. Semantic expansion with BabelNet and DBpedia semantics.

Post A Post B

Feature ‘Sad news to report from
#Guatemala -at least 8
confirmed dead, possibly
more, by this morning’s
major earthquake’

‘Terremoto 7, 4 Ricther Guatemala
deja 15 fallecidos, casas en el suelo, 100
desaperecidos, 100MIL personas sin luz
FO’

Babelfy
entities

News, sadness, dead,
describe, earthquake

Terremoto, casas, suelo, luz, fallecidos

BabelNet
sense
(English)

News, sadness, dead,
describe, earthquake

Earthquake, house, soil, light, dead

BabelNet
hypernyms
(English)

Broadcasting,
communication, emotion,
feeling, people, deceased,
inform, natural disaster,
geologica phenomenon

Natural disaster, geological
phenomenon, building, Structure,
residential building granular material,
people, deceased

DBpedia
properties

dbc:Grief, dbc:Emotions,
dbr:Sadness,
dbc:Demography,
dbr:Death,
dbc:Communication,
dbr:News,
dbc:Geological hazards,
dbc:Seismology,
dbr:Earthquake

dbc:Geological hazards,
dbc:Seismology, dbr:Earthquake,
dbc:Home, dbc:Structural system,
dbc:Light, dbr:Death, dbc:Demography

Besides the BabelNet Semantics, we also use DBpedia properties to obtain
more information about the entity (see Table 2) in the form of subject, label, and
location specific properties. Semantic expansion of the dataset through DBpe-
dia Semantics increases the vocabulary (in comparison to the vocabulary from
statistical features) by 1733 unigrams.

We use both of these semantic features, BabelNet & DBpedia Semantics, indi-
vidually and also in combination with each other, while developing the binary
classifiers to identify crisis-related posts from unrelated ones. When both Babel-
Net Semantics and DBpedia semantics are used, the vocabulary (in comparison
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to the vocabulary as determined in statistical features) is increased by 3824 uni-
grams. Our experiments will determine whether or not such vocabulary exten-
sions can be regarded as enhancements.

3.3 Classifier Selection

For our binary classification problem, we took into consideration the high dimen-
sionality generated from unigrams and semantic features, and the need to avoid
over fitting. In comparison to the large dimensionality of the features, which is
in the range of 10–15k under different feature combinations, the training exam-
ples are smaller in size (around 6000). This encouraged us to opt for Support
Vector Machine (SVM) with a Linear Kernel as the classification model, since
this model has been found effective for such kind of problems.10 Additionally,
we validated the appropriateness of SVM Linear Kernel against RBF kernel,
Polynomial kernel, and Logistic Regression. Based on 20 runs of 5 fold cross-
validation of different feature combinations, SVM Linear Kernel was found to
be more statistically significant, and had a better mean F1 value of 0.8118 and a
p-value of <0.00001 when compared to other classifiers (by performing a t-test
followed by calculating p-value).

4 Crisis-Related Content Classification Across Crises

In this section, we detail the experimental set up and create the models based
on various criteria. Further, we report the results and discuss how including the
expanded semantic features impacted the performance of our classifiers, partic-
ularly in the cases when it is applied to cross-crisis scenarios.

4.1 Experimental Setting

The experiments are designed to train and evaluate the classification models on
(i) the entire dataset, i.e., on all 26 crisis events, (ii) a selection of train/test
crisis event data, based on certain criteria for cross-crisis evaluation.

Crisis Classification Models: For the first experiment, we create different
classifiers to compute and compare the performance of various feature combina-
tions. Here, we aim to see when all the 26 events (Sect. 3.1) are merged, whether
the inclusion of semantics boosts the binary classification. We create multiple
classifiers and evaluate them using 5-fold cross validation. To this end, we used
scikit-learn library.11 The different classifiers are trained based on different fea-
tures combinations:

10 A Practical Guide to Support Vector Classification, http://www.csie.ntu.edu.tw/
∼cjlin/papers/guide/guide.pdf.

11 Scikit-learn, http://scikit-learn.org.

http://www.csie.ntu.edu.tw/~cjlin/papers/guide/guide.pdf
http://www.csie.ntu.edu.tw/~cjlin/papers/guide/guide.pdf
http://scikit-learn.org
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– SF : A classifier generated with the statistical features only; our baseline.
– SF+SemEF BN : A classifier generated with the statistical features and the

semantic features from BabelNet Semantics (entity sense, and their hyper-
nyms).

– SF+SemEF DB : A classifier generated with the statistical features, and the
semantic features from DBpedia Semantics (label, type, and other DBpedia
properties).

– SF+SemEF BNDB : A classifier generated with the statistical features, and
the combination of semantic features from BabelNet and DBpedia Semantics.

Cross-Crisis Classification: For the second experiment, we aim at evaluat-
ing models on event types that are not observed during training (e.g., evaluate
models on earthquake data, whereas it was trained on flood events). The mod-
els are trained on different combination of features and various types of crisis
events. We generate the classifiers for the feature combinations as described in
the previous experiment (see above). However, in this case, we divide the data
into training and test sets based on 2 different criteria as described below:

1. Identify posts from a crisis event, when the type of event is already included in
the training data (e.g., process tweets from a new flood incident when tweets
from other flood crisis are in the training data).

2. Identify posts from a crisis event, when the type of the event is not included
in the training data.

Since the criteria are defined on the types of the events, we hereby distribute
the 26 events broadly in 11 types as given in Table 3. This categorisation is based
on personal understandings of the nature of different types of crisis events, and
how related or discrete they might be based on their effects. For instance, we
have assumed the type of Flood and Typhoon as highly similar, considering that
flood are typical direct outcomes of Typhoons (more about this in Sect. 5).

4.2 Results: Crisis Classification

In this section, we present the results from the first experiment, where the entire
data (spread across 26 events and all our 11 event types) is merged. The models
are trained using 20 iterations of 5-fold cross validation. The results are presented
in Table 4. We report the mean of Precision (Pmean), Recall (Rmean), and
F1 score (Fmean) from 20 iterations, standard deviation in F1 score (σ), and
percentage change of F1 score compared to the baseline (ΔF/F ).

In general, we observe that there is a very small change against the base-
line classifier and that both classifiers are able to achieve Fmean > 81%. The
most noticeable improvement compared to the baseline can be observed for
SF+SemEF BN (1.39%) and SF+SemEF BNDB (0.6%), which are both sta-
tistically significant (p < 0.05) based on a 2-tailed one-sample t-test, where the
Fmean of SF is treated as the null-hypothesis.

To better understand the impact of semantics on the classifier, we perform
feature selection using Information Gain (IG) to determine the most informative
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Table 3. Types of events in the dataset.

Event type (Nb.) Event
instances

Event type (Nb.) Event instances

Wildfire/bushfire (2) CWF, ABF Haze (1) SGR

Earthquake (4) COS, ITL,
BOL, GAU

Helicopter crash (1) GLW

Flood/typhoon (8) TPY, TYP,
CFL, QFL,
ALB, PHF,
SAR, MNL

Building collapse (1) SVR

Terror
shooting/bombing
(2)

LAX, BOB Location fire (2) BRZ, VNZ

Train crash (2) SPT, LAMa Explosion (1) WTX

Meteor (1) RUS
aNYT has only 3 tweets in total.

Table 4. Crisis-related content classification results using 20 iterations of 5-fold cross
validation, ΔF/F (%) showing percentage gain/loss of the statistical semantics classi-
fiers against the statistical baseline classifier.

Model Pmean Rmean Fmean Std. Dev. (σ) ΔF/F (%) Sig. (p-value)

SF (Baseline) 0.8145 0.8093 0.8118 0.0101 - -

SF+SemEF BN 0.8233 0.8231 0.8231 0.0111 1.3919 <0.000 01
SF+SemEF DB 0.8148 0.8146 0.8145 0.0113 0.3326 0.018 78
SF+SemEF BNDB 0.8169 0.8167 0.8167 0.0106 0.6036 0.000 011

features and how they vary across the classifiers. In SF model, we observe very
event-specific features such as collapse, terremoto, fire, earthquake, #earthquake,
flood, typhoon, injured, quake (Table 5). Within the top features, we also see 7
hashtags among the top 50 features, which reflects how event specific vocabulary
plays a role in our classifier and how it may be an issue when dealing with
new crisis types. Also, No.ofHashTag appeared as a key statistical feature. We
observed that 1334 out of 2966 Related tweets had 0 hashtags (45% of related
tweets), while 471 out of 2965 (15%) Not Related tweets had 0 hashtags.

For SF+SemEF BN and SF+SemEF DB models, we observed concepts
such as natural hazard, structural integrity and failure, conflagration, geological
phenomenon, perception, dbo:location, dbo:place, dbc:building defect, dbc:solid
mechanics among the top 50 crisis-relatedness predictors (Table 5).

Looking more into the results, we can observe that Structural integrity
and failure is the annotated entity for terms like collapse, building collapse which
are frequently occurring terms in the earthquake events, floods events, and Savar
Building collapse. This is expected considering the significant number of earth-
quakes and floods events in the data. The natural disaster hypernym is linked to
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several crisis events terms in the data such as flood, landslide, earthquake. Simi-
larly, SF+SemEF BNDB reflected a combination of both BabelNet and DBpedia
semantics among informative features. These results show that semantics may
help when dealing with new crisis types.

Although semantic models do not appear to be highly beneficial compared to
purely statistical models when dealing with already seen event types, we observed
the potential limitations of statistical features when dealing with new event
types. Statistical features appear to be overly tied to event instances whereas
semantic features seems to better generalise crisis-related concepts.

4.3 Results: Cross-Crisis Classification

We now evaluate the ability of the classifiers and feature to deal with event
types that are not present in training data. We first evaluate the model on new
instances of event types that have been already seen (Criteria 1) and then per-
form a similar task but omit event-types in the training dataset (Criteria 2).

Criteria 1 - Content Relatedness Classification of Already Seen Event
Types. For the first sub-task, we evaluate our models on new event instances
of event types already included when training the models (e.g., evaluate a new
flood event on a model trained on data that include previous floods). We train
the classifier on 25 crisis events, and use the 26th event as a test dataset.

As shown in Table 3, 26 crisis events have broadly been categorised under
11 types. In order to select the type of crisis events to test, we looked for such
types which had a strong presence in the overall dataset. We opted for such crisis
events which had at least 4 or more crisis events under the same type. As a result
we consider two event types to evaluate: (1) Flood/Typhoons event types, and;
(2) Earthquake event types.

For evaluating the models, we use following events as test data events: (1)
For Flood/Typhoons we use Typhoon Yolanda (TPY), Typhoon Pablo (TYP),
Alberta Flood (ALB), Queensland Flood (QFL), Colorado Flood (CFL), Philip-
pines Flood (PHF) and Sardinia Flood (SAR) as evaluation data, and; (2)
for Earthquake, we use Guatemala Earthquake (GAU), Italy Earthquake (ITL),
Bohol Earthquake (BOL) and Costa Rica Earthquake (COS) as evaluation data.
For example, when we evaluate the classifiers for TPY, we train our models on
all the other 25 events and use the TPY data for the evaluation.

From the results in Table 6 it can be seen that, when the event type is pre-
viously seen by the classifier in the training data, the improvement from adding
semantic features is small and inconsistent over the test cases. SF+SemEF BN
shows improvement over the baseline in 4 out of 11 evaluation cases, while
SF+SemEF DB shows improvement in 6 out of 11 evaluation cases. The average
percentage gain (ΔF/F ) varies between +0.52% (SF+SemEF BN) and +1.67%
(SF+SemEF DB) with a standard deviation varying between 6.89% to 7.78%.
It indicates that almost half of the test event cases do not show improvement
over the statistical features baseline’s F1 score.
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Table 5. IG-Score ranks of features for: SF, SF+SemEF BN and SF+SemEF DB.

R. SF SF+SemEF BN SF+SemEF DB

IG Feature IG Feature IG Feature

1 0.106 No.OfHashTag 0.106 No.OfHashTag 0.106 No.OfHashTag

2 0.046 Costa 0.056 Costa 0.044 No.OfNouns

3 0.044 No.OfNoun 0.044 No.OfNouns 0.036 Costa rica

4 0.044 Rica 0.044 Rica 0.035 dbc:countries in
central americ

5 0.035 Collapse 0.036 Costa rica 0.035 Collapse

6 0.033 Terremoto 0.035 Central american
country

0.031 Terremoto

7 0.026 TweetLength 0.032 Collapse 0.027 dbo:place

8 0.025 7 0.031 Terremoto 0.026 TweetLength

9 0.024 #earthquake 0.026 TweetLength 0.024 #earthquake

10 0.023 Bangladesh 0.026 Fire 0.024 dbo:location

11 0.022 No.OfVerb 0.024 #earthquake 0.023 dbo:populatedplace

12 0.022 #redoctober 0.023 Structural integrity
and failur

0.023 dbc:safes

13 0.021 No.OfWords 0.023 Coastal 0.022 structural integrity
and failure

14 0.018 Tsunami 0.022 Information 0.022 dbc:building defect

15 0.017 Fire 0.022 Financial condition 0.022 dbc:solid mechanics

16 0.016 Building 0.022 No.OfVerbs 0.022 dbc:engineering failure

17 0.016 rt 0.022 #redoctober 0.022 bangladesh

18 0.015 Factory 0.021 No.OfWords 0.022 dbc:flood

19 0.014 Toll 0.020 Shore 0.022 dbr:wealth

20 0.014 Flood 0.020 Building 0.022 No.OfVerbs

21 0.013 #bangladesh 0.019 Anatomical structure 0.021 No.OfWords

22 0.013 #colorad 0.019 Phenomenon 0.02 dbc:coastal geography

23 0.012 Alert 0.018 Natural disaster 0.019 dbc:article containing
video clip

24 0.012 Hit 0.018 Failure 0.018 dbc:natural hazard

25 0.012 Typhoon 0.017 Conflagration 0.017 Fire

Criteria 2 - Content Relatedness Classification of Unseen Crisis Types.
In criteria 1, we considered the classification of new event instances when similar
events already appeared in the classifier training data. In criteria 2 we test the
classifier on types of events that are not seen by the classifier in the training data
types. We select the following events and event types: (1) train the classifiers on
rest of the event types except Terror Shooting/Bombing and Train Crash and
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Table 6. Cross-crisis relatedness classification: criteria 1 (best F1 score is highlighted
for each event).

Instances SF SF+SemEF BN SF+SemEF DB SF+SemEF BNDB

Test
Train Test P R F1 P R F1

ΔF/F
P R F1

ΔF/F
P R F

ΔF/F
event (in %) (in %) (in %)

TPY 5717 214 0.808 0.804 0.803 0.777 0.776 0.776 -3.44 0.772 0.771 0.771 -4.01 0.780 0.780 0.780 -2.83
TYP 5755 176 0.876 0.864 0.863 0.853 0.841 0.840 -2.66 0.831 0.83 0.829 -3.84 0.861 0.852 0.851 -1.29
ALB 5899 32 0.72 0.719 0.718 0.754 0.75 0.749 4.25 0.845 0.844 0.844 17.41 0.845 0.844 0.844 17.41
QFL 5375 556 0.791 0.784 0.783 0.80 0.793 0.792 1.18 0.780 0.772 0.77 -1.66 0.789 0.782 0.781 -0.22
CFL 5809 122 0.82 0.803 0.801 0.835 0.828 0.827 3.28 0.806 0.762 0.754 -5.88 0.796 0.77 0.765 -4.41
PHF 5791 140 0.764 0.764 0.764 0.769 0.764 0.763 -0.13 0.772 0.771 0.771 0.93 0.744 0.743 0.743 -2.83
SAR 5797 134 0.684 0.612 0.570 0.747 0.694 0.677 18.79 0.702 0.664 0.648 13.70 0.696 0.664 0.650 14.10

GAU 5725 206 0.788 0.782 0.780 0.739 0.728 0.725 -7.1 0.798 0.786 0.784 0.51 0.779 0.772 0.770 -1.30
ITL 5819 112 0.595 0.589 0.583 0.619 0.589 0.562 -3.58 0.667 0.634 0.615 5.49 0.659 0.616 0.588 0.98
BOL 5869 62 0.743 0.742 0.742 0.732 0.726 0.724 -2.38 0.758 0.758 0.758 2.20 0.684 0.677 0.674 -9.07
COS 4991 940 0.794 0.790 0.790 0.773 0.770 0.770 -2.56 0.740 0.739 0.739 -6.42 0.751 0.750 0.750 -5.08

evaluate on Los Angeles Airport Shooting (LAX), Lac Megantic Train Crash
(LAM), Boston Bombing (BOB), and Spain Train Crash (SPT); (2) train the
classifiers on rest of the event types except Flood/Typhoon and evaluate on TPY,
TYP, ALB, QFL, CFL, PHF, and SAR, and; (3) train the classifiers on rest of
the event types except Earthquake and evaluate on GAU, ITL, BOL, and COS.

Table 7. Cross-crisis relatedness classification: criteria 2 (best F1 score is highlighted
for each event).

Instances SF SF+SemEF BN SF+SemEF DB SF+SemEF BNDB

Test
Train Test P R F1 P R F1

ΔF/F
P R F1

ΔF/F
P R F

ΔF/F
event (in %) (in %) (in %)
LAX 5407 224 0.664 0.656 0.652 0.681 0.679 0.677 3.90 0.666 0.665 0.665 1.95 0.657 0.656 0.656 0.58
LAM 5844 68 0.655 0.632 0.618 0.642 0.632 0.626 1.2 0.619 0.618 0.616 -0.34 0.638 0.632 0.628 1.62
BOB 5407 138 0.669 0.630 0.608 0.663 0.645 0.635 4.40 0.613 0.609 0.605 -0.56 0.628 0.616 0.607 -0.19
SPT 5844 16 0.573 0.563 0.547 0.690 0.688 0.686 25.56 0.767 0.750 0.746 36.5 0.69 0.688 0.686 25.56

TPY 4409 214 0.714 0.664 0.642 0.715 0.640 0.606 -5.67 0.69 0.664 0.651 1.39 0.676 0.617 0.582 -9.45
TYP 4409 176 0.769 0.699 0.678 0.802 0.705 0.679 0.12 0.742 0.682 0.661 -2.54 0.733 0.642 0.603 -10.99
ALB 4409 32 0.727 0.719 0.716 0.771 0.719 0.705 -1.63 0.833 0.813 0.81 13.02 0.742 0.719 0.712 -0.63
QFL 4409 556 0.734 0.694 0.681 0.728 0.676 0.657 -3.51 0.733 0.707 0.698 2.58 0.741 0.707 0.696 2.23
CFL 4409 122 0.792 0.779 0.776 0.736 0.713 0.7060 -9.04 0.707 0.705 0.704 -9.27 0.755 0.754 0.754 -2.87
PHF 4409 140 0.589 0.564 0.532 0.672 0.607 0.566 6.52 0.662 0.643 0.632 18.9 0.617 0.586 0.556 4.67
SAR 4409 134 0.663 0.590 0.537 0.660 0.597 0.553 2.93 0.658 0.619 0.595 10.69 0.691 0.642 0.617 14.84

GAU 4611 206 0.610 0.553 0.487 0.584 0.549 0.495 1.62 0.692 0.650 0.630 29.39 0.667 0.621 0.593 21.79
ITL 4611 112 0.546 0.536 0.509 0.632 0.571 0.516 1.26 0.633 0.589 0.553 8.54 0.661 0.598 0.555 8.93
BOL 4611 62 0.732 0.726 0.724 0.656 0.645 0.639 -11.73 0.684 0.677 0.674 -6.86 0.606 0.597 0.588 -18.77
COS 4611 940 0.595 0.560 0.515 0.626 0.554 0.480 -6.71 0.618 0.578 0.538 4.56 0.645 0.580 0.527 2.33

From results in Table 7, we observe that the average best performing feature
is the DBpedia semantics SF+SemEF DB as it shows an average percentage
gain in F1 score (ΔF/F ) of +7.2% (with a Std. Dev. of 12.83%) and shows
improvement over the baseline SF classifier in 10 out of 15 events.
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Out of 5 events where it does not show improvement, in 2 events the percent-
age loss (ΔF/F ) is −0.34% and −0.56%. SF+SemEF BNDB shows improvement
over the baseline in 9 out of 15 events with an average percentage gain of +2.64%
in F1 score (ΔF/F ) over the SF classifier. When we compare this to criteria 1, it
appears that semantic features (particularly from DBpedia) enhances the classi-
fication performance over statistical features alone when the type of event is not
seen by the classifier during training. This result shows that although semantics
may not improve relatedness classification when dealing with already seen event
types, semantics are useful when dealing with event types not found in training
datasets. This makes semantic feature more robust than statistical features.

5 Discussion and Future Work

Our experiments explored the impact of mixing semantic features with statistical
features, and created a hybrid model, to classify crisis related and not related
posts. We noticed a significant impact of semantics in the scenario when the
type of the crisis is new to the classifier. While both the BabelNet and DBpedia
semantics performed better than the statistical features, DBpedia semantics was
found to be more consistent in its performance while classifying a new type of
crisis event. This is likely because of the better coverage and semantic depth
that DBpedia provides.

To better understand the role of semantics in crisis-related content classi-
fication, we randomly picked some tweets that were misclassified by either the
baseline classifier or the semantic classifiers in the criteria 1 and 2 evaluations. We
observed that: (i) semantics can generalise event specific terms compared to sta-
tistical features and consequently adapt to new event types (e.g., dbc:flood and
dbc:natural hazard), (ii) semantic concept can be sometimes too general and
not help the classification of the document (e.g., desire and virtue hypernyms),
and (iii) general automatic semantic extraction tools can extract non-relevant
entities and confuse the classifiers (e.g., entities about Formula 1 ).

Although this analysis gives better insights concerning the behaviour of the
classifiers, we plan to run a more in depth error analysis in the future by analysing
additional misclassified documents. This will help improve our understanding of
the scenarios and conditions under which each classification approach prevails,
and thus would help us determine a more accurate merge between the two clas-
sification approaches.

In this work, we performed experiments across different types of crisis events.
The event types present in the datasets are not uniformly distributed, where
some types are more frequent than others, or have much bigger data than others.
(See Table 3). In the view of developing automated classifiers that are able to
learn about various crisis situations, such a skewed distribution could lead to
learning bias. We designed the experiments in light of this distribution, but in
order to create classifier models that are able to adapt to various domains of
crisis, we would need to learn from more diverse set of crisis situations.

The type of each crisis in the data is the official type which is determined
by official agencies (e.g., typhoon, earthquake, flood). We regarded each type
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to be different from the others, based solely on their type label. However, with
regards to content, it is not necessarily the case that different type of crises would
produce different type of content (e.g., typhoons and floods have a high overlap).
To this end, while we do not add a certain type of crisis to the training data,
we cannot ignore the possibility of having highly related content in the training
data, that was the results of including similar or overlapping crises events. Hence
in future work, we will take into account not only the event type, but also their
content similarity. The codebase and data generated in this work is accessible12.

In this work, we dealt with data originating from different languages, but
have not performed a cross-lingual analysis. As an immediate future work, we
aim to analyse how the classifiers trained in a certain language can adapt to an
entirely new language to detect crisis related content.

6 Conclusion

This work presents a hybrid approach by merging semantic and statistical fea-
tures to develop classification models that detect crisis related information from
social media posts. The main application of this approach is demonstrated in
the case of identifying crisis-related content on new types of crisis events that
have not been directly included in the data used for training the classifier. This
proposes a way forward towards developing domain adaptive crisis classification
models. Adding semantic features reflected an improvement over the statistical
features in classification performance on an average of 7.2% when identifying
crisis related content on new event types.
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